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ARBSTRACT

An asymmetrically loaded Griffith type strip crack in an infinite isotropic elastic
medium is studied. Analysis is based on the finite Hilhert transform technique
developed by Srivastava and Lowengrub® and a result on singular integral equation
for the change cf order of Cauchy principal integrals referred in Ref 2. Closed form
selutions are obtained for physically imporiant quantities such as maximum
shearing siress and normal component of displacement along the line of the crack.

Key words: Transform method, Griffith crack, Dual integral equations, Hilbert trans-
form technique, Maximum shearing stress, Closed form solution, Dislocation layer method.

1. INTRODUCTION

The two dimensional problem of an asymmetrically loaded Griffith crack
in isotropic medium has been considered by Sneddon and Ejike.! Using
Fourier transform technique Sneddon and Ejike! reduce the problem 1o
that of solving four pairs of dual integral equations with sine, cosite kernel,
and solve the dual integral equations by an “ elementary method of dual
integral equations **10 based on Bessel functions. J. Tweed® has further
investigated the problem considered by Sneddon and Ejike! for two coplanar
Griffith cracks.

In this paper, we study the problem considered by Sneddon and Ejike.!
We first reduce this problem to that of solving four pairs of dual integral
equations and then give an exact solution using a modified technique of
Srivastava and Lowengrub.® Tt is to be noted that the previous solutions
presented in Sreddon and Ejike! and J. Tweed® bave been confired to
deriving the stress intensity factor and crack shape. In this study besides
presenting simple closed form expression to normal component of displace-
ment along the line of the crack, we also present solutions for complete
stress field in the upper half plane at an arbitrary point. In a recent paper,
R. W. Lardners has studied this problem by usirg dislocation layer method.
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In section 2, basic formulation of the governing equations of elasti.
city and general solution corresponding to an asymumetrical loading on the
surface of the crack is derived, it is shown that the certain arbitrary func.
tions entering into this general solution can be determined from the soly-
tion of four pairs of dual integral equations. In section 3, a simple eXpres-
sion for normal component of displacement along the line of the crack is
presented. In the last section 4, closed form solutions for stress cormpo-
nents corresponding to an asymmetrical loading on crack surface at an
arbitrary point are derived.

2. Basic FORMULATION AND MATHEMATICAL ANALYSIS

A strip Griffith crack occupies the region y =0, | x | < c and is loaded
internally in such a way that for | x| < ¢ we have the following condi.
tions:

For the upper half plane:

ayy (%, 0+) = —p* (%), ogy (%, 0 +) =g+ (%) Q.1
while for the lower half plane:
Oyy (0, 0 —) = —p~ (%), vy (x,0 —) = — g~ (%) @2

and oy, oyy, 0y —>0 as /3 F 32 > co.  In the region of the x-axis outside
of the crack, we assume that all the components of stress and displacement
are continuous and normal component of displacement u, satisfies the
condition wuy (x,0 ) >uy (x,0 —).

Using the notation

Flf @ e+ =2 [ Fp.3)c0s (03 dp

FLf 0 p >3 =2 [ Flo,y)sin(ox) dp

to denote the Fourier sine and cosine irarsforms of f (p, y) 1espectively, it
can be shown? that the equations of elastic equilibrium have the solution
of the form:

= Fs[p™ - ny W, )+ p* G , J’)},P ~ x}

— Fe [l ~ ) Hyy (P, ¥) + np* H (p, )k 2+ A o
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)
= Fs [~ 2+ Hy (0, 3) + 272 (1 — 9) Hyyy (0. )}, p ]
— F (=249 Gy (p. ) + p72 (1) Gyyy (1, Y)}, p—> 2]
2.4)

