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Abstract

A three-dimensional elasticity solution for a sandwich shell subjected to axisymmetric load has been
used here to establish the applicability of sandwich shell theory. Numerical results, presented for
several non-dimensional parameters, have been examined keeping in view the assumptions made in
sandwich shell theory. Based on this, conclusions have been drawn regarding the application of
sandwich shell theory for a three-layered shell.
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I, Introduction

The demand for efficient structures has grown, especially where insulation and erection
Costs are primary considerations. Due to its high strength-to-weight ratios and inhe-
ent insulation properties, sandwich construction provides a viable candidate for struc-
tural elements. Sandwich construction has been used extensively in aircraft and aero-
*Pace industries. The response of sandwich construction to various inputs is deter-
Mined to a large extent by the geometrical and the material properties of the core
felative to the facings. The extent of such effects as due to transverse shear and normal
dt"f?rmations, large amplitudes, and local instability can be investigated in terms of
ieir relative properties. Constraints due to the continuity of the displacements and
of the transverse shear and normal stresses at the interface of the core and facings have

ee : :
" accounted for in more accurate analysis.
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The first significant contribution to an understanding of the behaviour of Sandy
shell was presented by Reissnerl. He has presented a small def{ection theorym-h
which the isotropic facings are treated as.membranes. The theory is applied g h
cular shells and the importance of accounting for transverse s‘hea.r and transverge noam
stress is investigated. The results show their eﬂ’e_cts to be significant when there ey
an order of magnitude difference between the elastic constants of the core and the fﬁf:inm |
On similar lines, Stein and Mayers® have presented sandwich shell theory, tmaf‘
facings as membranes, for orthotropic core. Wang?® has formulated Sandwich g
theory by making use of the principlc of complementary energy in the nonlinear elasg.
city theory. A large deflection theory for unsymmetrical shallow, doubly curyeq sand.
wich shells, in which bending stiffness of face sheets 1s considered, is presented by
Fulton* through variational principles. It must be stated here that none of
above!~1 formulations have considered the effect of the core compressibility. Schmig
establishes the equations for the small deflection of sandwich shells with orthotropi
cores, considering the bending stiffness of 1sotropic similar facings and core compress
bility effects. This formulation has been extended to the large deflection analysis
multisandwich shells by Schmidt® himself and to the analysis of sandwich shells wit
laminated anisotropic facings by Martin’. Wempner®-1° derives equations fu
sandwich shells with a weak core which account for moderately large deflections, orthe
tropy, and the bending stiffaess of facings. Extensive review on the developments

the theory of sandwich structures has been given by Habiplt,

It should be noted that all the above formulations are extensions of the two-dime
sional classical thin shell theory and have been formulated under the assumptions tha!
face parallel stresses in the core are negligibly small and transverse shear stress disi
bution over the core thickaess is constant. Recently, a long axisymmetrically loaded
sandwich cylinder was analysed by the authors!s-!? using three-dimensional elasticiy
theory and thin shell theory and comparison of results were made with sandwich skl
theories. It may bc mentioned here that no attempt has been made to study i
admissibility of assumptions made in the sandwich shell theories and also the effect
of t,/t (core to facing thickness ratio and ¢, = ¢, = ¢) and f = E/E, (facing elaste
modulus to core elastic modulus ratio and E, = E; = E) on the behaviour of sand

wich shell. In this paper, an attempt is made to study the above aspects of the sand
wich shell using the elasticity solution?s,

2. Method of analysis

The

A briel descritpion of the method of solution as presented in (15) is given here !
f

p“.)blcm of 2 Smd“’i‘*’[} circular cylindrical shell is treated as a three layered oyl
(Fig. l) and the solutfon has been obtained using Love’s stress functions appro¥
For this a stress function ¢ is to be selected so as to satisfy the differential equatl’

ViVl =0 L
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The stresses and displacements are determined from (18) :

¢ r i—}r
rz = az lu ('p Z"ZE
U = ._-1 b:- (p
2G ordz
1 5 2%¢
=56 2(l —p) V- o ok ] 3)

Fﬂ.r a three-layered cylinder subjected to axisymmetric normal load on the outer surface
(Fig. 1), ths following boundary conditions can be written down.

