THE INTERACTION OF AN INHOMOGENEITY WITH A CONCENTRATED FORCE IN COUPLE STRESS THEORY

S. C. Gupta
(Department of Applied Mathematics, Indian Institute of Science, Bangalore 560012, India)

Received on October 14, 1976

Abstract

Using complex variable methods, the problem of interaction between an inhomogeneity and a concentrated force in two dimensional linear couple stress theory has been studied in this paper. The concentratea force could be situated in the matrix or in the inhomogeneity. Edge dislocation type singularities can also be considered. The effect of a concentrated force on a circular inhonogeneity in an infnite medium has been discussed in detail. Stresses could be bounded at infinity. Numerical results are in conformity with the fact that the effect of couple stresses is negligible when the ratio of the smallest dimension of the body to the cnaracteristic length is large.

Key Words: Interaction; Inhomogeneity; Couple stress Theory.

Introduction

The problem of two-dimensional circular inhomogeneity in an infinite region with uniaxial tension at infinity and with couple stresses accounted by Mindlin's couple stress theory [1, 2] was solved by Weitsman [3] and Hartranft and Sih [4]. The size of the inserted material in [3] and [4] is the same as that of the cavity in the infinite region. The solutions in $[2,3,4]$ depend on the choice of some suitable functions and this does not seem to be a systematic approach towards other inhomogeneity problems. Hujgol [5] solved the two-dimensional problem of a concentrated force in an infinite medium using complex variable formulation developed by Mindlin [6] and Muskhelishvili [7]. In the present paper complex variable methods have been employed to study the problem of interaction between an inhomogeneity and a concentrated force (or edge dislocation with Burger's vector). The size of the inhomogeneity could be different from the size of the cavity and the stresses could be bounded at infinity.

When Mindlin's [2] two-dimensional linear couple stress theory is considered, the basic equations to be solved are

$$
\begin{equation*}
\nabla^{4} U=0 \tag{1}
\end{equation*}
$$

I.I.Sc. -1

$$
\begin{equation*}
\nabla^{2}\left(V-l^{2} \nabla^{2} V\right)=0 \tag{2}
\end{equation*}
$$

The solutions of (1) can be expressed in terms of two analytic functions $\phi(z)$ and $\chi(z)$ [7].

$$
\begin{equation*}
2 U=\bar{z} \varphi(z)+z \overline{\phi(z)}+\chi(z)+\overline{\lambda^{\prime}(z)} . \tag{3}
\end{equation*}
$$

V and U are not independent and satisfy the relation

$$
\begin{equation*}
V-l^{2} \nabla^{2} V=8(1-v) l^{2} \operatorname{Im}\{\Phi(z)\} \tag{4}
\end{equation*}
$$

where $\phi^{\prime}(z)=\Phi(z)$ and Im stands for the imaginary part of a complex quantity.

The solutions of (2) are not available in terms of analytic functions.
Although the theory developed below is applicable even if there are more than one concentrated forces and more than one inhomogeneities, the results in this paper are given for the case when only one concentrated force is applied in the presence of one inhomogeneity.

1. Consider a two-dimensional isotropic infinite elastic medium with a cavity in a state of plane strain. The boundary of the cavity will be denoted by L. This infinite region is called matrix. Let a concentrated force $X+i Y$ be applied at an interior point $z=z_{0}(\bar{z}=x+i y)$ of the matrix. If an elastic body of dimensions slightly larger than those of the cavity but remaining within the limits of proportional elasticity is embedded in the matrix then because of the misfit in size stresses would develop everywhere. This embedded material is called inhomogeneity if the elastic constants of matrix and embedded material are different and inclusion if their elastic constants are the same.

Let the inhomogeneity in the absence of matrix undergo a prescribed deformation ($\epsilon_{2} x, \epsilon y$) which in the presence of matrix will attain a differ rent equilibrium configuration. If body forces and body couples are absent but couple stresses are taken into account then the following conditions should hold at the equilibrium boundary L.

$$
\begin{align*}
& u^{+}-u^{-}=\epsilon_{1} x=g_{1}(t) ; V^{+}-V^{-}=\varepsilon_{2} y=g_{2}(t) \tag{5.1}\\
& \tau^{+}{ }_{\boldsymbol{r}}+i \tau^{+} \boldsymbol{r}_{\theta}=\tau_{\boldsymbol{r} \boldsymbol{r}}+i \tau_{r_{\theta}} \tag{5,2}\\
& \mu_{r^{+}}=\mu_{\boldsymbol{r}}^{-} \tag{5.3}\\
& \omega_{\boldsymbol{r}_{\theta}}=\omega_{\boldsymbol{r}_{\theta}}^{-} \tag{5.4}
\end{align*}
$$

where t is a point on the boundary L; the superscripts + and - stand for the matrix and inhomogeneity respectively, u and v are displacement components in Cartesian coordinates, $\tau_{\boldsymbol{r}}, \tau_{\boldsymbol{r} \theta}$, etc., are the components of the
asymmetric Cosserat stress tensor in polar coordinates, μ_{r} is the component of the Cosserat couple-stress tensor in polar coordinates and $\omega_{r \theta}$ is the component of rotation produced by the anti-symmetric part of the shear stresses.

The components of Cosserat stress tensor, displacements and rotation may be expressed in terms of analytic functions $\phi(z)$ and $\psi(z)=x^{\prime}(z)$ and the real valued function $V(z, \bar{z})$ [5].

The boundary conditions (5.1)-(5.4) when rewritten in terms of $\phi(z)$, $\psi(z)$ and $V(z, \bar{z})$ become

$$
\begin{align*}
& k_{2} G_{1} \varphi^{+}(t)-G_{1} t \overline{\psi^{\prime+}(t)}-G_{1} \overline{\psi^{+}(t)}+2 i G_{1} \frac{\partial V^{+}}{\partial \vec{t}} \\
& =k_{1} G_{2} \dot{\varphi}^{-}(t)-G_{2} t \overline{\varphi^{\prime-}(t)}-G_{2} \overline{\psi^{-}(t)}+2 i G_{2} \frac{\partial V^{-}}{\partial \bar{t}} \\
& \quad+2 G_{1} G_{2}\left\{g_{1}(t)+i g_{2}(t)\right\} \tag{6.1}\\
& {\dot{\varphi^{+}}}^{+}(t)+t \bar{\phi}^{\overline{+}+(t)}+\overline{\psi^{+}(t)}-2 i \frac{\partial V^{+}}{\partial \bar{t}} \\
& \quad=\dot{\psi}^{-}(t)+t \overline{\varphi^{-}-}(t)+\overline{\psi^{-}(t)}-2 i \frac{\partial V^{-}}{\partial \bar{t}} \tag{6,2}\\
& \operatorname{Re}\left(e^{i \theta} \frac{\partial V^{+}}{\partial t}\right)=\operatorname{Re}\left(e^{i \theta} \frac{\partial V^{-}}{\partial t}\right) \tag{6.3}\\
& l_{1}^{2} G_{1} V^{+}=l_{2}^{2} G_{2} V^{-} . \tag{6.4}
\end{align*}
$$

