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Spherical shock due to point explosion with varying energy
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ABITract

&miteriry solutions of the equations governing the motion of a perfect gas behind a spherical wave
& & point explosion with a shock surface as wave front propagating outwards in non-uniform atmos-

mer Bt rest with varying energy of the flow are investigated. These solutions are applicable both
m went and strong shocks. In brief, the isothermal case has been also posed in the last but one
£UnT.
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1 Wrodoction

13:"31:'!'1 and Taylor® have obtained solutions for spherically symmetric strong shocks only.
D=t Ray? has discussed an exact analytic solution of equations for a point explosion
Enmng that the total energy of the expanding wave is constant. Taking the same
BEumpnon, Singh and Srivastava® have studied the point explosion problem for
$ong shocks in magnetogasdynamics. Rogers® and Singh® have considered the piston
X'odiem in uniform atmosphere with increasing energy in the absence and presence of
& magnetic field respectively for strong shock only.

In the present paper the self-similar model of weak shock wave, produced by
A explosion or uniform expanding piston in nos-uniform atmosphere, has been
._uad: The total energy of the flow between the shock front and inner expanding

: 'S Ume-dependent. The total energy in the flow is the sum of the kinetic and
%sﬁinzl ’hgat ¢nergies of the gas; in practice there will be losses due to dissipative
“hile there will also be a gain in the internal heat energyas the shock front
;'mo n:i and ‘encloses more of the quiescent gas. However, this increase has eﬂ"ectwely
tted in the infinitely strong shock case, i.e., the pressure, and therefore internal
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heat energy of the gas, ahead of the shock front, iIs negligible. Tpe toal

increases with the time due to the pressure exerted on the gas by an expan ding n%
surface. Thus the flow is headed by a shock frgnt and has an expap ding Surpra 1
an inner boundary. In a real interplanatory situation when the energy of p, exm&-h
increases with time or even when the energy release can be reasonably CODSidereq .
instantaneous, the solutions correspond to the explosion wave b,',eing driven ghey

the ejected gases which form the sphere known as contact discaontinuity Surface o -

expanding surface.

It is always possible to adopt the present self-similar model to include 3 ¢ i
wave produced by a flare energy release E that is time-dependent. Hence

E= Ectq: (q ?0) (||

where E,1s a constant.
Following Summers’, if g >0, then E increases with time and the solutigp the;

correspond to a blast wave produced by intense, prolonged solar flare activity whey
wave is driven by fresh erupting solar plasma for some time and its energy tendsy

increase as 1t propagates from the sun.
Ahead of the shock, the density distribution p, is taken to vary as

Po=Po1°, (-3<ax<0) (W

where r is the radial distance from the point of explosion and p, is a constant. Tk
pressure distribution is taken as

Po=07, (6 <0)

where p. is a constant.

(L

The numerical integration has been done only for adiabatic case taking diffees
values of g. Viscosity, gravitational forces and magnetic field, etc., have been neglec

2. Equations of the problem and boundary conditions

The governing equations of motion arc

op p du . 2pu
2 T YTl pt =0, o)

__Dp 9P 8 0
i P P | dp }
o1 ‘ or p (_51 or )’ ¢ )

w : : jal di
frgj;e ti’ el are density, velocity and pressure of the gas at a radial dist
© cenlre at time ¢ ; y is the ratio of specific heats.
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This motion }xfill I:'!e supposed to be bounded on the outside by a shock surface
at r = R(t), which will move outward with velocity

V = dR/d:.

The Rankine-Hugoniot conditions at the shock surface are

U —_g_l./__[] -.H.l_}
1S yFIL T M

(2.4)
_ M
pl (7—1)M‘3+2’ (2.5)
— _Po 2 (v —
where
3 __ Vﬂpﬂ
M=’ (2.7)

and suffixes 1 and 0 denote the values just behind and ahead of the shock f{ront
respectively.

Next let us seek solutions of equations (1)-(3) in the form

u= = U @), 2.8)

p=rrtrQ ), (2.9)

p = r¥t2 A2 P (n), (2.10)
where

n=r 2.11)

while k, A, a and b are constants.
The total energy E inside a shock wave of radius R is given by

R
r
E=an | (4pu+2q)rtdr=Er, (2.12)

where r* is the radius of the inner expanding surface. [n terms of the variable n we get

%o
4 a)— 1 [(H-Mﬂl—l]]
= E’E f [,_% U2 (?2)9 (,7) q[(k+5f )-1] 4 -P}—_—-l P(q) n
1’1

X tI-2-0/0) 6+6)] gy = E, 1* ; (2-13)

Where 5, and #* are the values of # at the shock front and at the inner expa
Wurface respectively.

ndin g
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We choose the external shock surface to be given by 7o = constant, which
velocity of the shock surface as "

o

V==

Q.1
The above expression (2.13) 18 independent of time if

i-2-2k+9) =4
(4
Now using equations (2.8)-(2.11) and (2.14) into the equations (2.4)-(2.7) follow
Deb Ray?, we get .

a+2—0
= a/b,
-2 Lk

5—k—-2_a_k-a

- A+2 b A or
From (2.15), (2.16) and (2.17) we have

5__6—(a.+2)q

B 2+ g ’ (LI
also

a —(a+53)

b~ 2+gq (L1

Without any loss of generality, let us put k = a. Then from (2.17) 4=l
Hence we have In fact

k=a;1=0;a=—-(a+5);b=2+g - @Y
From equation (2.11) we easily get
R = (ph) -1/a+15 t(2+e/a+5) (2.21"'

