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Bounds on the flow rate for pipe flow
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Abstract

The upper and lower bounds on the flow rate of viscous incompresssible fluid through a straight
pipe of arbitrary cross-section filled with porous material are derived in a simple manner:
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1. Introduction

The bounds on the flow rate for steady Poiseuille flow through a straight pipe of arbie
tt:ary cross-section filled with porous material are obtained by the application of Gauss
d{‘f*’fgencc theorem and standard inequalities and they are found to be in agreement
:ﬂh [1}. Bounds on the flux are given for the following types of cross-section of Ithe
Ipt ;

(@) a curvilinear triangle bounded by the arc of a cardioid, arc of a parabola
and the axis of the cardioid ; and

) a curvilinear quadrilateral bounded by the arcs of four confocal parabolas.

anAn altempt has been made to provide bounds for the flux through a pipe havipg
anmilus g Cross-section. It is important to note that we are able to cope with

mult‘P]Y Connected flow sections.
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2. Derivation of bounds

9.1 Pipe of arbitrary cross-section

The equation for the axial velocity for Poiseuille flow of a viscouys incompre%ible ligy
in a long straight pipe of arbitrary cross-section filled with poroys materia] q

2 wfox* + 3 0fdy* = wfk + p'jp on § @

w=0o0naS 0y

where 35 denotes the boundary of the cross-section S, p’ <0 the constant
pressure gradient along the axis OZ of the pipe and k is the permeability of e

porous medium. The flow rate

S

In view of (2.1), the divergence theorem leads to
=~ Wp) [V o+ 0¥k ds L4

Let ¥ be a vector field satisfying

V.V=uo0k+ P'lu (2.9
The divergence theorem and (2.5) imply

0=~ @p)| (V.Va+ w¥k)ds. )
Since

V.V o<i( 7P+ Vol e
from (2.6) and (2.7) we have

Q< - @lp) [ (IVI* + o*k)ds 08

Let =0 on 5 and Sf (1 Vu|®> + u*/k) dS #0. The divergence theorem and (1

give
—(P'ly) | udS = [ (Vu . Vo + uofk) ds. 0.9

Squaring both sides and applying the Cauchy-Schwartz inequality
([@.b+c.Ddsp<(] @ +)ds)( | B+ 3 dS)
S
We have

| .10
= (P'w) ( J udsy] UVul® + wifk)ds < Q. |
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instead of (2. 10) we consider the bound

0> 23]' udsS + (z/p) g (| Vu|® + w*k) ds. .11

Evidently the scaled maximum of (2.11) is (2.10). Thus from (2.8) and (2.11) we
W fudS+ ) | GAUE + WS < Q
S

< — (u/p') !; (I VI* + w?k) ds. o (2_12)
The bounds given by (2.12) are scen to be in agreement with [1].

9 2. Pipe of cross-scction (a)
Consider the transformation

2 = c(l + exp (§))’ (2.13)
where z = (x +iy) =yexp (i), ¢ =&+ in. Then & =0 is the cardioid y = 2¢
(1 + cos8), { = — oo is the point (¢, 0), = 0 is the part of the real axis extending

from (c,0) to oo, # ==n/2 1s the upper-half of the parabola 2¢/y = (1 + cos #).
Using (2.13), eqn. (2.1) transforms to

2R + M wfon® = exp (28) (A + Bw) (1 + exp (2) + 2 cos n exp ()

(2.14)
where A = 4c¢ p’fu, B = 4c*/k. The boundary conditions are '
w=0when ¢ =0, —c0
q=¢nﬂ}. @2.15)

Proceeding as in section (2.1), the bounds on the flux Q, are given by
8¢t L e (1 + e + 2eb cosn)u dsS

Flp) [ AV ul+ put et (1 + e + 2¢f cosy)) dS

SO —(p) [ (VI2+ Bett (1 — & + 2¢t cospw)dS  (2.16)
S

23 Pipe of cross-section (5
Introduce the transformation

2= ¢ (2.17)
e § = ' ing (2.17), (2.1
.tfamfﬁrmsil,; ¢ =&, n=ny, n= n. are four confocal parabolas. Using (2.17), (2.1)

0N+ 3 ot = (€ + p?) (4 + Bo) 2.18)
Where ] =

'lu, B = 4/k. The bounds on the flux Q, are obtamed as
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8 (& + n)uds+ (ulp) J (VU + B (&* + 1 u)ds

<Q<-@p) [ (VE+BE +n)of)ds. o
R

As k — oo (i.e.), B — 0 the bounds on the flux for pipe flow in the absence of -

material are deduced.

3. Calculation of upper bound

Annular domain : Let t be the thickness which is taken to be uniform ; g iS e g
length along the mid-curve C and a Is the distance measured along the norgyy,
C. Let w, and w, be the components of w in the s and a directions. In terpy g

the coordinates (s, a)

V.0 = =gy B@hs +2 (1 = aK) @)l )

where K is the curvature of C. We seek w such that w, = 0, w, = (s, 0). Co
quently, from (2.5) and (3.1) we have

d(( —aK)o)da =p' (| — aK)u+ v (1 — aK)/k (3
which on integration leads to

o (s,0) = — p' (1 — aK)2uK + f (5)/(1 = aK)
+ (@3 (4 — 3aK)/12 + 12 (1 — aK)*/8K)/k (1 — aK) (3

where we have taken v = (a® — ¢2/4) and f (s) is an undetermined function. jis

clear that f (s) should be chosen so as to minimize the integral I (f) = g(]a."

+ v*/k) dS. In terms of the coordinates (s, a), this is written as

1) =1 T (o + k) = aK)dads 2

0 —1is

The suitable choice for f (s) is

_ i | i
F )= 2log L — K2 {“/4k ~- p'tlu — (1/6 k) [t /12 + 1/K°
(1 + 1K/2)

| — tK/2
+ 1/K? -
/K log (15 rm)]} '
Now that f (s) has been found, from (3.3) and (3.5) we have

D(s;0) = (p'afu — at®/4k + a33k) (K = 0, — 12 <o < 12)
= =P (1 = aK)2uK + [o3 (4 — 3aK)/12
+ 12 (1 = aK)*/8K]/k (1 - oK)

(3
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1 1
T 2(1 - aK)]‘o I — K2 ["' Pt — t/6 kK® + 17 1372k
BT F :K/i)

1 | — tK/2

Thus from (3.4), (2. 8) and (3.5) we get the upper bound on 0. Note that the
bound is valid for the domain doubly connected.

4. Calculation of lower bound

Annular section : Take u = (a? — t*/4) which satisfies the boundary condition. Now
we see that

fudS=—1316, [ [Vu/[*dS= t31/3,}
S S

[ wfkdS = 15130 k 4.1)

From (2.11) and (4.1) it follows that
Q= — (p'/12) (¢*l(1 + £*/10 k).
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