J. Indian Inst. Sci., 64 (B), May, 1983, Pp. 105-107 @ Indian Institute of Science, Printed in India.

Short Communication

2 X 2 Matrix-multiplication revisited

ASISH MUKHOPADHYAY

Department of Applied Mathematics*, Indian Institute of Science, Bangalore 560 012, India

Received on July 21, 1982; Revised on October 16, 1982.

Abstract

In this note, an algorithm for 2×2 matrix-multiplication is described, and an application of this is made to 3×3 matrix-multiplication.

Key words: Matrix-multiplication, computer algorithm

1. Introduction

Strassen's algorithm¹ for multiplying two 2×2 matrices, with entries from an arbitrary ring R, involves 7 multiplications and 18 additions (assuming that addition and subtraction are the same kind of operations). Subsequently, Winograd² discovered a more efficient algorithm, involving 7 multiplications but only 15 additions. In this note, we give an alternative algorithm, which also involves 7 multiplications and 15 additions, and a combination of the two algorithms is applied to 3×3 matrix-multiplication.

2. Algorithm Let

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \text{ and } B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

Now with the Electrical Engineering Department.

105

LI.Sc.-5

.

A. MUKHOPADHYAY

be matrices, where a_{ij} , $b_{ij} \in R$, $1 \le i$, $j \le 2$. Then, the alternative algorithm is given by the identities below:

$$\begin{aligned} a_{11}b_{11} + a_{12}b_{21} &= t + (a_{12} - a_{22})(b + b_{21}) + (a_{12} - a_{11})(b_{21} - b_{22}) \\ a_{11}b_{12} + a_{12}b_{22} &= t + a_{11}\left[(b_{12} - b_{11}) - (b_{21} - b_{22})\right] + (a_{12} - a_{22})(b_{11} + b_{21}) \\ a_{21}b_{11} + a_{22}b_{21} &= t + b_{11}\left[(a_{21} - a_{11}) + (a_{12} - a_{22})\right] + (a_{12} - a_{11})(b_{21} - b_{22}) \end{aligned}$$

where $t = a_{22}b_{22} + (a_{11} - (a_{12} - a_{22}))(b_{11} + (b_{21} - b_{22}))$. The term $a_{21}b_{12} + a_{22}b_{23}$ computed as it is. If intermediate results are appropriately saved, it is easy to u_{13} that the algorithm requires 7 multiplications and 15 additions.

3. Application

To compute the product of the matrices, $P = [p_{ij}]$ and $Q = [q_{ii}]$, p_{ij} , $q_{ij} \in R$, $i \leq j \leq 3$, we have to compute the terms $\sum_{j=1}^{3} p_{ij} q_{jk}$, $1 \leq i, k \leq 3$. This can be done in $\sum_{j=1}^{3} p_{ij} q_{jk}$, $1 \leq i, k \leq 3$.

We first note that in Winograd's algorithm the term $a_{11}b_{11} + a_{12}b_{21}$ of the product AB is computed as it is.

The partial sums $\sum_{j=1}^{2} p_{ij} q_{jk}$, $1 \le i, k \le 2$, can be computed by multiplying the matrice

106

$$\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \text{ and } \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix},$$

according to the above algorithm in 7 multiplications. The partial sums $\sum_{j=2}^{k} p_0 q_p$ $2 \le i, k \le 3$, can be computed by multiplying the matrices

$$\begin{bmatrix} p_{22} & p_{23} \\ p_{32} & p_{33} \end{bmatrix} \text{ and } \begin{bmatrix} q_{22} & q_{23} \\ q_{32} & 2_{33} \end{bmatrix}$$

by Winograd's algorithm in 6 more multiplications, since $p_{22} q_{22}$ is available from the first step; 12 more multiplications are needed to compute all the terms of PQ, and this brings the tally to 25. This result was found by Gastinel³ in a more involved way.

Acknowledgement

The author thanks the referee for pointing out an obscurity and suggesting sevres improvements.

MATRIX MULTIPLICATION

References

1.	AHO, A., HOPCROFT, J. E., AND ULLMAN, J. D.	The design and analysis of computer algorithms, Addison-Wesley Reading, MA., 1974, pp. 230–231.
2.	KNUTH, D. E.	The art of computer programming, Vol. II, Addison-Wesley, Reading MA, 1981, pp. 481-482.
3.	GASTINEL M.	Sur le calcul des produits de matrices, Numer. Math., 1971, 222-229.