The_abovc expression discloses that the physically significant range of ¢ is 0 0 3;’{2
Taking the different values of  and ¢ within their ranges, we can find the vall®

3. Solutions of equations of motion

—r 108
The condition inside the way ang

e will be determined f the solutions of the ¢&
(2.1), 2.2) and (2.3). rom e

P _ rdp 174 | !
3 T "Ry T® R | -
)

Le_yplw )

- _ V 1
T RyFToP R’ | (b
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(3.3)

By substitution of equations (3.1), (3.3) and boundary conditions (2.4) to (2.6)

into the equations (2.1), (2.2) and (2.3), the following set of equations are
obtained ;

1 dX dY Y

== (AY = X) + A5+ 24—+ a =0,

X dx dx X (3.4)

1 dY q-—(a+3):l B 1 dz

—--—AY—x+[ _ | LB dZ _

de( ) 2+ q AYX dx % (3.5)

1 dZ Y dX

e Y"‘" ==l AY"‘ — —-

= (AY = %) = 550 ( *) + 6~ ya =0, (3.6)
where

x=i;X=£-; Y—"-*u-;z=£*,

R %1 Uy P;

and

1
A= Z(I_M_E)* g yM? — (v — DIlly — 1) M* + 2]
7+1 , Y(Y+l)2M4 '

At the shock boundary we have
=1:X=1;Y=1;Z=1L

Starting with these initial values equations (3.4) to (3.6) are integrated for y = 5/3 ;

M=6:a=—-1; g=0, 2/3, 2 corresponding values of 0 are — 3, —2, — 1
respectively.

A singular surface occurs at 4Y — x = 0 because on solving the equations (3.4)

to (3.6) for j—% " %i——: and % for computation, two terms (x — AY) and l:(x — AY)?

= B I‘%:l in denominator of the three differential equations are obtained. The

denominator vanishes at x — AY = 0 and I:(x — AY)Y - B J%] = (0 within the

range of integration from the shock surface towards the inner expanding surface,
none of these cases occurs. The integration starts from the shock fromt, i.e., x = |
af‘d proceed inwards towards the inner boundary, the inner expanding surface or
Piston. It is found that work of integration fails as the critical surface AY — x =0
'S approached. One may identify this surface with that of the inner expanding surface
Or piston. This singular surface occurs outside the range of integration. The second
term given above also does not occur because the flow behind a shock surface must

Supsonic. The well-known RKGS programme is employed to solve the system of
®quations on DEC-system 1090 computer installed at LLT., Kanpur, The variations
Of the field varigble are shown in figs. 1 to 3,
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4. Isothermal cas€

In the presence of intense heat ex?hange. the afiiabaticity condition jg Viol

that instead of the condition of adiabaticity behind the shock one may Aef |
the temperature gradient 1s absent. ‘Such flows are called isothermg) hfl’w
gas dynamics the problem of self-s'milar flows behind a spherical shogy e ?rdi;g?
explosion with zero temperature gradient was ﬁrst solved by Korobeinikoys azclpl:“I
later extended to the piston problem by Melmkova®. B

[n this case equation (2.3) is of the form

)T _
or ]
Using the equation of state p = I'p T into the above equation, we get
PP
o A (4.2

where I' is the gas constant and 7 the temperature.
The shock conditions are

ﬂ1=%ﬂu;u1=(l_B)V;pl-__(l_ﬁ'l'g)p“Vz’ (i

where § and Q are parameters. Also it is obvious to note that Mach numbe
related to Q and is equal to 1/4/v0.

After using the equations (3.1) to (3.3) and (4.2) into the equations (2.1 e

(2.2) and utilising above boundary conditions, the following set of equations &
obtained :

1dX
xxl0=-AY=-x1+1-p T r20-plra=0o @

1 dY - | dX
A Bloam _ g—=(a+ 3) pU~-p+0)0 L=l
y &l =AY -+ | Tl Ry (e R O

o
The parameter B (Q <f < 1) can be determined by iteration using the elquatlﬂﬂw
conservation of mass in Lagrangian form (p, r,2 dr, = pr® dr). Integrating this cf}uﬂ !

between the limits r* (0 < r* < R) and R and writing the resultant expression
dimensional form we get

1

35 = fszdx, ¢

a

= celgt®
Where x* = r*/R. The range of B can be found from the fact that the

velocity of fluid just behind the shock must be subsonig,
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5. Conclusions

The value of the Mach number in the above problem is unrestricted and may be large
and small. For ¢ = — 3, the velocity first decreases near the shock front and then
after some time it shows an upward trend. The density starts to decrease continuously
from the shock front until it reaches near the point of explosion and the pressure
first decreases near the shock front, increases in the middle of the flow fields
for a small distance and again decreases continuously towards the centre of

explosion.

For 6 = — 2 the velocity shows similar behaviour as in the above case with
higher values at all the points but both density and pressure slowly start decreasing

continuously from the shock front up to near the point of explosion and they are
higher than their values for 0 = — 3.

For 6 = — 1, the velocity, density and pressure all show an upward trend.

Hence, it is obvious from figs. 1-3 that as ¢ increases, the flow variables get their
higher values throughout their fields at all the points. This theory of self-similar
flows behind a shock wave is of considerable physical interest for example, in
sonic booms, phenomena associated with laser production of plasmas, high altitude
nuclear detonation, supernova explosions and sudden expansion of corona into the
terplanetary space. Shock waves are also employed in laboratories to obtain high
temperatures.
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