THE INTERACTION OF AN INHOMOGENEITY WITH A
CONCENTRATED FORCE IN COUPLE STRESS THEORY

S. C. Gupra

(Department of Applied Mazhematics, Indian Institute of Science, Bangalore 560012, India)
Received on October 14, 1976
ABSTRACT

Using complex variable methods, the problem of interaction between an
inkomogeneity and a concenirated force in two dimensional linear couple stress theory
has been studied in this paper. The concentrated force could be situated in the
matrix or in the inhomogeneity. FEdge dislocation type singularities can also be
considered. The effect of a concenirated force on a circular inhomogeneity in an
infinite medium has been discussed in detail.  Stresses could be bounded at infinity.
Numerical results are in conformity with the fact that the effect of couple stresses is
negligible when the ratio of the smallest dimension of the body to the characteristic
length is large.
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INTRODUCTION

The problem of two-dimensional circular inhomogeneity in an infinite
region with uniaxial tension at infinity and with couple stresses accounted
by Mindlin’s couple stress theory [1, 2] was solved by Weitsman [3] and
Hartranft and Sih [4]. The size of the inserted matesal in [3] and [4] is
the same as that of the cavity in the infinite region. The solutions in
[2, 3, 4] depend on the choice of some suitable functions and this does not
seem to be a systematic approach towards other inhomogeneity problems.
Huigol [5] solved the two-dimensional problem of a concentrated foice
in an infinite medium using complex variable formulation developed by
Mindlin [6] and Muskhelishvili {7]. In the present paper complex variable
methods have been employed to study the problem of interaction between
an inhomogeneity and a concentrated force (or edge dislocation with
Burger’s vector), The size of the inhomogeneity could be different from
the size of the cavity and the stresses could be bounded at infinity.

When Mindlin’s [2] two-dimensional linear couple stress theory Is
considered, the basic equations to be solved are
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IV -1V V)=0. o
The solutions of (1) can be expressed in terms of two analytic functions

¢ (2) and x () [7].

2U=2p (D + 2@ + x(2+ x@). o)
V and U are not independent and satisfy the relation
V—PBy2V=8(—v)2Im{® ()} @

where ¢’ (z) = @ (z) and Tm stands for the imaginary part of a complex
quantity.

The solutions of (2) are not available in terms of analytic functions,

Although the theory developed below is applicable even if there are
more than one concentrated forces and more than one inhomogeneitis,
the results in this paper are given for the casc when only one concentrated
force is applied in the presence of one inhomogeneity.

1. Consider a two-dimensional isotropic infinite elastic medium with
a cavity in a state of plane strain. The boundary of the cavity will he
denoted by L. This infinite region is called matrix. Let a concentrated
force X - ¥ be applied at an interior point z =2z, Z=x-11iy) of the
matrix. If an elastic body of dimensions slightly larger than those of the
cavity but remaining within the limits of proportional elasticity is embedded
in the matrix then because of the misfit in size stresses would develop every-
where. This embedded material is called inhomogeneity if the elastic
constants of matrix and embedded material are different and inclusion if
their elastic constants are the same.

Let the inhomogeneity in the absence of matrix undergo a prescribed
deformation (eyx, ey) which in the presence of matrix will attain a diffe-
rent equilibrium configuration. If body forces and body couples are absent
but couple stresses are taken into account then the following conditions
should hold at the equilibrium boundary L.

ur— = aqx =g (0); V¥ — V= ey =g (1) ¢

T - iTyy s= 1y F Ty (.2
st = 6.3
(54

w+” = Wpy
where ¢ is a point on the boundary L; the superscripts -+ and — stand for

the matrix and inhomogeneity respectively, « and v are displacement compe-
nents in Cartesian coordinates, 7,p, 77y, €tC., are the components of the
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asymmetnc Cosserat stress tensor in polar coordinates, py is the compo-
nent of the Cosserat couple-stress tensor in polar coordinates and wpy I8
the component of rotation produced by the anti-symmetric part of the shear
stresses.

The components of Cosserat stress tensor, displacements and rotation
may be expressed in terms of analytic functions ¢ (2) and ¢ (2) =y (2)
and the real valued function V (z, 2) [5].

