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Conicity solutions of the equations governing the motion of a perfect gas behind a spherical wave 
t point explosion with a shock surface as wave front propagating outwards in non-uniform atmos- 

re at zest with varying energy of the flow are investigated_ These solutions are applicable both 
1r tat and strong shocks. In brief, the isothermal case bas been also posed in the last but one 

le wards: Non-uniform atmosphere, quiescent gases, solar fla re,  

I Introduction 

larylarl and Taylor' have obtained solutions for spherically symmetric strong shocks only. 
Rayz has discussed an exact analytic solution of equations for a point explosion 

wattling that the total energy of the expanding wave is constant. Taking the same 
ixamption, Singh and Srivastava' have studied the point explosion problem for 
tong shocks in magnetogasdynamics. Rogerss and Singh‘ have considered the piston 
-;rntit in  uniform atmosphere with increasing enerff in the absence and presence of 
tte magneitc field respectively for strong shock only. 

It the present paper the self-similar model of weak shock wave, produced by 
Pttm explosion or uniform expanding piston in non-uniform atmosphere, has been 
c3Pled:  The total energy of the flow between the shock front and inner expanding 

rfaee 
is tune-dependent. The total energy in the flow is the sum of the kinetic and 

ttrnl rhe.  at energies of the gas ; in practice there will be losses due to dissipative 
mr°33  'Jule there will also be a gain in the internal heat energy as the shock front 
ken 0  si  and encloses more of the quiescent gas. However, this increase has effectively•

mated in the infinitely strong shock cage, i.e., tlX pressure, and therefore internal 
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of the ex:4 

heat energy of the gas, ahead of the shock front, is negligible. Th, tow  
increases with the time due to the pressure exerted on the gas by an expandi ng s  enel?, 
surface. Thus the flow is headed by a shock front and has an expanding mnPfilen4a  
an inner boundary. In a real interplanatory situation when the energy 
increases with time or even when the energy release can be reasonably considered to: 
instantaneous, the solutions correspond to the explosion wave being driven aheal 
the ejected gases which form the sphere known as contact discc,ntinuity surface or  ite°1  
expanding surface. 

It is always possible to adopt the present self-similar model to include a' d ' nvet  
wave produced by a flare energy release E that is time-dependent. Hence 

where E, is a constant. 
Following Summers 7, if q >0, then E increases with time and the solutions tk 

correspond to a blast wave produced by intense, prolonged solar flare activity when tit 
wave is driven by fresh erupting solar plasma for some time and its energy tends to 
increase as it propagates from the sun. 

Ahead of the shock, the density distribution Po  is taken to vary as 

(— 3 < a ( 0) 

where r is the radial distance from the point of explosion and p c  is a constant. Tx 
pressure distribution is taken as 

Po = pe  ra  , 	< 0) 

where pc  is a constant. 

The numerical integration has been done only for adiabatic case taking different 
values of q. Viscosity, gravitational forces and magnetic field, etc., have been neglected' 

2. Equations of the problem and boundary conditions 

The governing equations of motion are 

± u 4) 	4.  2p u = 
r 

bit 	 1 

71 	 a et ± 92. 
p r  

?-1  u 	Yp CI) 
+ u 

' 16 	bt 

(2.9 

(2 2)  

where p, u and p are density, velocity and 
from the centre at time t ; y is the ratio 

pressure of the gas at a radial distance: 
of specific heats. 
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This motion will be supposed to be bounded on the outside by a shock surface 
at r = R (t), which will move outward with velocity 

V = dRldt. 

The Rankine-Hugoniot conditions at the shock surface are 

2V [ 
u1  = 

y +1 
1 

— -- M2 
(2.4) 

r1 	— 1) 1v12 + 2' 

PO  
= 	

+
[2Y Af" 	1)], 

where 

V2 po  m.2 = 
Y Po 

(2.5) 

(2.6) 

(2.7) 

and suffixes 1 and 0 denote the values just behind and ahead of the shock front 
respectively. 

