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Abstract 

The problem of scattering of surface waves by a submerged fixed vertical plate in water of finite depth 
is solved by reducing the problem to the approximate solution of an integral equation formed by using 
a suitable Green's function and applying Green's theorem over the fluid region. The reflection and 
transmission coefficients are obtained by neglecting the exponentia lly small terms. 
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I. Introduction 

The problem of scattering or generating of surface waves by one or more plates 
placed in the same vertical plane in deep water was solved by Lewin', Mei 2, Evans3  
and others, by various techniques but the corresponding problems concerning a plate 
in water of finite depth appear to have not been considered so far. However, for 
obstacles in the form of horizontal cylinder either partly immersed or completely 
submerged in water of finite depth have been considered by Rhodes-Robinson 4  and 
Davis and Hoods. 

In this paper the scattering problem of surface waves for a submerged fixed vertical 
plate in water of depth h is considered. Applying Green's theorem in the fluid 
region, the velocity potential at any point is obtained in terms of the unknown differ- 
ence of potentials across the plate. This unknown function is seen to satisfy a 
c. ertain integral equation of the second kind. Its kernel is found to be small with 
large h and of the order of (b/hr, the exponentially small terms for large h are being ne  

_ glected. Expanding the unknown function and the kernel in series involving 

reflection powers of (blh), an attempt is made to solve it approximately. The complex 
efie ctIon and transmission coefficients are then obtained in series powers of (b1h). 

ick h tends to infinity the results coincide with those for the infinite depth case given 
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by Evans3 . The depth correction terms for the reflection and transmis sion  
cients are found to be of the order of (bill) 4 . 

2. Statement of the problem 

We consider the two-dimensional scattering of surface waves by a submerged fi
xtli 

vertical plate in water of depth h and use a coordinate system in which the 
i 	

y-axis.. 
taken to be vertically downwards, the mean free surface s the plane y = 0

, 

the pc; 
tion of the plate is given by x = 0, a Lc.,. y 	b. (cf. fig. 1). 

Assuming the fluid to be inviseid and incompressible and the motion to be in  
tational and simple harmonic in time with circular frequency a and small amplitude. 
a velocity potential exists and it can be expressed as Re {0 (x, y) net),  satisfying t& 
equations 

\72  cP = 0, in the fluid region, 	 (2.1) 

KO 	= 0, on the free surface y = 0, 	 (2.Z 

where K =e1g, 

	

= 0, on the plate x = 0, a < y < b, 	 (2,3) 

because the plate is fixed and vertical, 

= 0, at the bottom of the fluid. 	 (2.4) 

Mean Free Surface 	• • s r, 

.1 
X i 

Barrier 

Bottom 
r ar, re" r ra ./^r 77 4n 717 r7 n nn  n n r77-177 

y 

FIG. 1 
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Let a train of surface waves be made incident from negative infinity in the fluid ; 
it will then be partially reflected by the plate and transmitted over and below it. 

If the incident wave is represented by 

cosh ko  02 — y) efts/ 

cosh koh 	, 	 (2.5) 

where the wave number /c o  is defined by 

ko  tanh k elt = K, 	 (2 . 6) 

then the total field is 45  = 94  + 9, 	where 9 also satisfies the 	Laplace's 	equation (2.1) 
the 	free 	surface 	condition 	(2.2). 

In addition, we assume that 9 and its derivatives are uniformly bounded as 
(xt+ y9" 2 

2 _4 co, and 

9, {x2  + (y a a)2 }112  grad 9, and {x2  + (y — b) 2 P/2  grad 0 

are bounded as {x 2  + (y — 02}112 _4 0 or  
being the so-called 'edge conditions' 
lower edges of the plate. 

{x2  + (y — b)2}1 / 2  —, 0, the latter conditions 
which are to be satisfied near the upper and 

The reflection and transmission coefficients R and T satisfy the following relations 
obtained by considering the behaviour at positive and negative infinity, 

9 (x, y) eNd (T — 1) 94 (x, y) 

9 (x, y) -.• R 94  (— x, y) as 

as x --, + oo, 	 (2 . 7) 

X 	- Op, 
	 (2.8) 

The expressions (2.7) and (2.8) ensure that 9 (x, y) represents an outgoing wave 	at 
infinity, i.e., satisfies the 	' radiation ' 	conditions 	at 	infinity. 