The boundary conditions (5.1)-(5.4) when rewritten in terms of ¢ (2),
$(z) and ¥ (z, ) become

+
koGrot () — Gyt d™ (1) — Gy $7(0) + 21 G, V:

. J—— [ )
=kGyp~ (1) — Got ™= (1) — G ¥ (F) + 2i Gy =7
-+ 261Gy {g1 (1) + ig:(0)} 6.1,

5O+ 1O + T — 2000

= O+ 170 + O -2 (62
Re (&0 22 2y = Re (e .v.,,;’_;) 6.3)
LG, V+=12G, V. (6.4)

# (1), ¢~ (¢), etc., are the boundary values of the functions ¢ (z), etc., from
the right and from the left respectively as the boundary L is traversed in
the anti-clockwise direction. The elastic constants and characteristic
lengths of inhomogeneity and matrix are denoted by the subscripts 1 and 2
tespectively; k=3 — 4 v, v being Poisson ratio, G is the shear modulus
of elasticity and / denotes the characteristic length. Re stands for the
real part of a complex quantity.

$ (D and ¢ () are to be determined from (6.1) and (6.2). If the
elastic constants of matrix and 1nhomogene1ty are entirely dlﬁ'erent and
the boundary L'is any general boundary then there does not seem to be any
Systematic way of determining ¢ (2) and ¢ (2) from (6.1) and (6.2). " How-
ever, if it is assuined that the Poisson ratios of matrix and inhomogeneity
are different but their shear moduli are the same then ¢(z) and ¢ (2) can be
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determined from the following Hilbert problems which can be easily derived
from (6.1) and (6.2).

F (D) — _,‘,,; - (1) = G (e + €) ' Gla— e

(F &) Ak ol 0
() — () =7 (D) — ot (D) +E (37 (D— 9™ (D)
-+ 2i »Bl/w — 2 rb—Kw on L. ,:3)
Assuming zero stresses at infinity, the solution of (7) is given by
~ G e — &) &) idt C .
ot () = — 5 TS kz) T T 5o, Z€ matrx ()
- G (ep + ) G (e — 52) tdt
PEO=""075 7 2w+ ky J =7
1+ k . .
EI i k:g (2—5--;—) ze¢ inhomogeneity (10)

where
= (X + V)27 (1 + k).
The solution of (8) is given by

b= 5 f GO 5@ 4y L, [ e 0d)

t—z -z
L
wE T
lf( - ) D 81—wkC
= R R =
[ .
R (e {1

where
D=k,C.
If the concentrated force is situated at an interior point z ==z, inl the
inhomogeneity then appropriate’ changes in the clastic constants, charac
teristic lengths, etc., ave to be made in (9), (10) and (11).

For an edge dislocation in the matrix with Burger’s vector (Fz, 0 0
C = D = iG, Fyfu (I -+ k) and for an edge dislocation with Burger’s vector
©, Fy, 0), C =D = G,Fy/m(1+ k).
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Concentrated force introduces singularity in ¥ (z, ). The solutions
of (2) are to be suitably modified to account for this singularity. Let

VD) = A — 2 AJE = 2) T G bz ™)
+ Vol (2 8) (12)

V-(z, 2) = Af(z — zg) + /1-2/(2' —Zy) + ;:" (an 2" + @, 27

=6

+ Vo (z 2). (13)
Vit (z, 2) and Vg (z, 2} are the solutions of equation
V1YY =0 14

in appropriate regions and depend upon the equation of the contour L.
The constants 4; and A, can be guessed easily and

Ay =4 = )12 C, Ay =4 (L — ) 42 (1 + k) C/(L + k).
(15)

The unknowns by, ap and those involved in Vit (z, 2) and Vy~ (z, 2) are to
be dotermined with the help of boundary conditions (6.3) and (6.4) and

the condition (4).

2. We now consider the two-dimensional problem of circular
inhomogeneity in an infinite medium in the presence of a concentrated force
X+ 1Y (edge dislocation with Burger’s Vectors can also be considered)
acting at some interior point z == z, of the matrix. Because of all-round
symmetry z, can be taken to be a real quantity. Let the cquation of the
contour L be denoted by |z | ==R. Both the Poisson ratios and shear
moduli of inhomogeneity and matrix are taken to be different and as before
they will be denoted by the subscripts 1 and 2 for inhomogeneity and
matrix respectively. The boundary conditions are given by (5.1)~(5.4).