Next let us seek solutions of equations (1)-(3) in the form 

	

u= 	 (2.8) 

P = t x  OD, 
	 (2.9) 

p = r4+2 t X-2 p (,,7), 	 (2.10) 

where 

	

= 	t h, 
	 (2.11) 

while k, A, a and b are constants. 
The total energy E inside a shock wave of radius R is given by 

r
R 

E = 4ir 	P 	 r2  dr = E c ta 
1  • 

where r* is the radius of the inner expanding surface. 

(2.12) 

In terms of the variable /we get 

110 

E 	f [ Y2 / 7 	't CI 	[ (h÷5/ 0-1] a_ 	p (n)  

a 	-2% v 	" 	 1 
P Q 

 
j) 

 tik-2-(b10)(k+5)] 	= Ec t 2  ; 	
(2.13) 

where go and 1* are the values of n at the shock front and at the inner expanding 

Krfaee respectively. 
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We choose the external shock surface to be given by ri o  = constant, • Mitch A ..xest k  
velocity of the shock surface as 

b R 
V = -a  7 • 

(2.11 
The above expression (2.13) is independent of time if 

A — 2 — 71 (k + = q• 

Now using equations (2.8)42.11) and (2.14) into the equations (2.4)-(2.7), folloviik 
Deb Rays, we get 

a  +  2 — 6 — alb , 
—2 	 (2.16. 

6—k— 2 a _k— a 
— + 2 	 A • 	 (2.r 

From (2.15), (2.16) and (2.17) we have 

6 —(a+ 2) q 3 = 
2 + q 	 (24 

also 
a _ — (a + 5)  
b a 	2 + q 	 (2191 

Without any loss of generality, let us put k = a. Then from (2.17) 1 4  
Hence we have in fact 

. k=a;A,=0;a=— (a + 5) ;b= 2 + q. 	 (23  

From equation (2.11) we easily get 
R = 00-11c4+5 t(2-Ria+5) 

The above expression discloses that the physically significant range of q is 0 to 3  +," 
Taking the different values of a and q within their ranges, we can find the values ole .  

3. Solutions of equations of motion 

The condition inside the wave will be determined from the solutions of the equati°°  
(2. 1), (2.2) and (2.3). 

0.1) V r 
' 

b t 

bP 	V -r  = 	Ebr +  P  bt 
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= — V 11-4  -F 	-  + 3)1  II  V 
t 	R 	L 2 + q 	n -AR • 

(3 - 3) 

By substitution of equations (3.1), (3.3) and boundary conditions (2.4) to (2.6) 
into the equations (2.1), (2.2) and (2.3), the following set of equations are 
obtained; 

1 dX 	 dY 
X dx 	 (3.4) 

1 dY 
Trx (A  Y  — 9 4-  [ -9  —1  (a  + 3)  1 B 1 dZ A  

. 4 . - h q 	+ 7t YX dx 4=  `1 ' 

1 dZ , 	 y dXA y — 	

(3.5) 

2  d-x- kA Y — x) — a _____ ( 	1 A— 7a = 0, 	
(3.6) X dx ‘ 	xi + is 

.  
where 

=x 	-11  Y 	; Z = P 

	

Pi 1 U1 	1)1 1  
and 

14 = 

1 
2 (1 — 172  

B _ [27 — — WRY — 1 ) M 2  ± 
7  (7  + 02 m4 

 

 

7+ 

 

• 

At the shock boundary we have 
x=1 ;X=1 ;Y=1 ;Z= 1. 

Starting with these initial values equations (3.4) to (3.6) are integrated for y = 5/3 ; 
AP = 6 ; a = 	1 ; q = 0, 2/3 , 2 corresponding values ofô are —3, — 	—1 
respectively. 