$\phi^{+}(t), \phi^{-}(t)$, etc., are the boundary values of the functions $\phi(z)$, etc., from the right and from the left respectively as the boundary L is traversed in the anti-clockwise direction. The elastic constants and characteristic lengths of inhomogeneity and matrix are denoted by the subscripts 1 and 2 respectively; $k=3-4 v, v$ being Poisson ratio, G is the shear modulus of elasticity and l denotes the characteristic length. Re stands for the real part of a complex quantity.
$\phi(z)$ and $\psi(z)$ are to be determined from (6.1) and (6.2). If the elastic constants of matrix and inhomogeneity are entirely different and the boundary L is any general boundary then there does not seem to be any systematic way of determining $\phi(z)$ and $\psi(z)$ from (6.1) and (6.2). However, if it is assumed that the Poisson ratios of matrix and inhomogeneity are different but their shear moduli are the same then $\phi(z)$ and $\psi(z)$ can be
determined from the following Hilbert problems which can be easily derived from (6.1) and (6.2).

$$
\begin{gather*}
\dot{\phi}^{+}(t)-\frac{1+k_{1}}{1+k_{2}} \varphi^{-}(t)=\frac{G\left(\epsilon_{1}+\epsilon_{2}\right)}{\left(1+k_{2}\right)} t \div \frac{G\left(\epsilon_{1}-\epsilon_{2}\right)}{\left(1+k_{2}\right)} \bar{t} \text { on } L \tag{7}\\
\begin{array}{c}
\psi^{+}(t)-\psi(t)=\phi^{-}(t)-\overline{\phi^{+}(t)}+\bar{t}\left(\phi^{\prime}(t)-\psi^{\prime}+(t)\right) \\
+2 i \frac{\partial V}{\partial \bar{t}}-2 i \frac{\partial V^{+}}{\partial \bar{t}} \text { on } L .
\end{array}
\end{gather*}
$$

Assuming zero stresses at infinity, the solution of (7) is given by

$$
\begin{align*}
\phi^{+}(z)= & -\frac{G\left(\epsilon_{1}-\epsilon_{2}\right)}{2 \pi i\left(1+k_{2}\right)} \int \frac{\bar{t} d t}{t-z}-\frac{C}{z-z_{0}}, z \epsilon \text { matrix } \tag{9}\\
\phi^{-}(z)= & -\frac{G\left(\epsilon_{1}+\epsilon_{2}\right)}{\left(1+k_{2}\right)} z-\frac{G\left(\epsilon_{1}-\epsilon_{2}\right)}{2 \pi i\left(1+k_{2}\right)_{L}} \int \frac{\bar{t} d t}{t-z} \\
& -\frac{\left(1+k_{2}\right)}{\left(1+k_{1}\right)\left(z-z_{0}\right)}, z \epsilon \text { inhomogeneity } \tag{10}
\end{align*}
$$

where

$$
C=(X+i Y) / 2 \pi\left(1+k_{2}\right)
$$

The solution of (8) is given by

$$
\begin{align*}
\psi(z)= & \frac{1}{2 \pi i} \int_{L} \frac{\overline{\left.\phi^{+}(t)-\overline{\phi^{-}(t)}\right)}}{t-z} d t+\frac{1}{2 \pi i} \int_{L} \frac{t\left(\phi^{\prime}+-\phi^{\prime}(t) d t\right)}{t-z} \\
& +\frac{1}{\pi} \int \frac{\left(\frac{\partial V+}{\partial t}-\frac{\bar{t}}{d \bar{t}}\right) d t}{t-z}+\frac{D}{z-z_{0}}+\frac{8\left(1-v_{2}\right) l_{2}^{2} C}{\left(z-z_{0}\right)^{2}} \\
& -\bar{z}_{0} \frac{C}{(z-)_{0}^{2}} \tag{11}
\end{align*}
$$

where

$$
D=k_{2} \bar{C}
$$

If the concentrated force is situated at an interior point $z=z_{0}$ in the inhomogeneity then appropriate changes in the elastic constants, characteristic lengths, etc., are to be made in (9), (10) and (11).

For an edge dislocation in the matrix with Burger's vector ($F_{\boldsymbol{x}}, 0,0$) $C=D=i G_{2} F_{x} / \pi\left(1+k_{2}\right)$ and for an edge dislocation with Burger's vector $\left(0, F_{y}, 0\right), \quad C=D=G_{2} F_{y} / n\left(1+k_{2}\right)$.

Concentrated force introduces singularity in $V(z, \bar{z})$. The solutions of (2) are to be suitably modified to account for this singularity. Let

$$
\begin{align*}
V^{+}(z, \bar{z})= & A_{1} /\left(z-z_{0}\right)+\bar{A}_{1} /\left(\bar{z}-\bar{z}_{0}\right)+\sum_{n=0}^{\infty}\left(\bar{b}_{n} z^{-n}+\bar{b}_{n} \bar{z}^{-n}\right) \\
& +V_{0}^{+}(z, \bar{z}) \tag{12}\\
V^{-}(z, \bar{z})= & A_{2} /\left(z-z_{0}\right)+\bar{A}_{2} /\left(\bar{z}-\bar{z}_{0}\right)+\sum_{n=0}^{\infty}\left(a_{n} z^{n}+\bar{a}_{n} \bar{z}^{n}\right) \\
& +V_{0}^{-}(z, \bar{z}) . \tag{13}
\end{align*}
$$