Let us introduce a new function £2 (z) as follows ([7], Chapter 20)

Q(z) = D (RYz) — R2z & (R¥z) — R* 22 (R¥)2) (16)
and so

F() = Rz & (2) — RE 2 R (R¥z) — REE &' (2) an
where

(D) =¥ (2)



S. C. GurTa

44
For large | z]
D(D)=T—Cz1+0ED, §(E@=I"4 kacrl+0(72) (18)
0(z) = & (0) +0(z2). (19)
Near z =0
29

Q)= — ' z2 — k,C 2z + a hoiomorphic function
In terms of £ (z) and @ (z), boundary conditions (6.1) and (6.2) become
_ . Ll s BV
{0 — QMY ={2@) — QOF + 27— — 2 S

ST T s
— 2 SHT + 2i Y: on L @y

and
Gy {fey @t (1) — 27 (1)) — Gy {ly (D) — 2+ (1)}
= G1Gy (e + &) — GGz (e, — €} I/t + 20 G,
V- X 22 - I 221
i {Sﬁz“ —F e Gl{am T ’Tt‘f} on L.
@)

In (22), the discontinuity in the derivatives (with respect to 6) of displace
ments has been considered in place of discontinuity in the displacements.

For a circular boundary L, ¥V (z, ) may be written as
VH(z, 2) = 4/ (z — zp) -+ A,/ J(Z — zo) + Z (bnz™ by +27)
+ 5 Ky (#71) (eq sin n+ dy, cos nb) @)

V= (2, 2) = Ay [(z — 2o) + A[(2 — z0) + Z (@n?® + dn ")
e

Z,‘ I (r/1) {cn cos né + dy’ cos nd}.
K, and I, are Bessel functions of second kind and order #; ¢n, dn: Cn ard
dn’ are real constants to be determined together with ap and by,

4G ~v)I2C, A =4(l —v)GLE1 + k)T

(G + Gokr),
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Using (23) and (24), the solution of Hilbert problem in (21) may be
written as
P —-RE)=hr)+ X {1 —n) R2my K, _, (m,) (cp—jdy) z 2
n=g2

+(1—-n R my Inoy (My) (cn — idy) 2}
-+ 2i E n(n— 1)y R¥™2z-% 1 4i Ryz;t (A; — ;) z/
n=2

Ry —2)% | z] >R (26)
and -
D(z) ~ 2@ =h(z) + 2 Z n(l + n) ROm-2 "
+ :21 (1 -+ n) R1-2 27 [{myK_y (15) + 21 K (o)} (ep + i)
- {myIny (my) — 211, (my)} (e’ + idn)])2, ] z|< R. (27)
where

my = R/L, my = Rll,, Ry = R¥/z,,
__ ¢ R2C (Ry —~ zy) k& k,C
hz) = Z— Zy Zy% (2 — -Ro)g Tz— Ry + z
_ B8R (1 — vy) Jy? Cz 3
zoz ‘(E“,:_ Ro)z - @ (0) (28)
£ (¢) can be eliminated from (22) with the help of (26) and (27) and the
esulting Hilbert problem when solved for @ (z) gives

_ [RyC(zy— Ry Ry kyC
O v e s )

4Ry (1 — vy) 12 C z 1 C
+ 202 x (z— Ry)? ] z— Zy
— 5D (= ) Ry Koy (1) ()
|z] >R (29)

— GG (& — &) R¥(G, -+ Gika) 2%
where
a, = (G, — G)/(G, + Giks)
B(2) = — G, (1 + ky) CIG, + Goley) (z — 2o) + a2 B(0)

— GiGa(es + )(Gy + Gofey) — . T (14 m) R-22

X AmyIn o (my) — 20 In ()} (dn” — icn), |z [<‘ R. (30)
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ay = (Ga — G)/(Gy + Goky)

@ (0) is determined from the equation

(G + Gohe) P(0) =G (3 + ko) Clzp -+ (G — G D )
— GGy (e + €. (1)

The unknowns ap, by, etc., can be determined from the conditions @
(5.3) and (6.4) and are given below: '

where

dp+icn =02n(fi —f) Po— 201,00+ 2 fa Ty} A n 2 1

(3
dy’ +icn’ = {1~ f3) Pn + 20 ;00 — 20 i Tp} A n 21 (%)
2nbip = ~ Sy R™ K1 (my) (dn, + icn)/my + 20 Ty R% 0> 1 (34)

