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ABSTRACT 

Using complex variable methods, the problem of interaction between an 
inhomogeneity and a concentrafed force in two dimensional linear couple stress theory 
j ~ s  been studied in this paper. The concentrated force could be situated in the 
matrix or in the inhomogeneity. Edge dislocalion 1j)pe sirtgularities can also be 
considered. The effect of a conceizrrared force on a circular inhomogeneity in an 
in$nite medium has been discussed in detuil. Stresses could be bounded at in$nity. 
,v%merical results are in conformity with the fact that the e B c t  of couplestresses is 
negligible when the ratio of the smallest dimcnsiorz of the body to the enaracteristic 
length is large. 
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The pioblem of two-dimensional circular inhomogencity in an inGnite 
region with uniaxial tension a i  infinity and with couple sti-esses accounted 
by Mindhn's couple stress theory [I, 21 was solved by Weitsman [3] and 
Hartranft and Sih [4]. The size of the inserted material in [3] and [4] is 
the same as that of the cavity in the infinite region. The solutions in 
[2, 3, 41 depend on the choice of some suitable functions and this does not 
seem to be a systematic approach towards other inhomogeneity problems. 
HQol [5] solved the two-dimensional problem of a concentiated force 
in an infinite medium using complex variable formulation developed by 
Mindtin [6] and Muskhelishvili [7]. In the present paper complex variable 
methods have been employed to study the problem of interaction between 
an lnhomogeneity and a concentrated force (or edge dislocation with 
Burger's vector). The size of the inhomogeneity could be different from 
the size of the cavity and the stresses could be bounded at  infinity. 

When Mindlin'. [2] two-dimensional linear couple stress theory is 
considered, the basic equations to be solved are 

v4u=0,  (1) 
39 



The solutions of (1) can be expressed in terms of two analytic functions 
$ (z) and x ( z )  [71. 

V and U are not independent and satisfy the relation 

V - 1" V Y = 8 (1 - v) 1% Im { @  (z)] (4) 
where 9' (z) = @ (z) and Im stands for the imaginary part of a complex 
quantity. 

The solutions of (2) are not available in terms of analytic functions. 

Although the theory developed below is applicable even if there are 
more than one concei~t~ated forces and more than one iuhomogeneifi~, 
the results in this paper are given for the casc when only one concentrated 
force is applied in the presence of one inhomogeneity. 

1. Consider a two-dimensional isotropic infinite elastic medium with 
a cavity in a state of plane strain. The boundary of the cavity will be 
denoted by L. This infinite region is called matrix. Let a concentrated 
force X 4- iY be applied at an interior point z = z, (2 = x + iy) of the 
matrix. If an elastic body of dimensions slightly larger than those of the 
cavity but remaining within the limits of proportional elasticity is embedded 
in the matrix then because of the misfit in size stresses would develop every- 
where. This embedded material is called inhomogeneity if the elastic 
constants of matrix and embedded material are different and inclusion if 
their elastic constants are the same. 

Let the inhomogeneity in the absence of matrix undergo a prescribed 
deformation (e,x, ~ y )  which in the presence of matrix will attain a diffb 
rent equilibrium configuration. If body forces and body couples are absent 
but couple stresses are taken into account then the following conditions 
should hold at  the equilibrium boundary L. 

where t is a point on the boundary I,; the superscripts $- and - &dfor 
the matrix and inhomogeneity respectively, u and v are displacement ComP 
nents in Cartesian coordinates, T).)., TT8, etc., are the components of the 
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asymmetric Cosserat stress tensor in polar coordinates, tc, i s  the compo- 
nent of the Cosserat couple-stress tensor in polar coordinates and w,, is 
the component of rotation produced by the anti-symmetric part of the shear 
stresses. 

The components of CoSserat stress tensor, displacements and rotation 
be expressed in terms of analytic functions p (2) and $ (z) = x 1  (=) 
the real valued function V (z, 2) [5]. 