$V_{0}^{+}(z, \bar{z})$ and $V_{0}^{-}(z, \bar{z})$ are the solutions of equation

$$
\begin{equation*}
V-l^{2} \nabla^{2} V=0 \tag{14}
\end{equation*}
$$

in appropriate regions and depend upon the equation of the contour L. The constants A_{1} and A_{2} can be guessed easily and

$$
\begin{equation*}
A_{1}=4 i\left(1-v_{2}\right) I_{2}^{2} C, \quad A_{2}=4 i\left(1-v_{1}\right) l_{1}^{2}\left(1+k_{2}\right) C /\left(1+k_{1}\right) . \tag{15}
\end{equation*}
$$

The unknowns b_{n}, a_{n} and those involved in $V_{0}{ }^{+}(z, \tilde{z})$ and $V_{0}-(z, \bar{z})$ are to be determined with the help of boundary conditions (6.3) and (6.4) and the condition (4).
2. We now consider the two-dimensional problem of circular inhomogeneity in an infinite medium in the presence of a concentrated force $X+i Y$ (edge dislocation with Burger's Vectors can also be considered) acting at some interior point $z=z_{0}$ of the matrix. Because of all-round symmetry z_{0} can be taken to be a real quantity. Let the cquation of the contour L be denoted by $|z|=R$. Both the Poisson ratios and shear moduli of inhomogeneity and matiix are taken to be different and as before they will be denoted by the subscripts 1 and 2 for inhomogeneity and matrix respectively. The boundary conditions are given by (5.1)-(5.4).

Let us introduce a new function $\Omega(z)$ as follows ([7], Chapter 20)

$$
\begin{equation*}
\Omega(z)=\bar{\Phi}\left(R^{2} / z\right)-R^{2} z^{-1} \bar{\Phi}^{\prime}\left(R^{2} / z\right)-R^{2} z^{-2} \bar{\psi}\left(R^{2} / z\right) \tag{16}
\end{equation*}
$$

and so

$$
\begin{equation*}
\bar{\psi}(z)=R^{2} z^{-2} \Phi(z)-R^{2} z^{2} \bar{\Omega}\left(R^{2} / z\right)-R^{2} \overline{\bar{z}}^{-1} \Phi^{\prime}(z) \tag{17}
\end{equation*}
$$

where

$$
\bar{\psi}(z)=\psi^{\prime}(z)
$$

For large $|z|$

$$
\begin{align*}
& \Phi(z)=\Gamma-C z^{-1}+0\left(z^{-2}\right), \quad \bar{\psi}(z)=\Gamma^{\prime}+k_{2} \bar{C} z^{-1}+0\left(z^{-2}\right) \tag{18}\\
& \Omega(z)=\bar{\Phi}(0)+0\left(z^{-2}\right) . \tag{19}
\end{align*}
$$

Near $z=0$

$$
\begin{equation*}
\Omega(z)=-\bar{\Gamma}^{\prime} z^{-2}-k_{2} C z^{-1}+a \text { hoiomorphic function } \tag{20}
\end{equation*}
$$

In terms of $\Omega(z)$ and $\Phi(z)$, boundary conditions (6.1) and (6.2) become

$$
\begin{align*}
\{\Phi(t)-\Omega(t)\}^{+}= & \{\Phi(t)-\Omega(t)\}+2 i \frac{\partial^{2} V^{+}}{\partial t \partial \vec{t}}-2 i \frac{\bar{t}}{t} \frac{\overline{\partial^{2} \bar{V}^{4}}}{\partial t^{2}} \\
& -2 i \frac{\partial^{2} V^{-}}{\partial t \partial \bar{t}}+2 i \frac{\bar{t}}{\frac{\partial^{2}}{\bar{t}}} \frac{\overline{V^{-}}}{\partial t^{2}} \text { on } L \tag{21}
\end{align*}
$$

and

$$
\begin{align*}
& G_{1}\left\{k_{2} \Phi+(t)-\Omega-(t)\right\}-G_{2}\left\{k_{1} \Phi-(t)-\Omega+(t)\right\} \\
& =G_{1} G_{2}\left(\epsilon_{1}+\epsilon_{2}\right)-G_{1} G_{2}\left(\epsilon_{1}-\epsilon_{2}\right) \bar{t} / t+2 i G_{2} \\
& \quad \times\left\{\frac{\partial^{2} V^{-}}{\partial t \partial \bar{t}^{-}}-\bar{t} \frac{\bar{t}}{\left.\frac{\partial^{2} V}{\partial t^{2}}\right\}-2 i G_{1}\left\{\frac{\partial^{2} V}{\partial t \partial \bar{t}}-\frac{\bar{t}}{t} \frac{\partial^{2} V^{+}}{\partial t^{2}}\right\} \text { on } L .}\right. \tag{22}
\end{align*}
$$

In (22), the discontinuity in the derivatives (with respect to θ) of displacements has been considered in place of discontinuity in the displacements.

For a circular boundary $L, V(z, \bar{z})$ may be written as

$$
\begin{align*}
& V^{\prime}+(z, \bar{z})=A_{1}^{\prime} /\left(z-z_{0}\right)+A_{1}^{\prime} /\left(\bar{z}-z_{0}\right)+\sum_{n=0}^{\infty}\left(b_{n} z^{-n} \bar{b}_{n}+\bar{z}^{-n}\right) \\
& \quad+\sum_{n=1}^{\infty} K_{n}\left(r / l_{2}\right)\left(c_{n} \sin n \theta+d_{n} \cos n \theta\right) \tag{23}\\
& V-(z, \bar{z})=A_{2}^{\prime} /\left(z-z_{0}\right)+\bar{A}_{2}^{\prime} /\left(\bar{z}-z_{0}\right)+\sum_{n=0}^{\infty}\left(a_{n} z^{n}+\bar{a}_{n} \bar{z}^{n}\right) \\
& \quad+\sum_{n=1}^{\infty} I_{n}\left(r / l_{1}\right)\left\{c_{n}^{\prime} \cos n \theta+d_{n}^{\prime} \cos n \theta\right\} \tag{24}
\end{align*}
$$

K_{n} and I_{n} are Bessel functions of second kind and order $n ; c_{n}, d_{n}, c_{n}^{\prime}$ and $d_{n}{ }^{\prime}$ are real constants to be determined together with a_{n} and b_{n},

$$
\begin{aligned}
A_{1}^{\prime}= & 4 i\left(1-v_{2}\right) l_{2}^{2} C, \quad A_{2}^{\prime}=4 i\left(1-v_{1}\right) G_{1} l_{1}^{2}\left(1+k_{2}\right) C l \\
& \left(G_{1}+G_{2} k_{1}\right)
\end{aligned}
$$

