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Abstract

The problem of scattering of surface waves by a submerged fixed vertical plate in water of finite depth
is solved by reducing the problem to the approximate solution of an integral equation formed by using
a suitable Green’s function and applying Green’s theorem over the fluid region. The reflection and
transmission coefficients are obtained by neglecting the exponentially small terms.
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1. Introduction

The problem of scattering or generating of surface waves by one or more plates
placed in the same vertical plane in deep water was solved by Lewin!, Mei?, Evans?
:'ind others, by various techniques but the corresponding problems concerning a plate
ln water of finite depth appear to have not been considered so far. However, for
obstacles in the form of horizontal cylinder either partly immersed or completely
Submerged in water of finite depth have been considered by Rhodes-Robinson* and
Davis and Hoodgs,

In this paper the scattering problem of surface waves for a submerged fixed vertical
pla.te In water of depth / is considered. Applying Green’s theorem in the fluid
féglon, the velocity potential at any point is obtained in terms of the unknown differ-
°“°°_ of potentials across the plate. This unknown function is seen to satisfy a
ram integral equation of the second kind. Its kernel is found to be small w;ith
nergg[e hand of the order of (b/h)%, the exponentially small terms fc?r largfa h are be}ng
diﬁ‘:rmd' Expanding the unknown function and the kernf:l in series involving
fﬁﬂecfin; Powers of (b(h), an attempt is made to solve.it ap_proxu.nately. The c;‘on(lgl:)x
As J te:?d:[:d transmission coefficients are then obtained in series powers o o[h)-

O tnfinity the results coincide with those for the infinite depth case given
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by Evans®. The depth corrcction terms for the reflection and trapg

Y
cients are found to be of the order of (b/h)!. Ssion

Cu.gm_

2. Statement of the problem

We consider the two-dimensional scattering of surface waves by a subme
vertical plate in water of depth / and use a coordinate system in which t
taken to be vertically downwards, the mean free surface is the plane y
tion of the plate is given by x =0, a<y<b. (cf fig. 1).

£ged fir
he y-axjs
= 0: thﬂ pog

Assuming the fluid to be inviscid and incompressible and the motiop to be ix
tational and simple harmonic in time with circular frequency ¢ and small apy b

a velocity potential exists and it can be expressed as Re {® (x, ) e'}. satis
equations

V@ =0, in the flmd region,
VP

Plitude
fytng the

(2.1

Kb + o = (0, on the free surface y = 0, (2.3
where K = ¢%/g,

EEY’--«=0,,uf:rnthepl:.a.he:>.:------0,, a<y<b, (2.3

oX |
because the plate 1s fixed and vertical,

%‘? — 0, at the bottom of the fluid. 29
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FIG, 1
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Let a train of surface waves be made incident from negative Infinity in the fluid ;
.+ will then be partially reflected by the plate and transmitted over and below it.

If the incident wave is represented by

cosh ko (2 = §) 40e
o (%)) = cosh ko ene,

where the wave number k, is defined by
kn tanh koh — K, (2'6)

then the total field is @ = @, + @, where ¢ also satisfies the Laplace’s equation (2.1)
the free surface condition (2.2),

(2.5)

In addition, we assume that ¢ and its derivatives are uniformly bounded as
(x + y?)!/2 = o0, and

o, {x* + (y — a)*}*/% grad ¢, and {x* + (y — b)*}'/2 grad ¢

are bounded as {x* + (y — a)*}/2 =0o0r {x* + (y — b)Z}/2 > 0, the latter conditions
being the so-called ‘edge conditions’ which are to be satisfied near the upper and
lower edges of the plate.

The reflection and transmission coefficients R and T satisfy the following relations
obtained by considering the behaviour at positive and negative infinity,

¢ (x,y) ~ (Z — 1) ¢.(x,») as x = + oo, (2.7)
2(x,y) ~ R, (- x,y) as x > — o, (2-8)

The expressions (2.7) and (2.8) ensure that ¢ (x, y) represents an outgoing wave at
Infinity, ie., satisfies the *radiation’ conditions at infinity,

3. Formation of the integral equation

The generalized Green’s function G (x, y ; ¢, 1) satisfying

s 302G G 3.1
v %z T 92 -2 (x =y —-m, r=0 T -
3G 3.2
KG+_5}T=O’ 0ny=0, ( )
oG
'B"'J""'"—-"O, ()ny=h!I (33)
G, grad