The boundary conditions (5. IIk(5.4) when rewritten in terms of p (z), 
$ (z) and Y (z,2) become 

a V- 
= k,G,+- ( t )  - G2t yxxT) - GG, v(t) + 2i G, - 

a t  

a V+ 
?+ (t) + t +i+T) + vv) - 2i --=- a I 

3 V -  
= 6- (t) + t yx(t) + F x t j  - 2i a t (6.2) 

++(t), c (t), etc., are the boundary values of the functions 4 (z), etc., from 
the right and from the left respectively as the boundary L is traversed in 
the anti-clockwise direction. The elastic constants and characteristic 
lengths of inhomogeneity and matrix are denoted by the subscripts 1 and 2 
rqectively ; k = 3 - 4 v, v being Poisson ratio, G is the shear modulus 
of elasticity and I denotes the characteristic length. Re stands for the 
real part of a complex quantity. 

@ (2) and $ (z) are to be  determined from (6 .I)  and (6.2). If the 
elastic constants of rqatrjx and inhomogeneity are entirely different and 
the boundary L'is any general boundary then there does not seem to be any 
systematic way of determining p (z) and $ (z) from (6.1) and (6.2).  ' HOW- 
ever, if it is assuined that the Poisson ratios of matrix and inhomogeneity 
are different but their shear moduli are the same then + (z) and $ (4 can be 



determined from the followrng Hilbcit problems which can be easily dmlved 
from (6.1) and (6.2). 

$+ ( t )  - 4- ( t )  = $--(t) - vF(t)  4-f ($6- (t)-  9, ( t ) )  

b V- 3 21 - 22 
h r "- on L. (9 

Assumlng zero stresses at infinity, the solution of (7) is given by 

G ( E  -- E ~ )  idt q+ ( z )  - - --L j- --- - ---- , z c  matrix 2m(1 + k,) f - z z - z,, (9) 

where 
c = (A' + iY)/2v (1 i- k~). 

The solntion of (8) is given by 

If the concentrated force is situated a t  an interior point z = zu in the 
inhomogcneity then appropriate changes in the elastic constants, &w.* 
teristic lengths, etc., aie to be made in (9), (10) and (11). 

FOI an edge d~slocation in the matrix with Burger's vector (Fm 0, O) 
C = D = zG2 FZ/v  ( 1  $. k2)  and for an edge dislocation w~th Burger's vector 
(0, Fu, Oh C = D = G,FU/a (1 l kZ). 
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concentrated force introduces singularity in V(z, 2). The solutions 
of (2) are to be suitably modified to account for this singularity. Let 

co 

V-(z, 2) = A,/(= -- 2,) + &/(i -2,) $- 2' (a, zn + (7,2") 
,z=n 

Vo+ (z,Z) and Vo- (2, 2) are the solutions of equation 

in appropriate regions and depend upon tl-.c equation of the contour L. 
The constants A, and A, can be guessed easily and 

A, = 4i (1 - v,) /,W, A, = 4i (I -- v,) /,"I + k,) C/(l 3- k,). 
(1 5)  

The unknowns b,, am and those Involved in Vo+ (z, 2) and Voo ( z , i )  are to 
be dcteimined with the help of boundary conditions (6.3) and (6.4) and 
the condition (4). 

2. We now consider the two-dimensional problem of circular 
inhomogeneity in an infinite medium in the presence of a concentrated force 
X+ iY (edge dislocation with Burger's Vectors can also be considered) 
acting at some interior point z = z, of the matrix. Because of all-round 
symmetly z, can be taken to be a real quantity. Let the cquation of the 
contour L be denoted by I z / = R. Both the Poisson ratios and shear 
moduli of inhomogeneity and matiix are taken to be different and as before 
they will be denoted by the subscripts 1 and 2 for inhomogeneity and 
matrix respectively. The boundary conditions are given by (5.1)-(5.4). 

Let us introduce a new function Q (2) as follows ([7], Chapter 20) 

Q (z) = 5 (R2/z) - RZ z 1 6' (R2/z) - R 2  z - ~  IJ (RL/z) (1 6 )  
and so - 

$ (z) = RZ z' @ (z)  - R2 r2 a (Ra/z) - Ra 7' @' (2) (1 7) 
where 

B (4 = $' (2) 



.n (2) = 5 (0) -f 0 (+). 

Near z = 0 

JZ = - r' z Z  - k ,  C z-l -f a hoiomorphic function 
(20) 

In terms of !2 (2) and @ (z), boundary conditions (6.1) and (6 .2)  become 
-- 
a 2  v+ 

{@ ( t )  - 8 (t))+ = {@ (2) - P (t)}- 3- 2 i  -- - - a t a t  

In (22), the discontinuity in the derivatives (with lespcct to 8) of displace- 
ments has been comidered in place of discontinuity in the displacements. 