where, the functions G (p,») anc H (p,y) both satisfy the equation
@y —pD2d (p, ) = 0, Hy (p, ) devotes 2.H (p, ¥)/oy, ete., E, o are the
Young's modulus and Poisson’s ratio of the material forming the infinite
elastic body, and G (p, ») and H(p,y) have the following solutions:
For the upper half plane y > 0:
G (p, ) = [4* (p) + ¥B* (p)] e PY,
H(p,y) = [C+(p} -+ yDF (p)le PV, (2.5
For the lower half plane » < 0:
G (p,y) = [A~(p) + B~ (p) y] P,
H(p,y) = [C=(p) -+ D~ (p) y] e?¥
where, A% (p), B+ (p), C* (p) and D* (p) are the arbitrary functions of p
only.
Now following a method analogous to that of Sneddon and Ejike?! and
I. Tweed® and using the elementary results on integrals, it can be shown
that the determination of arbitrary constants depends on the solution of
four pairs of dual integral equations and four algebraic equations:
PP AsA(p) = R[Aspe (1), cos (pi)]
PEASC (D) = R Ao (), sin. (pu)]
PLAB (p) — pALd (P)] = R L4ge (W), sin (pu)]

(2.6)

PLAD () — p A1 C ()] = R[Axqe (1), sin (pu)] . . 2.7
Fep2aD(p)p > x]= Qe (x), O x<c 2.9
Fe D (p), p—+x]=0, X >c¢ ’

Felp {(1 — 29) NoB(p) 5~ 2aAd @), p = x]=Pe(x), O< x< ¢

Fel{(l — 27) AB (D) + LaA4 (P, p —x] =0, x>c
2.9

FepPraC @+ (1 —20) AD P, P> ¥ =py (0, O< x< ¢

FlpMmC @) + (1 — 2 AD @D}, p 5] =0, x>
(2.10)
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Fslp {PAzA (p)—2 (L—n) AB (@)}, p—X] =— Qo (%), 0 < x<e

Fs{pLod @ —2(L —2) AB @)}, p —x] =0, X>e
2.1y
where
Qe (x) = — Ngge (x) + V [ oPo (1), X1,

Po(x) = 2(1 — 1) Aspe (x) + (1 —20) V [/1q, (), x],
Py (x) =2(1 —n) Arp () + (1 = 29) ¥V [Agge (), %],
Q0 (x) =2(1 =) Asgo () — (1 — 2 XV [Appe (), 4],
’ag D) =g+ (p) + 2 (), Aeg (D) = g™ (1) — g~ (p),

RIT@), fp = | T() /(o)
VT, =2 [ [Twie — ],

Dot (%) = 3[p* (x) X p* (— D, po* () = £ [p* (x) — p* (— 2}
ge* (6) = 3 [g% () X ¢ (— DL g* () = 3 [g* (¥) — ¢ (— )]
@.12)

Using a method analogous to that of Srivastava and Lowengrub,? the solu-
tions to the dual integral equations (2.7) through (2.11) are found as follows:

pLAD(p) = Rlg (1), sin (p1)], & (0) =0,
PIpAB (2) + (I — 20) Lod ()] = R1Ig, (7). sin (pt)], g, (0) =0,
PIpAC (P) + (1 —27) AeD (P)] = R [gs (), (1 —cos pr)], & (0) =0,

PR2A—n) AB () —pLA D] = Rg,(2), (1 —cos p1)], £,(0) =0.
.13

In addition, the conditions at infinity are to be satisfied by using the equa-
tions :

S Dape =0, ard [ Asge (w)du=0
o

{  where, the functions gi (1), (k =1, 2, 3, 4) are given by:
8 () = — £ [Asge (W), 1+ Appo(t),
&) =21 — ) L [Agpe (), 1] + (I — 22) L4, (2),
&) =21 — )18 [uApo (), 1] + (1 — 21) Lade (1
8 =2(1 =) £ [ulogo (@), ]+ (1 —27) Dape () (219
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where

L 0T W), 1] = pd ,\—/’(:3__73) ; (% — w2y

ltis mow clear that all the eight arbitrary constants 4% (p), B+ (p), C'* @)
and D* (p) can be explicitly determined by using equations (2.7) and (2.13).