A singular surface occurs at AY — x = 0 because on solving the equations (3.4) 
dX dY 	dZ to (3.6) for— and — for computation, two terms (x — A Y) and [(x — AY) 2  
dx ' dx 	dx 

B .7Z-] in denominator of the three differential equations are obt ained. The 
X 

yZ 
denominator vanishes at x AY = 0 and [(x AY) 2  B —X

] = 0 within the 

range of integration from the shock surface towards the inner expanding surface, 
none of these cases occurs. The integration starts from the shock front, i.e., x = 1 
and proceed inwards towards the inner boundary, the inner expanding surface or 
piston. It is found that work of integration fails as the critical surface AY — x = 
is approached. One may identify this surface with that of the inner expanding surface 
or piston. This singular surface occurs outside the range of integration. The second 
term given above also does not occur because the flow behind a shock surface must 
be subsonic. The well-known RKGS programme is employed to solve the system of 
equations on DEC-system 1090 computer installed at LLT., Kanpur, The variations 

Qt the field variable are shown in figs. 1 to 3, 
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4. Isothermal case 

t d 
In the presence of intense heat exchange the adiabaticity condition is 

ViOla that instead of the condition of adiabaticity behind the shock one may s uppL7  
the temperature gradient is absent. Such flows are called isothermaj .  in ol lk 
gas dynamics the problem of self-s;milar flows behind a spherical shock due to Lit' 
explosion with zero temperature gradient was first solved by Korobeinikov8 andrvit 
later extended to the piston problem by Melnikova 9 . 

In this case equation (2.3) is of the form 

?T o  
?r (4 .1 ,  

Using the equation of state p=rpT into the above equation, we get 

p p 

Pi 	Pi' 	 (4.] 

where r is the gas constant and T the temperature. 
The shock conditions are 

1 
— /3) V ; 	= (1  — + Q)po vg, 

where fi and Q are parameters. 	Also it is obvious to note that 	Mach number b 

related to Q and is equal to 1/VyQ. 

After using the equations 	. 1) to (3 .3) and (4 . 2) into the equations (LI) 
(2.2) and utilising above boundary conditions, the following set of equations r 
obtained 

dX 
—1 di° — 13) 	xl (1 — /3) d—Y  + 2 

dx 	
(1 — 13) 	+ a = O. 	(4 41 

dY 
-di 	— 13) — xl + —  (a ± 

L 2 + q 
3)  

— 	  Rd' 
(411  

The parameter /3 (0 <fl < 1) can be determined by iteration using the equa 0°11t1:1  
conservation of mass in Lagrangian form (p o  r0 2  dro  = pr2  dr). Integrating this 61, 113,11 . 
between the limits r* (0 < r* < R) and R and writing the resultant expression In 
dimensional form we get 

Ii 3-7s-a  = f x 2  X dx, 
aps 

" where x* = r*1R. The range of fl can be found from the fact that the rela"  
velocity of fluid just behind the shock must be subsonic, 
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5. Conclusions 

The value of the Mach number in the above problem is unrestricted and may be large 
and small. For 6 = — 3, the velocity first decreases near the shock front and then 
after some time it shows an upward trend. The density starts to decrease continuously 
from the shock front until it reaches near the point of explosion and the pressure 
first decreases near the shock front, increases in the middle of the flow fields 
for a small distance and again decreases continuously towards the centre of 
explosion. 

For  ö = — 2 the velocity shows similar behaviour as in the above case with 
higher values at all the points but both density and pressure slowly start decreasing 
continuously from the shock front up to near the point of explosion and they are 
higher than their values for .5 = — 3. 

For 6 = — 1, the velocity, density and pressure all show an upward trend. 

Hence, it is obvious from figs. 1-3 that as 6 increases, the flow variables get their 
higher values throughout their fields at all the points. This theory of self-similar 
flows behind a shock wave is of considerable physical interest for example, in 
sonic booms, phenomena associated with laser production of plasmas, high altitude 
nuclear detonation, supernova explosions and sudden expansion of corona into the 
interplanetary space. Shock waves are also employed in laboratories to obtain high 
temperatures. 
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I. Density distribution. 	FIG. 2. Velocity distribution 

	no. 3. Pressure distribution 
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