For a circular boundary L, V ( z ,  2) may be written as 

m + 2 r, (r/W {cn' cos n8 + dnf cos no). 
"=I 

(24) 

& and I,  are Bessel functions of second kind and order n; cn, dn, cn) and 
dn' are real constants to be determined together with an and bn, 

A,' = 4i (1 - v,) I z2  C, A; = 4i (1 - v1) GlZ12 (1 + kz) C/ 

(G, + Gak1). 
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using (23) and (24), the solution of Hilbert problem in (21) may be 
written as 

(Ro-z)' ,  j z I > R  (26) 
and 

00 

CJ (z)  - SZ ( z )  = h ( z )  + 2i 27 n ( 1  + n) R-Zn-2 b,zn 
"-1 

+ {ml In-1 (md - 2n 1% (m,)} (en' f idnf)1/2, I z I < 8. (27) 
where 

ml = Rll,, m, = RII,, Ro = Ralz0, 

L2 ( t )  can be eliminated from (22) with the help of (26) and (27) and the 
resulting Hilbert problem when solved for @ (z)  gives 

+ 4R0 (1 - v,) Is2 C x 2 - 1  - - C 
z," (2 - ROY z - z0 

where 



@ (0) is determined from the equation 

The unknowns an, bn, etc., can be determined from the conditions (41, 
(5.3) and (6.4) and are given below: 

n (1 - n) Tn  = i S2 I ,  m,-l {(n - 1 )  C Rln-I ( 1  - Rle) + k2 C R;n-' 

-k 4n (1 - n) (1 - v,) C Rln+l m2-21, n 2 3 
Tl = 0, T, = 4i (1 - v 3  1, Rl m;l a ,  {C (1 - Rle)+ k2C 

- 8 ( 1  - v,) C Rla m,-3 + 4i ( 1  - v,) IZ2  GIGz (el - ~ $ 1  
( 4  i- Gekd 

Rl = R/zo, g = m12 G,/mZ2 GI 

A = [mlSl {- mZ2 g + S, (1 + g)} + S2 mL31 In-l (ml) K w  (m3 
- n2 m, {n2 (g - 1) - 2S1(1 + g)} (ml) Kn (mJ 

- n mima @z2 + SL (1 + g)} Kn (ma) In-1 (md 
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~e (a,) = 4 (1 - vl) 112 Im {5 (C)} 

Re (b,) = g {Re (a01 - Re (A~lzo)}  S Re (Allz3.  

Having obtained rP (z) ,  8 (2) can be determined from (26) and (27) 
and $ (z) from (17). It may be  noted that @ (2) and 8 (2) so determined 
satisfy the conditions (18)-(20). If the concentrated force is situated at a 
point on the boundaly L then h ( t )  has a pole of third order at t = R and 
the solution of Hilbert problem in (22) can not be found. 

The results for a concentrated force applied at a point Z =  Z ,  (12, I 
>R) in an infinite medium containing a circular hole of radius R at the 
origin can be obtained fi-om the results given above by putting 1, = 0 and 
GI = 0. The unknowns in this case are given as follows : 

a , = 0 ,  rial, dn'- t  ic,'=O, n Z 1 ,  A 2 = 0  
dn + ic, = - 8i (1 - v2) C n3 Rn+l l z / A l  + 2nz 2, - 1 Tn*/Al,  

n > l  (36) 

where Tn* is obtained from T ,  by putting Gl = 0 ,  

b,, = 2 (1 - n) (1 - v2) Rn Kn-l (mz) (dn + icn)/m,+ Tn* Rn, n 2 1. 
(37) 

The results for a circular rigid inclusion in an infinite medium can be 
obtained by tbkkg I,, = 0 rrc! GI = co. 

3. Consider next that the concentrated force is situated at a point 
= Z ,  in the interior of the inhomogeneity. Because of the all-round sym- 

metry z, can be taken to be a real quantity. Although the method of solu- 
tion remains as above but various quantities change considerably. 

Conditions (18)-(20) shall now be as folloWs: 
For large 1 z 1 

@ (z)  = r - Do z1 + 0 (zl), $ (z)  = P -b Dllz + 0 (zB) (38) 

" (2) = 5 (0) + (2-2) 

where Do and D, are some complex cQnstants. 