» being bounded at a large distance, and G representing an outgoing wave

A infinie, -
hinity, given by
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* sinh &y sinh X
r Slnh_ __}_’_Sln ﬂ —kA
Gx,y;&m=—logs +2 f “kcoshkh ¢ COSk(x - Q)
0
© coshk(h— y)coshk(h — »n)
= 2V Gosh Kk (K cosh ki — ksinh khy <% & (x = & ax
_cosh ko (h — y) cosh ky (h — 1)
i > ko i + sinh 2k, A cosko(x =0, g4
where

rR=x-800+0@—-n: e = x =P+ O+
This expression can be deduced from the results given by Thorne?,

Applying Green’s theorem to ¢ (x,y) and G (x,y ; &, 7) in the fluid region boundeq
byy=0,x=—-X,y=h x= X, two straight lines enclosing the plate, and 2 cirg
with centre at (&, 1) and small radius ¢, and making X — co and ¢ = 0, we obtaj

X

b
~2nep (&) = — ff(y)g—q((hy;df,u)dy, (3.9

where

fOMN=e@0+,y) = 00-,y).
By (2.3), (2.5)and (3.5), we have

b
., cosh ko (h — id*
iy = costhkuk D - dn? f )G, y;0,m)dy, a<n<b 08

Therefore,

I..sinh ko(h — n)

b
d .
ot = osh ki n ff(y)G(O,y;O,rz)dy+A, a<n<b G

where A is a complex constant.

: : (3
By (3.6) and (3.7) and neglecting exponentially small terms for large h, we o

[/} . ‘
2yd » "

where

v () =K+ [ ()
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so that
£0) = —KY f eKvy () du, (3.9)
and, following Rhodes-Robinson’,
o (K + k)e*tsinh ky cosh *7 " \
H(y 1 ; Ki) = '{f K cosh kh — sinh kh
- .
1R e 0 D (g
= 3 i 2r — DU (Kh)?
3 (y + 0 + (y — ) - (3.10)
1 o (7 + ML+ (y = ¥ .
+ i)' S ; ﬁ:!r:;K (2" . l) !(K,I)2r+l ’
r= =1
where
o et " tanh® k
— € * __dk- B, = LV friaa
Agy = f cosh k dk ;5 Pas,s f cosh® k & dk, ,
0 0

and a,; B, , may be expressed in terms of Bernoull Numbers [c.f. Gradshteyn, I. S./
Ryzhik, I. M. (1980)].

Here (3.8) is a Cauchy type singular integral equation and following Mikhlin®,

b b
4
l,f/(?]) — R e ™ f dy f H(y: v :Kh)
Vi ae=m J YOV
V= @) (b — ,;z) C —- Dn”
5 _ : _ Wheee & =, a<n<b
v2 _ ’72 ‘Ud’U + ‘\/(”2 =i ag) (b_ _ q_)
(3.11
where C, D are two complex constants.
By (3.6). (3.9) and using the expression
G(I,y : é, q)
w .
= 5 r (Ksin ky — k cos ky) (Ksin kn — k cos k#)
;p k (KE + k‘.!) i T2
X e¥'0-81 gl 4 dypie-Kly1 M)+ 5-4
+ 2y Ksinh ky — k cosh ky) (K sinh kn— k cosh k1) _er gog k (x — &) dk
0 k (K = k) (Kcosh kh — k sinh kh)
+ 4;;590511 kq (h = y)cosh ko (h = 1) _ -
Skt sinh 2k cosky (x — &) i

T

~ 21 e~ KW.m) cos K(x — &),
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- neglectmg exponentially small terms for large /i, and putting y = g, oh
an
K sin ka — k cos ka
[‘W(y [ f sin ky ( S]l(r;fk- )kdk'l'TUKe'H"Slnhky
- H'(y.a; Kh)] dy = niKe ™, o
1)
where, following Rhodes-Robinson?,
H' (y, a ; Kh) \
°’-" sinh ky (Ksinh ka — kcosh ka) , w4 |
Y =% (K cosh kh — k sinh kh)
o0 K y
1 ry 2y 2t ; 5t (v — M2
- 2 ] > i K (O + 0 = O =
ree) $=0 i-l ‘. (3”'!
— 2 (v + @+ (v — @) |
where
- tanh’ k
- tan 'K -k LT 8:2041
Trosy2e = f cosh k © ke K, |

Q

and 7, ,,s also may be expressed in terms of Bernoulli Numbers.