;  a,=f(2) ; Ty =0
atr—_-ro : a'r = () : 1""="'-0 (4)

at r =r,
For perfect bond between the layers, the continuity conditions along a typical interface
‘Al be written ag

B F e Fi1 5 (gf) by T (Jr) ; (t;;) LIy, (Trz)i
Wy = () 5 Wyg = 00Ny (= 2: 3 (5)



102) 1 K. CHANDRASHEKHARA AND A. BHIMARADD!

The radial load acting on the outer boundary (r = r3) can be expressed jp tery,
i

Fourier integral as
o0

f(z) = fq(«) cos uz da
0

. 2 0.
where g (a) = g {f(2) cos az d:

Eor a uniform band of pressure of intensity p/unit area distributed over a Jengy,
(Fig. 1). '

2p .
q(a):—-—;‘z—sm a &

The stress function ¢ for a typical i** layer (i = 1, 2, 3) which satisfies eqn.
can be taken as (18)

¢, = a[w i—a [4; (o) 1, (ar) + B,(a) ar I, (ar)
+ C,(a) Ky (ar) + Dj(a) ar K, (ar)]sin azda (r;_; <t < ro)

where r, ; and r; are the inner and outer radius of the i™layer. The stresses &
displacements can be obtained from eqns. (2), (3) and (8). The constants A; (a), B
C, (o) and D, (a) can later be determined using the boundary and continuity cont:
tions (Eqns. (4) and (5)). The detailed procedure and the final equations can X
found in (15).

3. Results and discussion

Though the solution obtained is general in that dissimilar facings (in terms of thick"“f
and elastic proparties) could bz coasidered, for convenience the numerical resuls b
zen obtained here for similar facings (outer and inner facing has the same thickt®

and elastic properties). Numerical results have been obtained for the followins it
meters :

(1) =03 ;n =001 =006 ;t,/t = 1-100 ; § = 550
() g =03 ;9 =003 ;4/t =35 and 15; B = 10—2000

, I
"I_'he above Pparameters are selected from the consideration of a sandwich e
which the facings are thin and have higher elastic modulus compared to the cor¢

- | . ':F:

t For a cle:lar{‘i understanding of the behaviour of the facings and core, the vaﬂﬂ;ﬁlﬁ
stresses and di i ' '

splacements over the thickness, at some typical sections, af€ pl Tice

in figs. 2-11. In figs. 12-14, the variation of percentage of membrane 0 totd
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(¢.) and the percentage of shear force taken by each layer to total sheay f,

ree,
several parameters considered here, have been presented. The percentage of m;lt:r b
stress to total stress (6.)s is calculated from bray
- (6:;) r=r3 + (&:)r-r, x 100
@0 = [Pz

In the above formula, absolute values of ¢, have been taken for the Calculatioy
(3.)n. The shear force (Q;) in each layer ts first computed by taking the shey iy
variation over the thickness of each layer. Then the percentage shear force yy,

by each layer §, is determined from

- x 100 ..
Percentage shear force §; = +-'-—— (Hi= 1,2, 3))

From figs. 2 and 3, it may bz observed that the variation of longitudinal stressj
linear in the facings while it is nonlinear in the core. Further, for g less then 25, tk
magnitude of &, in the core is comparable 1o that in the facings and hence ¢, can
bz neglected in the core. Also for a given valuz of # with 1increase of #,,, ratio, t
external load is resisted predominantly by membrane action of the facings. A simi
behaviour is observed when the value of § is decreased holding t,,, constant [
may be seen from figs. 4 and 5 that in gemeral the variation of tangential stress(s)

in the core is nonlinear and for small valees of # its magnitude in the core is comp:
able with that in the facings.

