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Abstract 

The upper and lower bounds on the flow rate of viscous incompresssible fluid through 	a straight 
pipe of arbitrary cross-section filled with porous material are derived in a simple manner. 
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1. Introduction 

The bounds on the flow rate for steady Poiseuille flow through a straight pipe of arbis 
trary cross-section filled with porous material are obtained by the application of Gauss 
divergence theorem and standard inequalities and they are found to be in agreement 
With [lb Bounds on the flux are given for the following types of cross-section of the 
Pipe : 

(a) a curvilinear triangle bounded by the arc of a cardioid, arc of a parabola 

and the axis of the cardioid ; and 

(b) a curvilinear quadrilateral bounded by the arcs of four confocal parabolas 

,,unnected flow sections. 
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1 Derivation of bounds 

2.1 Pipe of arbitrary cross -section 

The equation for the axial velocity for Poiseuille flow of a viscous incompressible lia„ ; ,4  
in a long straight pipe of arbitrary cross-section filled with porous material is 1"4  

00X2  ± w/hy2  = coik + p'1112 on S 
(2.1) 

= 0 on hki 	 (2.2) 
where hS denotes the boundary 
pressure gradient along the axis 
porous medium. The flow rate 

Q =--5 co dS 

of the cross-section S, p' < 0 the Constant ath 
OZ of the pipe and k is the permeability of the 

(2.3) 

In view of (2.1), the divergence theorem leads to 

Q = - (Pin (1V co  + (021k) ds 	 (2.41 

Let V be a vector field satisfying 

(2.51 
The divergence theorem and (2.5) imply 

Q =7. — (j411) 5  (17-  . Via + (0211c)dS. 	 (2.6) 

Since 

P. voc/ fi l 2  ± 1 17°1 2) 
	 (21 

from (2.6) and (2.7) we have 

Q 	(filps) I  (1 17 1 2  + a)2/1c)dS 	 0.81 

Let u = 0 on 	and .1 (1 Vu 1 2  u2/k) dS 0. The divergence theorem and (2. I)  

give 

— (pilp) is uds=5(v u  . yco + ucolk) dS. 

Squaring both sides and applying the Cauchy-Schwartz inequality 

(5S 	 s  (a b + c . d) d S) 2 	( I (I/2  + 7.2) dS) 	7) 2  -I- i72) dS). 

We have 
(2 ,1 0) 

- (P710 ( Ss  u dSPI (1 Vu 1 2  + u2/k) dS Q. 
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instead of (2.10) we consider the bound 

2 u dS Otili (I Vu 1 2  + 01k) dS. (2.11) 

Evidently the scaled maximum of (2.11) is (2.10). Thus from (2.8) and (2.11) we 

have 
 

25 u diS + 	(I Au 1 2  4- 1421k) 

	

(I PI' + (03/k)ds. 	 (2.12) 

The bounds given by (2.12) are seen to be in agreement with [1]. 

2.2. Pipe of cross -section (a) 

ConSider the transformation 

z = c (1 	exp (0)2 	 (2.13) 

where z =(x+ iy) = y exp (i0), # = + seq. Then = 0 is the cardioid y =2c 
(1 + cos 0), 5= - 00 is the point (c, 0), q = 0 is the part of the real axis extending 
from (c, 0) to oo, q = aj2 is the upper-half of the parabola 2cfy = (1 + cos 3). 
Using (2.13), eqn. (2.1) transforms to 

roTh 442  + 0012  = exp (20 (A + fie.0 (1 + exp (20 + 2 cos I exp (0) 

(2.14) 

where A = 4c2 p7p, /1 = 4c2/k. The boundary conditions are 

= 0 when = 0, oo 	 (2.15) 
q = 0, tI2 I 

Proceeding as in section (2.1), the bounds on the flux Q 1  are given by 

8c2  eg (1 + 	2et cos q)u dS 

+ (11") 1 0 	u 1 2  + flU 2  e2g (1 + e2g 	2eg cos 1)) dS 

Is  (1 /7 1 2  + /leg (1 — 	2et cos q) (02) dS 	(2.16) 

2.3 Pipe of cross
-section (b) 

Introduce the transformation 
z 	#2 . 	 (2.17) 

Then = e1 , z  

s 	
nl , q = 1 2  are four confocal parabolas. Using (2.17), (2.1) 

I transform to  

2 a/b °  le Y2  (toe = 	+ q2)(it + Po) 	 (2.18) 

Where 2 4p714)p = 4/k. The bounds on the flux Q2  are obtained as 
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8 g2  /2) u ds 	vu 1 2  + 	+ n 2) u2) ds 

Q2 	(P/P ') I (I 91 2  + /3 (V + n 2) 0) ds. 
(2,191  

As k --) 00 (i.e.), 	0 the bounds on the flux for pipe flow in the absence of 
poi% 

material are deduced. 

3. Calculation of upper bound 

Annular domain : Let t be the thickness which is taken to be uniform ; s i the  ag  
length along the mid-curve C and a is the distance measured along the normal 1 6  
C. Let ws  and co. be the components of to in the s and a directions. In terms d 
the coordinates (s, a) 

1  v w = 	 recolbs + ((I 	aK) w)fta) 	 (3.11 

where K is the curvature of C. We seek w such that co, = 0, coa = co (s, a). Conz 
quently, from (2.5) and (3.1) we have 

— aK)(.0)1ba = p' (1 - 	 + V(1 — aK)Ik 	 (31 
which on integration leads to 

co (s, a) = — p' (1 — aK)12141( + f (s)A1 — aR) 

+ 0.3 (4 — 3aK)/I2 + t 2  (I — aK) 2/8K)/k (I — aK) (3.31 

where we have taken v = (a2 _ -2 • ■ pit) and f (s) is an undetermined function. itis 
clear that f (s) should be chosen so as to minimize the integral / (f) = 1(J °1  
+ v 2/k) dS. In terms of the coordinates (s, a), this is written as 

112 
I ( f) =I f Ow 1 2  + v2/10 (1 aK)da ds. 

0 —vs 
The suitable choice for f (s) is 

(s) re- 	1 
1 — tK12  tt 3I4k p' tly - (1/6 k) [: 3/12 + 1110 

2 log (I + t1(12) 
ifica jog  (1 — tK/2\11 

V 4- 11(121jj • 
Now that f (s) has been found, from (3.3) and (3.5) we have 

(s, = (p' 	— at 2141c + a3/3k) (K = 0, — ti2 a 12) 
= p' (1 — aK)1214K + [aa (4 — 3a10/12 

± : 2 (1 — aK)2/8Kific (1 — aK) 

(35) 
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4. 	1 	te 	1  
2 (1 — aK) log (1  — go\  [— tip — tI6 kK 2  + 17 0/72k 

1 + 11(12) 

1 10  (1  — t K12\1  (K 0, 	tI2 a ti2). 6 HO g  \1 + tIC/2).j 

Thus from (3.4), (2.8) and (3.5) 	we get the 	upper bound on Q. 
bound is valid for the domain doubly connected. 

Note that the 

4. Calculation of lower bound 

Annular section : Take u = (a2  t 2/4) which satisfies the boundary condition. Now 
we see that 

f u dS = 	t 3  //6, .1 / 	u / 2  dS = 1 3113, 
(4.1) 

dS = Is #30 k 

From (2.11) and (4.1) it follows that 

("11244 (t311(l + t 2110 k)). 
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