Using (23) and (24), the solution of Hilbert problem in (21) may be mitten as

$$
\begin{align*}
& \bar{\Phi}(z)-\Omega(z)=h(z)+\sum_{n=2}^{\infty}\left\{(1-n) R^{n-2} m_{2} K_{n-1}\left(m_{2}\right)\left(c_{n}-i d_{n}\right) z^{-n / 2}\right. \\
& \left.\quad+(1-n) R^{n-2} m_{1} I_{n-1}\left(m_{1}\right)\left(c_{n}^{\prime}-i d_{n}^{\prime}\right) z^{-n / 2}\right\} \\
& \quad+2 i \sum_{n=2}^{\infty} n(n-1) \bar{a}_{n} R^{2 n-2} z^{-n}+4 i R_{0} z_{0}^{-2}\left(\bar{A}_{1}-A_{2}\right) z / \\
& \quad\left(R_{0}-z\right)^{3},|z|>R \tag{26}
\end{align*}
$$

and

$$
\begin{align*}
\Phi(z)- & \Omega(z)=h(z)+2 i \sum_{n=1}^{\infty} n(1+n) R^{-2 n-2} b_{n} z^{n} \\
+ & \sum_{n=1}^{\infty}(1+n) R^{-n-2} z^{n}\left[\left\{m_{2} K_{n-1}\left(m_{2}\right)+2 n K_{n 2}\left(m_{2}\right)\right\}\left(c_{n}+i d_{n}\right)\right. \\
& \left.+\left\{m_{1} I_{n-1}\left(n_{1}\right)-2 n I_{n}\left(m_{1}\right)\right\}\left(c_{n}^{\prime}+i d_{n}^{\prime}\right)\right] / 2,|z|<R . \tag{27}
\end{align*}
$$

where

$$
\begin{align*}
& m_{1}=R / l_{1}, m_{2}=R / l_{2}, R_{0}=R^{2} / z_{0}, \\
& h(z)=-\frac{\bar{C}}{z-z_{0}}+R^{2} \bar{C}\left(R_{0}-z_{0}\right) \\
& z_{0}^{2}\left(z-R_{0}\right)^{2}-\frac{k_{2} \bar{C}}{z-R_{0}}+\frac{k_{2} \bar{C}}{z} \tag{28}\\
&-\frac{8 R_{0}\left(1-\nu_{2}\right) l_{2}^{2}}{z_{0}^{2}} \frac{\bar{C} z}{\left(z-\overline{\left.R_{0}\right)^{3}}-\bar{\Phi}(0) .\right.}
\end{align*}
$$

$Q(t)$ can be eliminated from (22) with the help of (26) and (27) and the resulting Hilbert problem when solved for $\Phi(z)$ gives

$$
\begin{align*}
\Phi(z)= & -\alpha_{1} \cdot\left[\frac{R_{0} \bar{C}\left(z_{0}-R_{0}\right)}{z_{0}\left(R_{0}-z\right)^{2}}+\frac{R_{0} k_{2} C}{z\left(z-R_{0}\right.}\right) \\
& \left.+\frac{4 R_{0}\left(1-v_{2}\right){l_{2}^{2}}_{2}^{C}}{z_{0}^{2}} \times \frac{z}{\left(z-R_{0}\right)^{3}}\right]-\frac{C}{z-z_{0}} \\
& -\frac{i c_{1}}{2} \sum_{n=2}^{\infty}(1-n) R^{n-2} m_{2} K_{n-1}\left(m_{2}\right)\left(d_{n}+i c_{n}\right) z^{-n} \\
& -G_{1} G_{2}\left(\epsilon_{1}-\epsilon_{2}\right) R^{2} /\left(G_{2}+G_{1} k_{2}\right) z^{2}, \quad|z|>R \tag{29}
\end{align*}
$$

where

$$
\begin{align*}
& a_{1}=\left(G_{2}-G_{1}\right) /\left(G_{2}+G_{1} k_{2}\right) \\
& \Phi(z)=-G_{1}\left(1+k_{2}\right) C /\left(G_{1}+G_{2} k_{1}\right)\left(z-z_{0}\right)+a_{2} \Phi(0) \\
&-G_{1} G_{2}\left(\epsilon_{1}+\epsilon_{2}\right) /\left(G_{1}+G_{2} k_{1}\right)-i \alpha_{2} \sum_{n=1}^{\infty}(1+n) R^{-n-2} z^{n} \\
& \times\left\{m_{1} I_{n-1}\left(m_{1}\right)-2 n I_{n}\left(m_{1}\right)\right\}\left(d_{n}^{\prime}-i c_{n}^{\prime}\right), \quad|z|<R \tag{30}
\end{align*}
$$

where

$$
\alpha_{2}=\left(G_{2}-G_{1}\right) /\left(G_{1}+G_{2} k_{1}\right)
$$

$\Phi(0)$ is determined from the equation

$$
\begin{align*}
& \left(G_{1}+G_{2} k_{1}\right) \Phi(0)=G_{1}\left(1+k_{2}\right) C / z_{0}+\left(G_{2}-G_{1}\right) \Phi \Phi(0) \\
& \quad-G_{1} G_{2}\left(\epsilon_{1}+\epsilon_{2}\right) . \tag{31}
\end{align*}
$$

The unknowns a_{n}, b_{n}, etc., can be determined from the conditions (4), (5.3) and (6.4) and are given below:

$$
\begin{align*}
& d_{n}+i c_{n}=\left\{2 n\left(f_{1}-f_{2}\right) P_{n}-2 n f_{4} Q_{n}+2 n f_{2} T_{n}\right\} / \Delta, n \geqslant 1 \tag{32}\\
& d_{n}^{\prime}+i c_{n}^{\prime}=\left\{2 n\left(f_{1}-f_{3}\right) P_{n}+2 n f_{3} Q_{n}-2 n f_{1} T_{n}\right\} / \Delta, n \geqslant 1 \tag{33}\\
& 2 n b_{n}=-S_{2} R^{n} K_{n-1}\left(m_{2}\right)\left(d_{n}+i c_{n}\right) / m_{2}+2 n T_{n} R^{n}, n \geqslant 1 \tag{34}\\
& 2 n a_{n}=S_{1}\left\{m_{1} I_{n-1}\left(m_{1}\right)-2 n I_{n}\left(m_{1}\right)\right\}\left(d_{n}^{\prime}-i c_{n}^{\prime}\right) / R^{n} m_{1}^{2}, n>1 \tag{35}
\end{align*}
$$