3. NorMAL COMPONENT OF DISPLACEMENT

Using equations (2.4), (2.5) and (2.6) and the result on the change of
order of Cauchy principal integral referred in Tricomi® and some simple
results on integrals it can be shown that:

(Tfﬂj Uy (x, o:l:)
el =) Zy ) + @y — 1) Z, (92
2 — D)L [Awe (W), x] -~ I [ Aapo (), x]}
+ 20 — D) {h 1DeFe (W), X1 - L [Aogo ), X]} 3.1
where

— Nope (v log ] xz—‘ul‘ll I} du,

xl

1 :
Z (x) = P f {L\zpo (u) log [ )xc‘iz

Aw=ﬁi&%wﬂw—M¢&%wﬂwﬁww (3.2)
and (see Appendix)

LA (4), x]

D=

f Aefe (@) du, O< x< ¢
0

ERE

f Dafe (W) cos™ [VEE—= )V =@ du, x >¢
’ (3.3)
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Iy [ Asgo (), X]

1 1
—5 [ At et~ [ Ay cos ey a
| ¢ 0< X<
1 fMan—1 T T R B
= [ Dty @) (e = B /G )

—tan [ D dus x> e
(3.4
L[ Agpe (), X]

= H(e— g [ Lupe@log | f (6 u) | du

£ GG uw = VT + V(E— OV E =25 — V(EZ )]
G-
14 [Alpo (l{), x]
= H(c — x) ?LT f Ao @) log | fo(x, 1) | du,

Fa o ) = e /(¥ ) X (i V(e D
— > VE=T] 64

and H is the usual Heaviside unit function.

4. STRESS COMPONENTS IN THE UPPER HALF PLANE

The evaluation of the stress comporents in the upper half p!ane
depends crucially upon the four functions W (w), (j=1, 2, 3, 4) and g
by the following equations:

Wy (w) = Ulpa* (p), wl,  W,(w) = U[B*(p), vl

Wy (W) = UpCH(p), wl, W, (w) = ULD* (p). ] @
wherc
VL@ =2 [ o) e ap 3

W+)’=ix:
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The functions W5 (w)(j =L, 2, 3, 4) can be evaluated by using ele-
mentery results on integrals. The expressions for W (w), (j==1,2, 3, 4)
are found as follows:

Wy (W) = H® [Lope (w), wl 4 H® [Agpe (), w],
Wy(w) = HDY [Agpe (u), w] + GO [ Lago (1), w)
T+ H [ Agpe (1), w] + G [ A4 (1), wi,
Wy (w) = GP [ Lo (), W] 4 G [Arpo (1), W],
Wy (w) = GU [A,p4 (W), wh— H™ [Age (), w]
A GO [Ape (), wl— H® [Asge (), w] “.3)

where

HOLIT (), w] = w T (u) dlu

=) G

ow AT T () due
7 A/ (w? ¢ [
o

HO [T (u), w] =

>

GM [T (u), w] = w HU [uT (u), w],
G2 [T (), wl = wH® [uTl (u), wl. 4.4

In the notations (4.1), using equations (2.4), (2.5) and Hooke’s law of
stress and strain, it car be shown that

[ogz (X, ¥ 4) 4 oyy (x, ¥ --)] = 2Re [iW, (W) — W, (W)] “.5)
Yloyy (%, ¥ +) — ogz (x, ¥y )] F ioxy x,y+)
= — [ (%) — W, )] 4 i [Ws (0) — W, (%)]
AU ACERAC)! “.6)
Using the results obtained in equations (4.3) inlo equations 4.5),
and (4.6), it can be shown that:
[oze (x, ¥ ) + ogy (x, ¥ +)]
= Re IV [iAop (W) — Aag (), 2] + T [iLap () — £,9 (W), 2}
(4.7)
foyy (6, » +) — oxe Cx, ¥ 4 4 12 ogy (X, ¥ )
= I [Aqg (W), 2] 4 I [Apg (W), 2]
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+ 3 PO 1A )+ i2mg ), 21