Figures 6, 7 and 8 indicate that the shear smess () variation greatly dependsa
t,/t and B values. For example, for a given valus of 1./t and with increase in ﬁ'ﬂE
shear stress distribution in the core becomes almost constant. Further, for a_gl’fe“
value of B the shear stress distribution in the facimes change from parabolic vanatiol
to linear variation when #,/t is more thas 13. From figs. 9a4 and b, it m3y be

observed that the longitudinal displacement (w) varies linearly for all values of f:{f
considered here. However, the variation in the core becomes linear only Whe’,l IJ.';
greater than 40. Further, it may be seen from figs. 10g and b that the lcmglt“d“l,I
displacement variation is linear in the faciags for all values of § while in the corcbi
becomes almost linear only when # is ereater than 250. Figures 11(8) and (¥

5w o ! I
indicate that the radial displacement () &s almast constant over the thickness ©
the parameters considered here.

It may be seen from fig. 12 that fos B = 3M), the facings will have pre,-donm‘x‘c’-ﬂ.‘]j
a membrane state of stress for small valuss of . and large values of %/! (72 {nU "
and t,/t > 60). Figure 13 indicates that for # = 550 the core takes about 807% 4
0% of total shear when 5 <003 and 1, 7> 12. It may be observed from g~
that for 7, = 003 and #,/t = 5 and 15, the pradominant membrane state of st

in the fac'ings exists only for lesser values of S ¥ < 100) and the shear taken U7 "
the core is almost independent of 8 for 1,'r = 15
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« Conclusion®

the results presented here, the following conclusions can be drawn :
From

() The magnitude of &, and & in the core are comparable with that of the
tacing for smaller values of B (B <25) and hence these stresses cannot
be neglected in the analysis as 1s usually done in the sandwich shel]

theor1es.

(ii) A near membrane state of stress in the facing is possible for certain range
of 1,/t and B. It was also observed that for #,/t > 80, a near membrane
state of stress exists 1n facings 1.rrcspectwe of the range of values of 8 and
y, considered here. For sand.wwh shell falling under this category the
analysis can be greatly simplified by considering only the membrane force
in the facing.

(iii) The core takes about 807, to 907, of the total shear for #,/t > 15 irres-
pective of the range values of B considered here. Hence, it may be said
that if 75/t > 15 then a three-layered shell with a weak middle core can behave
like a sandwich shell.

(iv) In general for the parameters considered here, the longitudinal displacement
is essentially linear in the facings while it is significantly nonlinear in the core.

The above conclusions can be used to assess the application of sandwich shell theory
Ir given dimensions of sandwich shell structure. Though the validity of the sand-
wich shell theory for circular cylindrical sandwich shell subjected to axisymmetric load

has been established here, it is believed that these conclusions would also be useful
for a general sandwich shell structure.

£, modulus of elasticity of j** layer
G, shear modulus of core

’y h modified Bessel functions of first kind, zero and first order, respectively

J subscript to indicate any layer

K K) modified Bessel functions of second kind, zero and first order, respec-
tively

f.,r : e}xisymmet‘ric radial load per unit area '

i inner radius of layers 1, 2 and 3 respectively

:z outer radius of layer 3

cY.Iindrical coordinate system
s " thickness of j* layer (j =1, 2, 3)
nondimensionalised radial and longitudinal displacement

(i = 2G, [pr))u, w = (2G./prs) w)
(6), (s,) ( variable of integration oy
#%)  nondimensionalised radial and tangential and longitudinal stress
; (6, = G50 6 = G 43 Gy = 027)
ondimensionalised shear stress (Tp; = Tre/o)
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ratio of modulus of elasticity of inner or outer layer (facing) With ¢
middle layer (core)—

(Ii_.f:é
E, " E

Poisson’s ratio
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