where

$$
\begin{aligned}
& f_{1}=m_{1}{ }^{2} m_{2}{ }^{2} K_{n-1}\left(m_{2}\right), S_{1}=-4 n(1+n)\left(1-v_{1}\right) \alpha_{2} \\
& S_{2}=4 n(1-n)\left(1-v_{2}\right) a_{1,}, \\
& f_{2}=m_{1} m_{2}\left\{m_{1}{ }^{2}+S_{1}(1+g)\right\} I_{n-1}\left(m_{1}\right)+m_{2}\left\{n(g-1) m_{1}{ }^{2}\right. \\
& \left.-2 n(1+g) S_{1}\right\} I_{n}\left(m_{1}\right) \\
& f_{3}=m_{1}{ }^{2}\left(m_{2}{ }^{2}-S_{2}\right) K_{n-1}\left(m_{2}\right)+n m_{1}{ }^{2} m_{2} K_{n}\left(m_{2}\right) \\
& f_{4}=m_{1} m_{2}\left(m_{1}^{2}+S_{1}\right) I_{n-1}\left(m_{1}\right)-n m_{2}\left(m_{1}^{2}+2 S_{1}\right) I_{n}\left(m_{1}\right) \\
& P_{n}=n\left(\bar{A}_{2} / R-\bar{A}_{1} / R\right) R_{1}{ }^{n_{+1}}, n \geqslant 1 ; Q_{n}=\left(\bar{A}_{1} / R-g \bar{A}_{2} / R\right) \\
& \times R_{1}{ }^{n+1}, n \geqslant 1 \\
& n(1-n) T_{n}=i S_{2} I_{2} m_{2}{ }^{-1}\left\{(n-1) \bar{C} R_{1}^{n-1}\left(1-R_{1}{ }^{2}\right)+k_{2} C R_{1}^{n-1}\right. \\
& \left.+4 n(1-n)\left(1-v_{2}\right) \vec{C} R_{1}^{n+1} m_{2}^{-2}\right\}, \quad n \geqslant 3 \\
& T_{1}=0, T_{2}=4 i\left(1-v_{2}\right) l_{2} R_{1} m_{2}{ }^{-1} a_{2}\left\{\bar{C}\left(1-R_{1}{ }^{2}\right)+k_{2} C\right. \\
& \left.-8\left(1-v_{2}\right) \bar{C} R_{1}{ }^{2} m_{2}{ }^{-2}\right\}+4 i\left(1-v_{2}\right) l_{2}{ }^{2} G_{1} G_{2}\left(\epsilon_{1}-\epsilon_{2}\right) / \\
& \left(G_{1}+G_{2} k_{1}\right) \\
& R_{1}=R / z_{0}, \quad g=m_{1}{ }^{2} G_{2} / m_{2}{ }^{2} G_{1} \\
& \triangle=\left[m_{1} S_{1}\left\{-m_{2}^{2} g+S_{2}(1+g)\right\}+S_{2} m_{1}^{8}\right] I_{n-1}\left(m_{1}\right) K_{n-1}\left(m_{2}\right) \\
& -n^{2} m_{2}\left\{m_{1}{ }^{2}(g-1)-2 S_{1}(1+g)\right\} I_{n}\left(m_{1}\right) K_{n}\left(m_{2}\right) \\
& -n m_{1} m_{2}\left\{m_{1}^{2}+S_{1}(1+g)\right\} K_{n}\left(m_{2}\right) I_{n-1}\left(m_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{-2 S_{1}(1+g)\left(m_{2}^{2}-S_{2}\right)+2 S_{1} m_{2}^{2}+g m_{1}^{2} m_{2}^{2}\right. \\
& \left.-S_{2} m_{1}^{2}(g-1)\right\} n I_{n}\left(m_{1}\right) K_{n-1}\left(m_{2}\right)
\end{aligned}
$$

$$
\operatorname{Re}\left(a_{0}\right)=4\left(1-v_{1}\right) l_{1}^{2} a_{2} \operatorname{Im}\{\bar{\Phi}(\mathbb{C})\}
$$

$$
\operatorname{Re}\left(b_{0}\right)=g\left\{\operatorname{Re}\left(a_{0}\right)-\operatorname{Re}\left(A_{2} / z_{0}\right)\right\}+\operatorname{Re}\left(A_{1} / z_{0}\right)
$$

Having obtained $\Phi(z), \Omega(z)$ can be determined from (26) and (27) and $\bar{\psi}(z)$ from (17). It may be noted that $\Phi(z)$ and $\Omega(z)$ so determined satisfy the conditions (18)-(20). If the concentrated force is situated at a point on the boundary L then $h(t)$ has a pole of third order at $t=R$ and the solution of Hilbert problem in (22) can not be found.

The results for a concentrated force applied at a point $z=z_{0}\left(\left|z_{0}\right|\right.$ $>R$) in an infinite medium containing a circular hole of radius R at the origin can be obtained from the results given above by putting $l_{1}=0$ and $G_{1}=0$. The unknowns in this case are given as follows:

$$
\begin{gather*}
a_{n}=0, \quad n \geqslant 1, \quad d_{n}^{\prime}+i c_{n}^{\prime}=0, \quad n \geqslant 1, \quad A_{2}=0 \\
d_{n}+i c_{n}=-8 i\left(1-v_{2}\right) \bar{C} n^{2} R^{n_{+1}} l_{2} / \Delta_{1}+2 n^{2} l_{2}-1 T_{n}^{*} / \Delta_{1}, \\
n \geqslant 1 \tag{36}
\end{gather*}
$$

where $T_{n}{ }^{*}$ is obtained from T_{n} by putting $G_{1}=0$,

$$
\begin{equation*}
b_{n}=2(1-n)\left(1-v_{2}\right) R^{n} K_{n-1}\left(m_{2}\right)\left(d_{n}+i c_{n}\right) / m_{2}+T_{n}{ }^{*} R^{n}, n \geqslant 1 . \tag{37}
\end{equation*}
$$

and

$$
\Delta_{1}=n K_{n-1}\left(m_{2}\right)\left\{4 n(1-n)\left(1-v_{2}\right)-m_{2}^{2}\right\}-n^{2} m_{2} K_{n}\left(m_{2}\right) .
$$

The results for a circular rigid inclusion in an infinite medium can be obtained by takirg $l_{1}=0$ cred $G_{1}=\infty$.
3. Consider next that the concentrated force is situated at a point $z=z_{0}$ in the interior of the inhomogeneity. Because of the all-round symmetry z_{0} can be taken to be a real quantity. Although the method of solution remains as above but various quantities change considerably.