2nan = Sy {my Iny (my) — 2n I (my)} (dn' — icn”)JR® m2, n > 1 )

fL=mPm Kny(m), Sy = —4n(l+n)(1 —v)a,
Sy=dn{l —m)(1 — vy)o,,
Sfo=mma{m® + Si (1 + &)} Iny (my) + my{n(g — 1) my?
—2n (1 + g) Si} I, (my)
Jo =m® (mg® — S5) Ky (my) + nmy® my Ky (my)
Sa = mymy (m,® + 81) Iny (my) — nimy (2 + 287) I'n ()
Py = n(4,/R — ‘Zl/-R) R™Lnz=1; On=(4/R— gAR)
X R™ n>=1
n(l =) Tp=iSehm{n—~1DCR™ (1 — R+ k CR™
+a =m0 —v) CR™mY, 0323
T =0,T, =4l —v) LR mi1a, {C (1 — R+ kL
— 8 —v) CR2my ™ + 4i(l — v) [,2 G1Ga (& — )
(Gy + Giky)
Ry = R/z, g =my? Gy/ms® Gy
A =[S {—mlg+ Sy (1 + g} + Se 1 Iny () Ky (my)
~ n2my {my® (g — 1) — 25, {1 + &)} In (m) K ()
— nmy {4 Sy (1 + )} Ky, (my) Ins (my)
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4 {— 25, (1 4 2) (my® — Sp) -+ 25, my? + g my % my?
— Sy m2 (g — 1)} 0 In (my) Ky ()

Re(ag) =4 (1 — v) h? oz Im {$ ()}
Re (by) = g {Re (ao) — Re (d/z)} + Re (Ay/z).

Having obtained @ (z), £ (z) can be determined from (26) and (27)
and § (z) from (17). It may be noted that ®(z) and 2 (2) so determined
satisfy the conditions (18)-(20). If the concentrated force is situated at a
point on the boundary L then A (z) has a pole of third order at ¢ = R and
the solution of Hilbert problem in (22) can not be found.

The results for a concentrated force applied at a point z =z, (|2, |
>R} in an infinite medium containing a circular hole of radius R at the
origin can be obtained from the results given above by putting /, = 0 and
G, =0. The unknowns in this case are given as follows:

=0, nzl, dy +icn =0, n=1, Ay=0
dy + icy = — 8i(l — v) C n® R™1 L) Ay + 202 I, — 1 Tn*[ Ay,
nx=l (36)
where T,* is obtained from 7', by putting G, =0,
by =2(1 — n) (1 — v,) R™ Ky_, (my) (dp, + icn)fmat Tn* R n=1.
(37)
and
Ay =n Ky (m) {dn(l — m) (1 — vy) — m% — n2 mo Ky, ().

The results for a circular rigid inclusion in an infinite medium can be

obtained by tekrg 7, =0 ard G = oo.

3. Consider next that the concentrated force is situated at a point
2=z, in the interior of the inhomogeneity. Because of the all-round sym-
metry z, can be taken to be a real quantity. Although the method of solu-
tion remains as above but various quantities change considerably.

Conditions (18)~(20) shall now be as follows:

For large |z |
D@ =T—~Dyz+0(zD, §@=I"FDjz+0(z? (38
Q@) =)+ (=2 (39

where Dy and D, are some complex constants,
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Near z =0
Q(z) = — I"z2 — D, z* + a holomorphic function 0

V+(z,2) and V= (z, 2) are given by (23) and (24) but the constants are
different. Let

V* (2, £) = Ayol(z — 20) + Ao/ — 2p)

+ 2‘: (broz2 -+ buo2™)

+ T Kn(/l) (caosinnd + dngcosnd). [z| >R
V=(z, 2) = Azo/(z — z0) -+ Aoz — 2y)

-+ »E_Z (an 2" + 3, 27)

+ 02‘1 In (7)) (C'no sin 16 + d'nocosmb). |z |< R @)

@ (z) — 2(z) is given by (26) and (27) where ¢y, dy, etc., are to be
replaced DY cno, dng, €tc., and h (2) is to be replaced by hy (2).

_ G R2C1(z——zo) R kG
(@) = Z— Iy + 2% (z — Ry)* Zo1 (z *o-Ro) z 111{0
8R2(1—v)h® Gz D,
- Zo 3 - z— 12 R +" - 45(0), )

Cy = (X + i¥)27 (1 -+ ky); Dy and & (0) are to be determined.

& (z) can be determined as before.
(Ga+ Giky) @ (2) = — G (1 + k) Cj(z — z9) + (G~ G) Dy

z— GGy (e, — €) R¥z® — i (Gy— Gl) x (1— n) R*-2

X 1y Kny (115) (dng + feno)z™ /2, 12] >R (4
and
- R2C (z — zg) C'l Ry kG
D (2) az[’T(Z_ R)? Zy 2 — R, zZ— R,

4Ry (L — v L2 C, - _
- A e —ry — %O ]“ Gifle =2
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—GiGy (e F €)[(Gy + Gaky) + iay ZQ’O (1 —?ﬂ n) Rm-2 3"

X {my Ty () — 20 In (1) (d'ng — i m)/2, [z]< R (45)
From (45) and (4
P (0) = — oy {— Cu/Ro + Co/z + 5, G/ Ry — D (0)}
+ Cijzo — GLGy (&1 + €)/(Gy + Gy k) (46)

and
Ao =41 — v) 1> Gy (1 + k) C(Gy + Giky),
A =4i(l —v)L2C,. “n

In order that # (z) should be holomorphic near z =0 the coefficient
of z1in Q(z) for large z must be zero. This condition determines the
constant Dj.

