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Abstract 

A three-dimensional elasticity solution for a sandwich shell subjected to axisymmetric load has been 
used here to establish the applicability of sandwich shell theory. Numerical results, presented for 
several non-dimensional parameters, have been examined keeping in view the assumptions made in 
sandwich shell theory. Based on this, conclusions have been drawn regarding the application of 
sandwich shell theory for a three-layered shell. 
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1. Introduction 

The demand for efficient structures has grown, especially where insulation and erection 
costs are primary considerations. Due to its high strength-to-weight ratios and inhe 

i 	
- 

rent insulation properties, sandwich construction provides a viable candidate for struc- 
tural elernents. Sandwich construction has been used extensively in aircraft and aero- 
space industries. The response of sandwich construction to various inputs is deter- 
mined to a large extent by the geometrical and the material properties of the core 
relative to the facings. The extent of such effects as due to transverse shear and normal 
deformations,   large amplitudes, and local instability can be investigated in terms of 
their relative properties. Constraints due to the continuity of the displacements and 
Of the transverse shear and normal stresses at the interface of the core and facings have 
been accounted for in more accurate analysis. 

1, Present  Australia address : Department of Civil Engineering, University of Melbourne, Victoria, 3052> 
. 
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The first significant contribution to an understanding of the behaviour of sand vith  

ni: 
shell was presented by Reissneri. He has presented a small deflection theory17, 
which the isotropic facings are treated as membranes. The theory is applied to pa  
cular shells and the importance of accounting for transverse shear and transverse normal 
stress is investigated. The results show their effects to be significant when ther e exists  
an order of magnitude difference between the elastic constants of the core and the faei nt  
On similar lines, Stein and Mayers 2  have presented sandwich shell theory, t reat; 
facings as membranes, for orthotropic core. Wang 3  has formulated sandwich shell 
theory by making use of the principle of complementary energy in the nonlinear elut e  
city theory. A large deflection theory for unsymmetrical shallow, doubly curved sand. 
wich shells, in which bending stiffness of face sheets is considered, is presented hy 
Fulton4  through variational principles. It must be stated here that none of the 
above 1-4  formulations have considered the effect of the core compressibility. Schmidt; 
establishes the equations for the small deflection of sandwich shells with orthotropic 
cores, considering the beading stiffness of isotropic similar facings and core cornpressi. 
bility effects. This formulation has been extended to the large deflection analysis of 
multisandwich shells by Sch.midts himself and to the analysis of sandwich shells with 
laminated anisotropic facings by Martin 7. Wempner8-4° derives equations for 
sandwich shells with a weak core which account for moderately large deflections, °allo- 
tropy, and the bending stiffness of facings. Extensive review on the developments ii 

the theory of sandwich structures has been given by Habipli. 

It should be noted that all the above formulations are extensions of the two-dimen- 
sional classical thin shell theory and have been formulated under the assumptions that 
face parallel stresses in the core are negligibly small and transverse shear stress distri. 
butioa over the core thickness is constant. Recently, a long axisymmetrically loaded 
sandwich cylinder was analysed by the authors'5-47  using three-dimensional elasticit) 
theory and thin shell theory and comparison of results were made with sandwich shell 
theories. It may be mentioned here that no attempt has been made to study the 
admissibility of assumptions made in the sandwich shell theories and also the effects 
of tdt (care to facing thickness ratio and it, = t 3 = 0 and ft = E/E2  (facing elastic 
modulus to core elastic modulus ratio and ; = £ 3  = E) on the behaviour of sand* 
wich shell. In this paper, an attempt is made to study the above aspects of the sand' 
wich shell using the elasticity solution's. 

2. Method of analysis 

A brief descritpion of the method of solution as presented in (15) is given here 
problem of a sandwich circular cylindrical shell is treated as a three layered cYlladati.  
(Fig. 1) and the solution has been obtained using Love's stress functions apPrc't 
For this a stress function p is to be selected so as to satisfy the differential Non  

(I) V2  V' = 0 
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FIG. 1. 