Conditions (18)-(20) shall now be as follows:
For large $|z|$

$$
\begin{align*}
& \Phi(z)=\Gamma-D_{0} z^{-1}+0\left(z^{-1}\right), \quad \bar{\psi}(z)=\Gamma^{\prime}+D_{1} / z+0\left(z^{-2}\right) \tag{38}\\
& \Omega(z)=\bar{\Phi}(0)+\left(z^{-2}\right) \tag{39}
\end{align*}
$$

where D_{0} and D_{1} are some complex constants,

Near $z=0$

$$
\begin{equation*}
\Omega(z)=-\bar{\Gamma}^{\prime} z^{-2}-\bar{D}_{1} z^{-1}+a \text { holomorphic function } \tag{40}
\end{equation*}
$$

$V^{+}(z, \bar{z})$ and $V-(z, \bar{z})$ are given by (23) and (24) but the constants are different. Let

$$
\begin{align*}
& V^{+}(z, \bar{z})=A_{10} /\left(z-\bar{z}_{0}\right)+\bar{A}_{10} /\left(\bar{z}-z_{0}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(b_{n 0} z^{2}+\bar{b}_{n 0} \bar{z}^{-n}\right) \\
& \quad+\sum_{n=1}^{\infty} K_{n}\left(r / l_{0}\right)\left(c_{n 0} \sin n \theta+d_{n 0} \cos n \theta\right) . \quad|z|>R \tag{41}\\
& V-(z, \bar{z})=A_{20} /\left(z-z_{0}\right)+\bar{A}_{20} /\left(z-\bar{z}_{0}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(a_{n} z^{n}+\bar{a}_{n} \bar{z}^{n}\right) \\
& \quad+\sum_{n=1}^{\infty} I_{n}\left(r / l_{1}\right)\left(c_{n o}^{\prime} \sin n \theta+d_{n 0}^{\prime} \cos n \theta\right) . \quad|z|<R \tag{42}
\end{align*}
$$

$\Phi(z)-\Omega(z)$ is given by (26) and (27) where c_{n}, d_{n}, etc., are to be replaced by $c_{n 0}, d_{n_{0}}$, etc., and $h(z)$ is to be replaced by $h_{1}(z)$.

$$
\begin{align*}
h_{1}(z)= & -\frac{C_{1}}{z-z_{0}}+\frac{R^{2} \bar{C}_{1}\left(z-z_{0}\right)}{z_{0}^{2}\left(z-R_{0}\right)^{2}}-\frac{\bar{C}_{1}}{z_{0}}\left(\frac{R_{0}}{\left.z-R_{0}\right)^{-}}-\frac{k_{1} C_{1}}{z-R_{0}}\right. \\
& -\frac{8 R^{2}\left(1-v_{1}\right) l_{1}{ }^{2}}{z_{0}{ }^{3}} \frac{\bar{C}_{1} z}{\left(z-R_{0}\right)^{3}}+\frac{\bar{D}_{1}}{z}-\bar{\Phi}(0), \tag{43}
\end{align*}
$$

$C_{1}=(X+i Y) / 2 \pi\left(1+k_{1}\right) ; D_{1}$ and $\Phi(0)$ are to be determined.
$\Phi(z)$ can be determined as before.

$$
\begin{align*}
& \left(G_{2}+G_{1} k_{2}\right) \Phi(z)=-G_{2}\left(1+k_{1}\right) C_{1} /\left(z-z_{0}\right)+\left(G_{2}-G_{1}\right) D_{1} \\
& \quad z-G_{1} G_{2}\left(\epsilon_{1}-\epsilon_{2}\right) R^{2} / z^{2}-i\left(G_{2}-G_{1}\right) \sum_{n \times 2}^{\infty}(1-n) R^{n-2} \\
& \quad \times m_{2} K_{n-1}\left(m_{2}\right)\left(d_{n 0}+i c_{n 0}\right) z^{-n} / 2,|z|>R \tag{44}
\end{align*}
$$

and

$$
\begin{aligned}
\Phi(z)= & -a_{2}\left[\frac{R^{2} \bar{C}_{1}\left(z-z_{0}\right)}{z_{0}^{2}\left(z-R_{0}\right)^{2}}-\frac{\bar{C}_{1}}{z_{0}} \frac{R_{0}}{z-R_{0}}-\frac{k_{1} C_{1}}{z-R_{0}}\right. \\
& \left.-\frac{4 R_{0}\left(1-v_{1}\right) l_{1}^{2} \bar{C}_{1}}{z_{0}^{2}} \frac{z}{\left(z-R_{0}\right)^{3}}-\bar{\Phi}(0)\right]-C_{1}\left(\left(z-z_{0}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& -G_{1} G_{2}\left(\epsilon_{1}+\epsilon_{2}\right) /\left(G_{1}+G_{2} k_{1}\right)+i a_{2} \sum_{n=1}^{\infty}\left(1+\frac{1}{1} n\right) R^{-n-2} z^{n} \\
& \times\left\{m_{1} I_{n-1}\left(m_{1}\right)-2 n I_{n}\left(m_{1}\right)\left(d_{n 0}^{\prime}-i c^{\prime} n_{0}\right) / 2,|z|<R(45)\right.
\end{aligned}
$$

From (45) and (4)

$$
\begin{align*}
& \Phi(0)=-a_{2}\left\{-\bar{C}_{1} / R_{0}+\bar{C}_{1} / z_{0}+k_{1} C_{1} / R_{0}-\bar{\Phi}(0)\right\} \\
& \quad+C_{1} / z_{0}-G_{1} G_{2}\left(\epsilon_{1}+\epsilon_{2}\right) /\left(G_{1}+G_{2} k_{1}\right) \tag{46}
\end{align*}
$$

and

$$
\begin{align*}
& A_{10}=4 i\left(1-v_{2}\right) l_{2}{ }^{2} G_{2}\left(1+k_{1}\right) C_{1} /\left(G_{2}+G_{1} k_{2}\right), \\
& A_{20}=4 i\left(1-v_{1}\right) l_{1}{ }^{2} C_{2} . \tag{47}
\end{align*}
$$