Near z = 0 

8 (2) = - F ' z B  - bl z1 + a holomorphic function 
(401 

V+ (2, z) and V- (z, i )  are given by (23) and (24) but the constants are 
different. Let 

V- (z,  i )  = Azo/(z - zo) + &J(z - 30) 

@ (2) - L2 (z) is given by (26) and (27) where cn, d,, etc., are to be 
replaced by c,,, d,,, etc., and h (z) is to be ieplaced by h, (2). 

C, = (X + iY)/27/ (1 + k,); D, and dj (0) are to be determined. 

dj (z) can be determined as before. 

(GB + Glk3  @ (z) = - Gz ( 1  + kJ C1/(z - 2,) + (G, - GJ 4 
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@ (0) -- - a2 {- CJRO + CJzo + klCl/Ru - 3 (0)) 
+ C1Izo - GlG, (€1 + 4 / ( G l  + G, kl)  (46) 

and 
A,, = 4i (1 - v2) 12' Gz (1 + k i )  Cl/(Gz $. Glk$, 
Ago = 4i(1 - v,) Z12 Cl. (47) 

In order that (z)  should be holomorphic near z = 0 the coefficient 
of z1 in D (z)  for large z must be zero. This condition determines the 
constant Dl. 

The constants an,, b,,,  etc., can be heterminedfrom theboundary condi- 
tions (6.3), (6.4) and the condition (4). 

Some of the quantities in (48)-(51) which are not defined earlier are 
as follows : 
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4. Till now in sections 1 ,  2 and 3 stresses at infinity were taben to be 
zero. ~f the stresses are bounded at  infinity then i t  seems to be more 
nient and systematic to obtain the solution as the superposition of bo 
solutions. The first solution corresponds to the problem considered above 
in sections 2 and 3 with the boundary conditions (6.1)-(6.4). The second 
solution corresponds to the problem of circular inhomogeneity jn an ~ , , i t e  
medium with no discontinuity in the displacements in (6.1) and no con. 
centrated force in the medium but bounded stresses at  infinity. A syste 
matic approach towards obtaining this second solution, is through the 
construction of two new functions @I, equation (6) and (7)). An advan. 
tage in this approach is that the behaviour of CJ (2) for large I z 1 and small 
I z I is easily determined (refer [S], equation (17)). But this approach in 
[a] is not suitable for determining the singulatities of CJ (z). 

~f sP (z) so obtained by the superposition of two solutions is denoted by 
cDS (z), then 

CJs (2) = 0 (z)  + (GzMi + MaMGz t- Gikz) 

+ alM3/z2, l 2 l > A .  (54  
and 

@, (z)  = @ (z)  -I- (GljWl $. MdI(G1 + GzkJ, - j z  I < R (53) 

where CJ (z) in (52) and (53) are given by (29) and (30) respectively orby 
(44) and (45) respectively; Ml M2 and M ,  depend on the conditions at it& 
nity and are given below. 

For a uniaxial tension p in the y direction 

8M1 {Gi $. Gt (1 - 2 4 )  = - p (GI ( I  - vd)'" G, ( 1  - v,)) (54 
G2Mz $- M2 = P (Gz + G1k2)/8, M 3  = pR2/4. (55) 

For the biaxial tensions q and p in the x and y directions respectively 
Ma = @ - q) R2/4 and Ml aild M2 are given by (54) and (55) with p replaced 
by P + 9. 

When the principal stresses Nl and N2 act at infinity and the angle 
between N, and the x-axis is S then M3 = (Nl - &) ezi8/4 and Ml and & 
are given by (54) and (55) with p replaced by Nl + N,. 

Q (2) can be determined as before with CJ (0) replaced by CJS (0). BY 
taking €1 = € 2  = 0, C = 0 and appropriate stresses a t  infinity, the resu1b 
given in [4] are obtained. 



Stresses have been calculated at  the equilibrium boundary for the case 
vi,cn G, ; G,, yl = v2 = 0.25 el = - ez, concent~ated force acts alollg 
positive x axis and ze:o stresses at  infinity. Numerical results which are 
presented in table 1 are in conformity with the fact that the cffect of couple 
sticsses is negligible when the ratio of the smallest dimension of the body 
to & characteristic length is large. This observation is independent of 
the of application or the concentrated force and its magnitude. 
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