3. Formation of the integral equation 

The generalized Green's function G (x, y ; 4, 1) satisfying 

72  GP---=- c-,---: + Vi,- 	Y -- Cal i 	. 	(3.1) 

(3.2) . 	KG + 2ey9— = 0 on y = 0, . 	' 

G 
ci -- = 0, on y = h , 	

(3.3) 

G9  grad 
G being  

. 
M  infini ,  

infinity, 
is:ive bounded b  ounded at a large distance, and G representing an outgoing wave 

Y 
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--- 
co 

s_inh k_y_sin_h kr/ _kh  
G (x, y ; ri) = — log .1-: +2 f e cos k (x 0 cik 

'if 	 k cosh kh 
0 

co 
—2w 

0 

cosh k (h — y) cosh k 0 — 17) 
cOsh kh (K cosh kh — k sinh k) ) cos k 	dk 

cosh ko  (h — y) cosh ko  (/7 — pi) 
ko + 47ri 	 cos 	(x — 4"), 2 k a h + sinh 2k. h (3 .4) 

where 

r 2  = (x 	)2  + 	—  

This expression can be deduced from the results given by Thorne, 

Applying Green's theorem to çø (x, y) and G (x, y ; e, q) in the fluid region bounded 
by y = 0, x = — X, y = h, x = X, two straight lines enclosing the plate, and a cid 
with centre at (er , ri) and small radius c, and making X 	op and C -+ 0, we obtain 

(3.51 

where 

• 

f 	9(O +9Y) — 0 —  

By (2. 3), (2. 5) and (3 .5), we have 

briko  cosh  k0  (h ri) 	d2  
cosh koh 	= 

dre  f (y) G (0, y ; 0, 1/) dy, 
a 

a < < b, (3M 

Therefore, 

27n. sinh  k o  (h 	d 
cosh k oh 	f f (y)  G (0, y ; q) dy + A, a < < 	(3.71 

where A is a complex constant. 

By (3.6) and (3.7) and neglecting exponentially small terms for large h, we Obtain  

where 

2ydy 
f 01) - 	=KA-2  y2 	n2 

4 	 a 

a 

(Y) -a= Kf (3) + CO, 
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so that 

1(y) =-- es"  I elf° 11/  (u) du, 
a 

and, following Rhodes-Robinson4, 
cc (K + k) es"  sinh ky cosh re'? 

	

Ill qy, ; Kh) = Yi 	K cosidi 	ii -.1  07 dk  
0 

00 	 . . 2 
a2'

K2r (y + riyr-- 1  + (y .  02r-3, 

= 2-  	(2r — 1)! (Khrr 
Tel 

00 

+ .! 2 	fi
t-"
, s K2 r 07  ± 021-1   + (y — 

2 
	(2 r — 1) ! (KW" ° 

r=3. 	smii 

where 
00 	 00 

a2, = .1 -ek k2r-1  — dk ; 13. = i 
tanhs k 

cosh k 	̀1" s 	eesh2  k - - - ' k 2"-1  dk, 

	

0 	 0 

(3 . 9) 

(3.10) 

and ab ; 112,, 8  may be expressed in terms of Bernoulli Numbers [c.1 Gradshteyn, I. S./ 

Ryzhik, I. M. (1980)]. 
Here (3.8) is a Cauchy type singular integral equation and following Mikhlins, 

ii 

V 07) = 	 --• — R2 v2(ri 	a2) 02 	12) 
lie 

(y) dy f H (y, v ; Kh) 

a 	 a 

C  Di 2  
on. —     a-vdv+ 

 
v 2 te  

(3.11 
where C

, D are two complex constants. 

BY (3.6), (3.9) and using the expression 

G (Art ; 	1) 
00 

	

=2 	(K sin ky k cos ky) (K  sin kr/ k cos  kg) 
k (K 2  + k2) 0 

X e--"-g!dk + 2nie-K(gin)facz-ti 

k cosh ky; 
— K cos 

+ 2  ; (Ksinh ky 
o 	k (K  

(K sinh kg k cosh k 
kh — k sinh kh)  

) eekh cos k (ex e) dk 

+ 47 cosh kfi(h  y) cosh k e  (h  0 
oh 	

cosiako 
+ sinh 2k  

2gi c-KOitn) cos K (x 
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and neglecting exponentially small terms for large h, and putting 1 = a,  

b 	 00 	
We  Obtain 

sin ky (K sin  ka — k cos ka) 
f V (.10[ 

i ._________ v. K2 + 	kdk ± ziKe -Ka sinh ky 
a 
0 	 0 

H' (y, a ; Kh)]dy = niKe -Ka, 

where, following Rhodes-Robinson 4, 

H'(y,a ;Kb) 
sinh ky (K sinh ka k cosh ka)  keah dk r 	k) (K cosh kh - k sinh kh) 

00 00 	00 
 f,, s,  

2 L (20 ! (Khr, s+7.42iK ((Y + a)" — (y - art) 
L, 
reo Atte owl 	 F p.th 

2t yay + 0rt-1 + Cy a 2t-9] ,  

where 

tante k ew  L kr 8, 241 dk, 
Y"it 2t a  j cosh k 

0 

and 7„., 2, also may be expressed in terms of Bernoulli Numbers. 

