J. Indian Inst. Sci., 64 (B), May, 1983, Pp. 105-107
© Indian Institute of Science, Printed in India.

Short Communication

2×2 Matrix-multiplication revisited

ASISH MUKHOPADHYAY
Department of Applied Mathematics*, Indian Institute of Science, Bangalore 560012 , India
Reoeived on July 21, 1982; Revised on Octcber 16, 1982.

Abstract

In this note, an algorithm for 2×2 matrix-multiplication is described, and an application of this is made to 3×3 matrix-multiplication.

Key words: Matrix-multiplication, computer algorithm.

1. Introduction

Strassen's algorithm ${ }^{1}$ for multiplying two 2×2 mattices, with entries from an arbitrary ring R, involves 7 multiplications and 18 additions (assuming that addition and subtraction are the same kind of operations). Subsequently, Winograd ${ }^{2}$ discovered a more efficient algorithm, involving 7 multiplications but only 15 additions. In this note, we give an alternative algorithm, which also involves 7 multiplications and 15 additions, and a combination of the two algorithms is applied to 3×3 matrix-multiplication.

2. Algorithm

Let

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

Now with the Electrical Engineering Department.
$\xrightarrow[L I S]{ } \mathrm{Sc},-5$

A. MUKHOPADHYAY

be matrices, where $a_{i j}, b_{i j} \in R, 1 \leqslant i, j \leqslant 2$. Then, the alternative algorithm is givin by the identities below:

$$
\begin{aligned}
& a_{11} b_{11}+a_{12} b_{21}=t+\left(a_{12}-a_{29}\right)\left(b+b_{21}\right)+\left(a_{12}-a_{11}\right)\left(b_{21}-b_{22}\right) \\
& a_{11} b_{12}+a_{12} b_{22}=t+a_{11}\left[\left(b_{12}-b_{11}\right)-\left(b_{21}-b_{22}\right)\right]+\left(a_{12}-a_{22}\right)\left(b_{11}+b_{21}\right) \\
& a_{21} b_{11}+a_{22} b_{21}=t+b_{11}\left[\left(a_{21}-a_{11}\right)+\left(a_{12}-a_{22}\right)\right]+\left(a_{12}-a_{11}\right)\left(b_{21}-b_{21}\right.
\end{aligned}
$$

where $t=a_{22} b_{22}+\left(a_{11}-\left(a_{12}-a_{22}\right)\right)\left(b_{11}+\left(b_{21}-b_{22}\right)\right)$. The term $a_{21} b_{12}+a_{22} b_{2}$ computed as it is. If intermediate results are appropriately saved, it is easy to α_{i} that the algorithm requires 7 multiplications and 15 additions.

3. Application

To compute the product of the matrices, $P=\left[p_{i j}\right]$ and $Q=\left[q_{i t}\right], p_{i t}, q_{i j} \in R, 1 \leqslant$ $j \leqslant 3$, we have to compute the terms $\sum_{j=1}^{s} p_{i j} a_{i k}, 1 \leqslant i, k \leqslant 3$. This can be done in $!s$ multiplications, by combining Winograd's scheme with ours.

We first note that in Winograd's algorithm the term $a_{11} b_{11}+a_{12} b_{21}$ of the prodr $A B$ is computed as it is.

The partial sums $\sum_{j=1}^{2} p_{i j} q_{j k}, 1 \leqslant i, k \leqslant 2$, can be computed by multiplying the matriax

$$
\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right] \text { and }\left[\begin{array}{ll}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right]
$$

according to the above algorithm in 7 multiplications. The partial sums $\sum_{j=2}^{3} p_{y} y_{0}$ $2 \leqslant i, k \leqslant 3$, can be computed by multiplying the matrices

$$
\left[\begin{array}{ll}
p_{22} & p_{23} \\
p_{32} & p_{33}
\end{array}\right] \text { and }\left[\begin{array}{ll}
q_{22} & q_{23} \\
q_{32} & 2_{33}
\end{array}\right]
$$

by Winograd's algorithm in 6 more multiplications, since $p_{22} q_{22}$ is available from th first step; 12 more multiplications are needed to compute all the terms of $P Q$, and this brings the tally to 25 . This result was found by Gastinel ${ }^{3}$ in a more invorid way.

Acknowledgement

The author thanks the referee for pointing out an obscurity and suggesting sentid improvements.
MATRIX MULTIPLICATION 107

References

1. Aho, A., Hopcroft, J. E., The design and analysis of computer algorithms, Addison-Wesley and Ullman, J. D.
2. Knuth, D. E.

The art of computer programming, Vol. II, Addison-Wesley, Reading MA, 1981, pp. 481-482.

Sur le calcul des produits de matrices, Numer. Math., 1971, 222-229.