D=k (1 4 k(1 + ky).

The constants ang, bny, etc., can be determined from the boundary condi-
tions (6.3), (6.4) and the condition 4).

dno + icpe = 20 f3 {Pno ~ Qno — (1 + &) Ung}

+ 28f; {Uno — Pro + Tnafl/ A, n21 (48)
dny’ + ey’ = 20 fs{Ono — Ppo + (1 + &) Ung}
+2nﬁ{Qro_ Tng — Uno}]/ﬁ, nz1 (49
2nbpg = — Sy R Kn_y (15) (dno + eno)fms -+ 21 Tno R™,
n>1 (50)
2 ang = Sy {my Iny (my) — 21 I ()} (dno’ — icno’)/R™ my®
+2n Up/R®,  n=1. (1)

Some of the quantities in (48)-(51) which are not defined earlier are
as foliows :

Prg =1 (Ay0/R ~ Ayo/R) Ry 2, Qng = (doofR —~ g A2/ R) X
R, n>1

Tao=0, 223, Tyo=—4i( —v) Lhm™ ay Dy

Ty =4i(1 — v)) 1,2 GG, (&5 — 52)/(G2 + Giky)

n(L+n) Ung = iSyhm 2 {(n + 1) Ty (R — D/RM + kG Ry
—dn (i + n) Cym~2 R, nxl

Re (bgg) =0, Re (agq) = Re (Az/zq) — & Re (Ai/zy).
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4. Till now in sections 1, 2 and 3 stresses at infinity were taken to 4,
zero. If the stresses are bounded at infinity then it seems to be more conye.
njent and systematic to obtain the solution as the superposition of two
solutions. The first solution corresponds to the problem considered above
in sections 2 and 3 with the boundary conditions (6.1)~(6.4), The seconq
solution corresponds to the problem of circular inhomogeneity in an infinjee
medium with no discontinuity in the displacements in (6.1) and no cop.
centrated force in the medium but bounded stresses at infinity. A Syste-
matic approach towards obtaining this second solution, is through the
construction of two new functions ([8], equation (6) and (7). An advan
tage in this approach is that the behaviour of @ (2) for large |z | and sma)
| z] is easily determined (refer [8], equation (17)). But this approach in
[8] is not suitable for determining the singulatities of @ (2).

If @ (2)so obtained by the superposition of two solutions is denoted by
D5 (z), then '

Ps (z) = P (2) + (GoeM; -+ Mp)/(Ge + Giky)

+ a2’ 2] >R (52)
and )

Ds(z) = @ (2) + (GlMl + MGy + Gk, ] z|< R (53
where @ (2) in (52) and (53) are given by (29) and (30) respectively orby
(44) and (45) respectively; M; M, and M; depend on the conditions at inf-
nity and are given below.

For a uniaxialtension p in the y direction

M {G, + G (1 —2n)} = — p{Gy (1 —va) — G (1 — )} (4

Gy + M, = p (G + Giky)/8, M; = pR¥/4. ]
For the biaxial tensions ¢ and pin the x and y directions respectively
M; = (p — ¢) R*4 and M, and M, are given by (54) and (55) with p replaced
by p+q.

When the principal stresses N, and N, act at infinity and the angle

between N; and the x-axis is & then M, = (N; — Ny) €*9/4 and M, and ¥,
are given by (54) and (55) with p replaced by N; 4+ N.

2 (2) can be determined as before with & (0) replaced by @5 (0). By
taking ¢ = ¢, =0, C =0 and appropriate stresses at infinity, the resuls
givenin [4] are obtained.
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Siresses have been calculated at the equilibrium boundary for the case
when Gy = G, V1= V2 =025 ¢ = — &, concentrated force acts along
positive X axis and zeo stresses at infinity. Numerical results which are
presented in table 1 are in conformity with the fact that the effect of couple
stresses is negligible when the ratio of the smallest dimension of the body
(o the characteristic length is large. This observation is independent of
the point of application of the concentrated force and its magnitude.
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