The stresses and displacements are determined from (18) : 
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For a three-layered cylinder subjected to axisymmetric normal load on the outer surface 
(Fig. 1), th; following boundary conditions can be written down. 

at r = ra  ; 	=f(z) 	; tfs = o 
at r = ro  ; 	= 0 	7 = 

FB 	
(4) 

For perfect bond between the layers, the continuity conditions along a typical interface 
can be written as 

at r = riA  ; (a31_1  = (60i; 	= 	 (5) (10 = 001  ; 0014  = (w), = Z 3) 
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The radial load acting on the outer 
Fourier integral as 

boundary (r = r 3) can be expressed in t erms4  

to 

(z) = J q (a) cos az c/a 
0 

2°°  
where q (a) = 	' (z) cos az dz 

u 

For a uniform band of pressure of intensity &nit area distributed over a length 1, 

(Fig. 1). 

2p 
q (a) = — sin a 

rra 

The stress function cp for a typical in' layer (i = 1, 2, 3) which satisfies eq. 

can be taken as (18) 

00 1 

= 34  -3 [Ai (a) 4 (al) + Bi  (a) ar I (ar) 
0  a 

+ Ci  (a) Ko  (ar) + Di  (a) ar K1  (ar)1 sin az c/a (r 4.4  s r r i) 

where r4 _1  and r;  are the inner and outer radius of the 	layer. The stresses x 
displacements can. be  obtained from eqns. (2), (3) and (8). The constants Ada), Baal 
Ci  (a) and Di  (a) can later be determined using the boundary and continuity cono 
tions (Eqns. (4) and (5)). The detailed procedure and the final equations can It 

found in (15). 

3. Results and discussion 

Though the solution obtained is general in that dissimilar facings (in terms of thickaN 
and elastic properties) could bz coasidered, for convenience the numerical resultsio 
been obtained here for similar facings (outer and inner facing has the same thick! 
and elastic properties). Numerical results have been obtained for the following. Pi s  
meters : 

(I) it = 03 ;'12 = 0 • 01 —0 • 06 ; t 2/t = 1-100 ; fl = 550 
10-2000 

I, s  bell" The above parameters are selected from the consideration of a sandwicia  
which the facings are thin and have higher elastic modulus compared to the °fel 

tiOn 
For a clear understanding of the behaviour of the facings and core, the varA;a  nit; 

stresses and displacements over the thickness, at some typical sections, ar e  Pines' stro 
in figs. 2-11. In figs. 12-14, the variation of percentage of membrane to tot' 
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" 4 

FIG. 9a. Variation of longitudinal displacement 
(w) for different (t 2 //) values at 7.1r, =r---  006 (77 2 = 

0 . 03 , f3 ---= 550). 

• as. 	 " 

9b. Variation of longitudinal displace
GO for different tilt values at zIrs -= 0 . 06 ( It  
0• 03, 13 = 550). 

FIG. 10a. 19 variation for different values of P at 
zIrs  =906 	= 0'03, tilt =15). 

FIG. 10b. 	w variation for different values of 13 
at zfr s  = 006 (7/3  =003, / 2ft =15). 
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FIG. 12. 	Variation of percentage of membrane stress 
(?,)„ for different values of (r1/t) and 772  (/3 = 550). 

FIG. 13. Variation of percentage of shear force 
taken by -Fore and :outer facing for different 
02 /0 and 	values (fi = 550). 
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(c3and the percentage of shear force taken by each layer to total shear force, 10 
several parameters considered here, have been presented. The percentage of 	tht 
stress to total stress (&). is calculated from 	 vidk 

[ 	 r  in  -4-, I  (as)r."21  x 1(X) 
(aff)ffs = 2kadr-rs  

In the above formula, absolute values of at  have been taken for the calculatioth)' 

(eriz)m- The shear force (Q1) in each layer is first computed by taking the shear sti es, 
variation over the thickness of each layer. Then the percentage shear force t akt  
by each layer 0 4  is determined from 

- 	94  X 100  
Percentage shear force Q i  = 	— 0,j = 1, 2, 3,) 

E 	Qi  
frt. 