4 I [Ap () + T Ay (1), 2T @y
where,
T [T(w), 2] = - (7’;(”) [:134
2 Ll T e
1 [T (), 2} = = \/(L“_' 72) f (u C_ Z)M u 4.9

It can be verified that the expressions obtained in equations (4.7) and
(4-8) are in complete agreement with those obtained by R. W. Larduer
using dislocation layer method. Special cases of the type of point forces
discussed in G. R. Irwin® and the constant normal and shear loadings on
the crack surfaces discussed in S. M. Sharfuddin* can also be studied using
equations (4.7) and (4.8).
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APPENDIX

Consider the expressions given by the following equations:

1125 ge (W), %]

1 ME: VIE=) Dgbe ()&
f T o8| ¥ f T
@l
I, [As g0 (1), x]
1 P x? U A/ —u®) Dy Do\ WY o ()t
f a8 | ""'”“ o J R

A
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LA pe (u) x]
1 rtH(@ —x) VIE— ) Ny pe (u) d
-L [ R [V Mg
LIA1L Do @@, x]

- LfH(’ —x)dr nux/W;TZ) Aq Po () du
= V=B (& )

9i

(A-3)

A9

Now we shall evaluate the expiessions I [, x], (k= 1, 2, 3, 4) defined in
equations (A.1)-(A.4) for the intervals 0 < x< ¢ and c< X< oo.
Applying the result referred in Tricomi to Dy L [A,g. (W), x],
Dy = djdx in the interval 0 < x< ¢ for the change of order of Cauchy
principal integrals and using the resull

1 ¢ dt )
Ff VIE=— @ FE— ) (=)
[(a® -~y d* =% 0 <y< @
= 0 , a<y< b
_[(y‘l _a2) (y2 _bz)]—l{Z’ b< y< co

and noting that in the interval ¢ << X< oo direct change of order of inte-
gration is permissible, we obtain the following equation :

Dy I, [Ny ge (). X]
T050. (%), O< x<c
1 V(E— 15 112) As e (1) du ‘
o \/(xz—CZ) f @ —x%) oo

From equation (A.5) it is clea_r that:

L1Sc,—2

Il [Az 9e (u)a x]

] L4
3 g @it k@), 0< 3< 6 @)

Vier—u?

~L [ tedew et [ YEZD  du+ k0,

c< X< oo, (ii)

(A.5)

(A.6)
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In the evaluation of (A.6) we have used the result

oo xdx 1 A fVE=A
f W — xH Vxt—eY VE=n v(m)] .

Observirg the fact that as x — oo, L [Asge (), x] of (A.1) tends to Zexo,
and hence as x approaches in the limit to infinity (A.6) (ii) should also’
tend to zero. This implies that:

ka(w) =% [ Aage (@) du A7)

Alto as x approaches in the limit to ¢ from left and right (A.6) (ii) and
(A.6) (1) should be cqual, this implies that k, (4) = 0. Thus finally it is
found that:

L[ Dege (W), X]

5 [ Dute@dn, 0< x<o
1 : 1 ST oy
s f Aage () cos™ [4/(xF 2 AV EET i du, x >
° (A.9)
In a similar manner, using the result
__dx
f (W — 2 /(3 =%
1 R N
=~y e T MV E = Ve =)l
it can be shown that
L[ Ao (1), X]
—3 [ et @it L [ nugo)cos o)
’ ‘ O x<e

- % afﬂ Dodo (u) {tarrl [?7%%5%]

—tan [VETL:“TES]} oo xs e A9
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Also using the results

. Ctdt
f (@ =) V(e —r)
1 V(%) + V(=)

T Tave— s BlVESo - vie—wl,

It can be shown that

- dt
S w=mve=mn

U/ E=FD) + X F= |

1
= =55 Y G ) logJu \/(?g_xg) _x'\/(Cz—-uﬂ)l'

(A.10)

L[ pe (@), 5 =H (e =) 5= [ 2 pe @)log | £ (% ) | di

Axw) =V —= % + V(E—u)] WETFD) — VT u)l,

LU po (), ] =H(c —x) - [ Aupa(w)log | fy(x 1) [ dis

. Sneddon, I. N, and

Ejike, U.B.C, O,

2. Tricomi, F, G.

w

. Gradshetyn, J. L. and

(A.11)
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