In order that $\bar{\psi}(z)$ should be holomorphic near $z=0$ the coefficient of z^{-1} in $\Omega(z)$ for large z must be zero. This condition determines the constant D_{1}.

$$
D_{1}=k_{2}\left(1+k_{1}\right) /\left(1+k_{2}\right)
$$

The constants $a_{n_{0}}, b_{n 0}$, etc., can be determined from the boundary conditions (6.3), (6.4) and the condition (4).

$$
\begin{align*}
& d_{n_{0}}+i c_{n_{0}}=\left[2 n f_{4}\left\{P_{n 0}-Q_{n 0}-(1+g) U_{n 0}\right\}\right. \\
& \left.+2 n f_{2}\left\{\ddot{O}_{n 0}-P_{n 0}+T_{n 0}\right\}\right] / \Delta, n \geqslant 1 \tag{48}\\
& d_{n_{0}}{ }^{\prime}+i c_{n 0}{ }^{\prime}=\left[2 n f_{3}\left\{Q_{n 0}-P_{n 0}+(1+g) \bar{U}_{n 0}\right\}\right. \\
& \left.+2 n f_{1}\left\{Q_{n 0}-T_{n_{0}}-\tilde{O}_{\left.n_{0}\right\}}\right\}\right] / \Delta, n \geqslant 1 \tag{49}\\
& 2 n b_{n 0}=-S_{2} R^{n} K_{n-1}\left(m_{2}\right)\left(d_{n_{0}}+i e_{n 0}\right) / m_{2}+2 n T_{n 0} R^{n} \text {, } \\
& n \geqslant 1 \tag{50}\\
& 2 n a_{n 0}=S_{1}\left\{m_{1} I_{n-1}\left(m_{1}\right)-2 n I_{n}\left(m_{1}\right)\right\}\left(d_{n_{0}}{ }^{\prime}-i c_{n 0}{ }^{\prime}\right) / R^{n} m_{1}{ }^{2} \\
& +2 n U_{n 0} / R^{n}, \quad n \geqslant 1 . \tag{51}
\end{align*}
$$

Some of the quantities in (48)-(51) which are not defined earlier are as foliows:

$$
\begin{aligned}
& P_{n 0}=n\left(\bar{A}_{20} / R-\bar{A}_{10} / R\right) R_{\mathbf{1}}^{n+2}, \quad Q_{n 0}=\left(\bar{A}_{10} / R-g \bar{A}_{20} / R\right) \times \\
& \quad R_{1}{ }^{n+1}, \quad n \geqslant 1 \\
& T_{n 0}=0, \quad n \geqslant 3, \quad T_{10}=-4 i\left(1-v_{2}\right) l_{2} m_{2}^{-1} a_{1} \bar{D}_{1} \\
& T_{20}=4 i\left(1-v_{2}\right) l_{2}^{2} G_{1} G_{2}\left(\epsilon_{1}-\epsilon_{2}\right) /\left(G_{2}+G_{1} k_{2}\right) \\
& n(1+n) U_{n 0}=i S_{1} l_{2} m_{1}-1\left\{(n+1) \bar{C}_{1}\left(R_{1}^{2}-1\right) / R_{1}{ }^{n+1}+k_{1} C_{1} / R_{1}{ }^{n+1}\right. \\
& \left.\quad-4 n(i+n) \bar{C}_{1} m_{1}{ }^{-2} / R_{1}{ }^{n-1}\right\}, \quad n \geqslant 1 \\
& \operatorname{Re}\left(b_{00}\right)=0, \quad \operatorname{Re}\left(a_{00}\right)=\operatorname{Re}\left(A_{2} / z_{0}\right)-g \operatorname{Re}\left(A_{1} / z_{0}\right) .
\end{aligned}
$$

S. C. Gupta

Stresses at the equilibrium boundary. $G_{1}=G_{2}, v_{1}=v_{2}=0.25, \quad \epsilon_{1}=-\epsilon_{2}$ and $Y=0$. The values numerator and denominator refer to couple stress effects and without couple stresses, respectively$P=(1+k) / 2 G \epsilon_{1}, \quad X_{0}=X / 2 G \epsilon_{1}, \quad R_{0}=z_{0} / R\left(\left\|z_{0}\right\|>R\right)$									
θ		0			$\pi / 2$			π	
R_{0}		. 01	$10 \cdot 0$			$10 \cdot 0$		01	$10 \cdot 0$
X_{0}	0	5	15	0	5	15	0	5	15
$\tau_{r r} / P$	$-2 \cdot 1411$	-1.3218	-0.9741	$2 \cdot 1411$	$1 \cdot 3728$	1.9276	$-2 \cdot 1411$	-0.9821	-0.9723
$R / l=1 \cdot 0$	-1.0000	$-0 \cdot 1807$	$0 \cdot 1808$	1.0000	1.3899	0.7730	$-1 \cdot 0000$	1.5527	0.1827
$\tau_{t r} / P$	-1.6713	-0.8520	-0.4911	1.6713	$2 \cdot 0150$	1.4449	-1.6713	0.8256	-0.4892
$R / l=5 \cdot 0$	-1.0000	$-0 \cdot \overline{1807}$	$0 \cdot \overline{1808}$	1.0000	1.3899	0.7730	$-1 \cdot 0000$	1. $\overline{5527}$	0.1827
$\tau_{r s} / P$	-1.2857	-0.1807	$0 \cdot 1808$	1.2837	1.3881	0.7730	-1.2837	1. 5505	0.1827
$R / l=25 \cdot 0$	-1.0000	-0.1807	$0 \cdot 1808$	1.0000	1.3899	0.7730	-1.0000	$1 \cdot 5527$	$0 \cdot 1827$
$\tau_{r \theta} / P$	$0 \cdot 0000$	$0 \cdot 0000$	$0 \cdot 0000$	$0 \cdot 0000$	7.4803	0.1534	$0 \cdot 0000$	0.0000	0.0000
$R / l=1 \cdot 0$	$0 \cdot 0000$	$0 \cdot 0000$	0.0000	0.0000	1.5836	$0 \cdot \overline{1409}$	$0 \cdot 0000$	0.0000	$0 \cdot 0000$
$\tau_{\mathrm{r} \theta} / P$	$0 \cdot 0000$	$0 \cdot 0000$	$0 \cdot 0000$	$0 \cdot 0000$	1.8194	0.1419	$0 \cdot 0000$	0.0000	0.0000
$R / l=5.0$	$0 \cdot 0000$	0.0000							0. 0000