4. Calculations for y (m

If we write
w(m =vo(m + Loy )+ JLER (¢
" Kh " (Khy2 V2 :
1
C=0Cy+ C + —
T w2t ()
D = Dy + ; D, + 1 D
= 0 Kh (Kh)2 2 + N
then by (3.11), (3.12), (3.13), we obtain
D, (d§ — 7°) .3
: r— — 0 e
Voln) = JE =)@ = (m) = w2 (1) =y ()
and > (“]

wa () = lDKa(dA “2+b (dt — % + B(d — 1) .
4 4 ) VE - G -1

? -etCl' y,

where
Dy, B, di, di, etc., are constants to be determined,
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since. f () = 0, by (3-9)
{ () e du =0,

and therefore,

b
fwe() e dy =0 ; vy (y) e dy =0 ; etc,,

ie..
Y
P Gmedy g,
VO = ad) (8* — ¥*)
, \
(de —y)e™dy  _ "
Vit - @) (6 = y)
... .etc. /
By (3.12), (3.13), (4.1), (4.3), we obtain
2i
STy
where
a o0 ,
g dé—y)eXdy B = (di — y;)_eff" dy
Vi@ =y —yd) VR — a?) (2 — b3
and
b
y = _(d§ — y)e ™ dy
u V(- a®) (b® — y?)
and
B — a —f - + -I%E‘(l — Ka) eX*
a—f — iy
where
u' _ - (d: — y],) e_Ky dy ' ﬁ’ B 'fn __({{‘[ — ‘l) c--fflf dy_ﬁ_
J V@ -y et -y b VOrE = a®) (yF — b%)
and

_(d} -y e v dy
VO - ad) (B - y?)

‘ﬂ‘
i
—e

a

85
(4.4)
4.5
\
) (4.6)
/
} 4.7)
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and d2, d} given by (4.5).

5. Reflection and transmission coefficients

As & - + oo and — 0o respectively, and neglecting exponentially sy

" te
large h, we have by (3.5) and (3.9) the complex transmission and reflectigp b

CO'EME
T=1+4(y0)ecmdy

R = —-szw(y)e"‘“’dy

If we write
] |
] l w & @ ’

we have since R+ T =1

To=1—Ry; Ty=—R,; T,=—R,; etc :
Then by (4.1), (4.3), (4.6), (4.7) and (5.2), we obtain
R, Ry

K7+1(Ka.-Kﬁ)
R1=R2—R3—0,
and

R4 _ 2 K2 d" K2 a‘.!-;___K2 bl)
o Ky (K¥a' — KBy — K*y' (Ko — Kf) + 2Ky (1 — Ka) &¥' -
[Ky + i (Ka — KB)J?

It should be noted that R,, T, give the corresponding results for the infinite d¢
Evans?).

pth #

If we takc 2 Ka = Kb = 1, and Kh = 10,
R, = 0:00 06 3537 — i 0-02 51 98 62
R, =0-00000 123 — ;0-00 00 24 37
and
B/ | Ry | ~ 0(10-9)

to &
i.e., the depth cffects on reflection and transmission coefficients are fotl“d
significant only after the eight places of decimal point.
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6. Discussion

Reduction of scattering problems to integral equation is a simple technique provided
the integral equation can be solved successfully. The original scattering problem
-wolving a submerged fixed vertical barrier in deep water has recently been consi-
gered by Goswami® by simply using the integral equation method, although it was
solved by other methods by various workers from time to time (. f. Goswami®).
Because of complexity in the solution of the corresponding integral equations
which will arise in the problems involving water of finite depth, there seems to be not

many contributions in this line, although there are some contributions in deep water
cases (which are themselves complicated).

As the depth of the bottom tends to infinity the transmission and reflection coeffi-
cients obtained in this paper coincide with the expressions for the corresponding
problem in deep water treated by Evans®, The depth correction terms for the reflection
and transmission coefficients are found to be of the order of (b/h)*. As a— O the

results coincide with those for the partially immersed veitical barrier obtained earlier
by Goswami$,

The problem discussed here has an interesting application in naval warfare. The
presence of an enemy submarine submerged in not too deep water in the neighbour-
hood of a ship may perhaps be ascertained simply by observing the transmission
coefficients at a large distance from the ship where the vertical plate may be regarded
as a crude approximation for the submarine. However, in this model, the ship 1s to
be at a large horizontal distance from the submarine and the waves are generated

by some mechanism in the ship, and no other type of disturbance in the water Is
assumed 1o exist.
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