From figs. 2 and 3, 	it may be observed that the variation of longitudinal strews 
linear in the facings while it is nonlinear 	in the core. Further, for fl less then 25, tht 
magnitude of az  in the core is comparable to that in the facings and hence cr2  calm 
be neglected in the core. 	Also for a Liven value of /11 with increase of 12/t  ratio, tht 
external load is resisted predominantly by membrane action of the facings. 	A similar 
behaviour is observed when the value of ft is 	decreased holding 	t 2j , constant. It 

may be seen from figs. 4 and 5 that in general the variation of tangential stress(i i) 

in the core is nonlinear and for small values of 8 its magnitude in the core is comp 
able with that in the facings. 

Figures 6, 7 and 8 indicate that the shear stress ( n) variation greatly depends% 
t2sit and ft values. For example, for a given Value of t.,/t and with increase in "the 
shear stress distribution in the core becomes almost constant. Further, for a given 
value of fl the shear stress distribution in the facings change from parabolic variation 
to linear variation when t 2/t is more than ls_ From figs. 9a and b, it may be 

observed that the longitudinal displacement ( -11-r) varies linearly for all values of 
considered here. However, the variation in the core becomes linear only when hit iS  

greater than 40. Further, it may be seen from figs- 10a and b that the longitudinal.  

displacement variation is linear in the facials for all values of ft while in the core it 

becomes almost linear only when /1 is artier than 250. Figures 11(a) and (b) 

indicate that the radial displacement (U) is almost constant over the thickness fel 
the parameters considered here_ 

It may be seen from fig. 12 that (tot p = cid, the facings will have predonl i  n , 03 
a membrane state of stress for small valu. of 41  and large values of tdt(r/2 < u  if, 
and tilt > 60). Figure 13 indicates that for ft = 550 the core takes about 80% 14 

 

90% of total shear when I <003 and I-. > 12.. It may be observed from fig:_ .„ 
that for ?I 2 = 0.03 and te,/t = 5 and ls, the peed. ominant membrane state of su; 
in the facings exists only for lesser values of Suft<  100) and the shear taken up 
the core is almost independent of $ for 	= 15 
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4. Conclusions 

fro
m the results presented here, the following conclusions can be drawn : 

The magnitude of a, and fro  in the core are comparable with that of the 
facing for smaller values of P 	< 25) and hence these stresses cannot 
be neglected in the analysis as is usually done in the sandwich shell 

theories. 
(ii) A near membrane state of stress in the facing is possible for certain range 

of tIlt and 13• It was also observed that for 12/t > 80, a near membrane 
state of stress exists in facings irrespective of the range of values of fi and 
- considered here. For sandwich shell falling under this category the 

analysis can be greatly simplified by considering only the membrane force 
in the facing. 

(i11) The core takes about 80% to 90% of the total shear for t2/t > 15 irres- 
pective of the range values of ftconsidered here. Hence, it may be said 
that if t2 /t > 15 then a three-layered shell with a weak middle core can behave 
like a sandwich shell. 

(iv) In general for the parameters considered here, the longitudinal displacement 
is essentially linear in the facings while it is significantly nonlinear in the core. 

The above conclusions can be used to assess the application of sandwich shell theory 
for given dimensions of sandwich shell structure. Though the validity of the sand- 
wich shell theory for circular cylindrical sandwich shell subjected to axisymmetric load 
has been established here, it is believed that these conclusions would also be useful 
for a general sandw;ch shell structure. 

modulus of elasticity of jib layer 
G, 	shear modulus of core 
4,4 	modified Bessel functions of first kind, zero and first order, respectively 

subscript to indicate any layer 
Kris 	modified Bessel functions of second kind, zero and first order, respec- 

tively 
axisymmetric radial load per unit area 

r r  
inner radius of layers 1, 2 and 3 respectively 

F3 	
outer radius of layer 3 

re z 
cylindrical coordinate system . 
thickness of th !ayer 	= 1, 2, 3) lit 
non.dirnensionalised radial and longitudinal displacement 

4 	 (fi= (2G2  'pro ii, w = (2G2/pr2) 

(61 (68), tee) 	variable of integration 
. 	nondimensionalised radial and tangential and longitudinal stress 

r. 	- 
n 	 r 

a 
rh" (70 = C O/Pv az  

nondimensionalised shear stress CP" = scrip) 
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ratio of modulus of elasticity of inner or outer layer (facing) 	tt  
middle layer (core)— 
(E1  E3 

Ez  L-72) 
r2  r1 

Poisson's ratio 	772 = 	r2 
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