$$
\begin{gathered}
0.0000 \\
0.0000 \\
-2.0814 \\
-3 . \overline{2364} \\
-2.5645 \\
-3 . \overline{2364} \\
-3.2364 \\
-3 . \overline{2364} \\
1.9186 \\
0 . \overline{7636} \\
1.4355 \\
0 . \overline{7636} \\
0.7636 \\
0 . \overline{7636}
\end{gathered}
$$

$$
\frac{0}{\substack{0}}
$$

㙜

$$
\begin{aligned}
& \tau_{\theta \theta} / P \\
& R / l=25 \cdot 0 \\
& \tau_{\theta \theta}+/ P \\
& R / l=1 \cdot 0 \\
& \tau_{\theta \theta}+/ P \\
& R / l=5 \cdot 0 \\
& \tau_{\theta \theta}{ }^{+} / P \\
& R / l=25 \cdot 0 \\
& \tau_{\theta \theta}-/ P \\
& R / l=1 \cdot 0 \\
& \tau_{\theta \theta}-1 P \\
& R / l=5 \cdot 0 \\
& \tau_{\theta \theta \theta}-7 P \\
& \dot{R} / l=250 \\
& \hline
\end{aligned}
$$

4. Till now in sections 1,2 and 3 stresses at infinity were taken to be zero. If the stresses are bounded at infinity then it seems to be more convenient and systematic to obtain the solution as the superposition of two solutions. The first solution corresponds to the problem considered above in sections 2 and 3 with the boundary conditions (6.1)-(6.4). The second solution corresponds to the problem of circular inhomogeneity in an infinite medium with no discontinuity in the displacements in (6.1) and no corcentrated force in the medium but bounded stresses at infinity. A systematic approach towards obtaining this second solution, is through the construction of two new functions ([8], equation (6) and (7)). An advantage in this approach is that the behaviour of $\Phi(z)$ for large $|z|$ and small $|z|$ is easily determined (refer [8], equation (17)). But this approach in [8] is not suitable for determining the singularities of $\Phi(z)$.

If $\Phi(z)$ so obtained by the superposition of two solutions is denoted by $\Phi_{\mathrm{S}}(z)$, then

$$
\begin{align*}
& \Phi_{S}(z)=\Phi(z)+\left(G_{2} M_{1}+M_{2}\right) /\left(G_{2}+G_{1} k_{2}\right) \\
& \quad+a_{1} M_{3} / z^{2}, \quad|z|>R \tag{52}
\end{align*}
$$

and

$$
\begin{equation*}
\Phi_{S}(z)=\Phi(z)+\left(G_{1} M_{1}+M_{2}\right) /\left(G_{1}+G_{2} k_{1}\right), \quad|z|<R \tag{53}
\end{equation*}
$$

where $\Phi(z)$ in (52) and (53) are given by (29) and (30) respectively or by (44) and (45) respectively; $M_{1} M_{2}$ and M_{3} depend on the conditions at infinity and are given below.

For a uniaxial tension p in the y direction

$$
\begin{align*}
& 8 M_{1}\left\{G_{1}+G_{2}\left(1-2 v_{1}\right)\right\}=-p\left\{G_{1}\left(1-v_{2}\right)-G_{2}\left(1-v_{1}\right)\right\} \tag{54}\\
& G_{2} M_{1}+M_{2}=p\left(G_{2}+G_{1} k_{2}\right) / 8, \quad M_{3}=p R^{2} / 4 \tag{55}
\end{align*}
$$

For the biaxial tensions q and p in the x and y directions respectively $M_{3}=(p-q) R^{2} / 4$ and M_{1} and M_{2} are given by (54) and (55) with p replaced by $p+q$.

When the principal stresses N_{1} and N_{2} act at infinity and the angle between N_{1} and the x-axis is δ then $M_{3}=\left(N_{1}-N_{2}\right) e^{2 i \delta / 4}$ and M_{1} and M_{1} are given by (54) and (55) with p replaced by $N_{1}+N_{2}$.
$\Omega(z)$ can be determined as before with $\Phi(0)$ replaced by $\Phi_{S}(0)$. By taking $\epsilon_{1}=\epsilon_{2}=0, C=0$ and appropriate stresses at infinity, the results given in [4] are obtained.

Stresses have been calculated at the equilibrium boundary for the case when $G_{1}=G_{2}, y_{1}=v_{2}=0.25 \epsilon_{1}=\cdots \epsilon_{2}$, concentrated force acts along positive x axis and $z e \%$ stresses at infinity. Numerical results which are presented in table 1 are in conformity with the fact that the effect of couple stresses is negligible when the ratio of the smallest dimension of the body to the characteristic length is large. This observation is independent of the point of application of the concentrated force and its magnitude.

References

[1] Mindlin, R.D. and Tiersten, \mathbf{H}. F.
[2] Mindin, R.D. . Influence of couple stresses on stress concentrations, Experimental Mechanics, 1963, 3, 1-7.
[3] Weitsman, Y. . Couple-Stress effects on stress concentrationis around a cylindrical inclusion in a field of uniaxial tension. Jour. of Appl. Mech., Vol. 32, No. 1., Trans. ASME, Vol. 87, Series E, June 1965, pp. 424-427.
[4] Hartranft, R. J. and Sih, C. C.
[5] Huigol, R. R. . On the concentrated force problem for two-dimensional elasticity with couple stresses. Int. Jour. Engg. Sci., 1967, 5, 81-93.
[6] Mindlin, R. D. . Proceeding of the International Symposium on Applications of the Theory of Functions in Continutum Mechanics, Tbilisi, USSR 1963 pp, 256-259.
$[7]$ Muskheirshvili, N. I. Some basic problems of the mathematical theory of elasticity, Translated by J. R. M. Radok, Groningen, 1953.
[8] Englarc, A. H. .. An are crack axound a circular elastic irclasion. Jour. of App Mech. Trans. ASME., Vol. 33, No. 1, Series E, 1966, pp. 637640.