4. Calculations for tg (1) 

If we write 

	

1 1 	 0.0 
ty 00 = wo 0) + ith- vii on + ( -k-w2  ty2 (I) + • • • , 

1.., 	1 r 	1 	r 4.  
c= " + Kh '1  + (KW ' 2  ' . . . ' 	 (41 

Rh 131  + (KW ' ' • . • ' 

then by (3.11), (3.12), (3.13), we obtain 

Do  (d: re)  
Vio 	, 	= 0  ; 

vOr a2) 	q2) 

and 	 0. 3)  

(d: — ri 4) 	B (d: 	; 
g 4 1 ) =

1 
 Do K4  a4  (de, 

2  

• • .etc. 

where 
B, dg, d:, etc., are constants to be determined 
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Since. f (b) = 0, by (3 . 9) 

b 
5 111 04 els du = 0, 4 .... C 

and therefore, 
b 	

b 

.1 wo (y) e" di/ = 0 ; 1 v4 (Y) e l" dy = 0 ; etc., 
4 	

a 

(4.4) 

6 (dg  - y 2) en dy  =O . 
A/02  — a2) 02  — y 2) 	I ' 

a 

b r .... (d:  – y4) cKI dy 	– 0 : 
i v(i2 — a2) 02  – y2) 
a 

(4.5 

. . • .etc. 

By (3.12), (3 . 13), (4. 1), (4. 3), we obtain 
21 

Do  = 	 a — # — iy 

where 
a 	 c'? 

a= 
r .  (d: – y 2) et-n  	i  dY 	. i 	( 
i 102  – y25-02  – y-2) ' r  — j 
Pe3 	 b 

$ 

(4 — y 2)  e-mv dy  

AAY 2  - a")-0/2  a b 9 
	

(4.6) 

and 
b 

y = r  (d: _ y2) ealCil  dy  
i Vol' – a 2) (b 2  – y 2) 
a 

and 

where 

la,-  - . II' - - - iy' + K-
2

3
( — 

Ka) ea 
B = a 	  

a — li - il 

 

 

co 9. 
CL * = 1 	(d: – y4) caw' dy 	. R, = f 	___ ------r--7,- 

i A/02  —71,2102  — y2) ' r 	il(y2  - a2) (Y2  — b -) 
.0 	 b 

is 
y t  %-:, r 	&lit _ y4)  e-Kv dy  

J V(y 2  – at) (b 2  – y 2) 
a 

(4 . 7) 

and 
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and dit d given by (4.5). 

5. Reflection and transmission coefficients 

As -+ + co and — co respectively, and neglecting exponentially small term s  b 
large h, we have by (3.5) and (3.9) the complex transmission and reflectio n  coefrys. -4  

T= 1 + f  tp (y) eel" dy 
• 

= 	v(y) 	dy 
a 

If we write 

1 	1 
T2  + • • • T = To + Taz  1 4-  (KW 

1 	 D 
A ‘2 I 	• • R Ro Kh R1 (KIO2 

(S. 

we have since R+ T = 1 

To  = 1 — Ro  ; 	= Ri ; T2 = R2 ; etc. 

Then by (4. 1), (4. 3), (4 . 6), (4.7) and (5. 2), we obtain 

Ky  
Bo  = Ky i (Ka — Kfl) ' 
it1 = R2=R3=O; 

and 

• 

••••• • 	0 

K2 	a2  + K2 	b2) 2 	 2 
x  10 (K3  as K 3 /3 1) —  K3  y' (Ka Kfl)  + 2Ky (1 — Ka), • 

[Ky + (Ka — 

It should be noted that Ro, To  give the corresponding results for the infinite depth c
s  

Evans3). 

If we take 2 Ka = Kb = 1, and Kh = 10, 
R0 = 0 . 00 06 35 37 — i 0 - 02 51 98 62 

R4  = 0 . 00 00 0 123— i00000 24 37 

and 

01104  I R4  I ad 0 (10-9) 
i.e., the depth effects on reflection and transmission coefficients are found 

tO 

significant only after the eight places of decimal point. 
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6, Discussion 

Reduction of scattering problems to integral equation is a simple technique provided 
the integral equation can be solved successfully. The original scattering problem 
involving  a submerged fixed vertical barrier in deep water has recently been consi- 
dered by Goswami 9  by simply using the integral equation method, although it was 
solved by other methods by various workers from time to time (c.f. Goswami 9). 
Because of complexity in the solution of' the corresponding integral equations 
which will arise in the problems involving water of finite depth, there seems to be not 
many contributions in this line, although there are some contributions in deep water 
cases (which are themselves complicated). 

As the depth of the bottom tends to infinity the transmission and reflection coeffi- 
cients obtained in this paper coincide with the expressions for the corresponding 
problem in deep water treated by Evans 3 . The depth correction terms for the reflection . 	_ 
and transmission coefficients are found to be of the order of 	(b/1)4 . 	 As a —* 0 the 
results coincide with those for the partially immersed veitical barrier obtained earlier 
by Goswamis. 

The problem discussed here has an interesting application in naval warfare. The 
presence of an enemy submarine submerged in not too deep water in the neighbour- 
hood of a ship may perhaps be ascertained simply by observing the transmission 
coefficients at a large distance from the ship where the vertical plate may be regarded 
as a crude approximation for the submarine. However, in this model, the ship is to 
be at a large horizontal distance from the submarine and the waves are generated 
by some mechanism in the ship, and no other type of disturbance in the water is 
assumed to exist. 
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