J. Indian Inst. Sci., 64 (B), May, 1983, Pp. 115-119 O Indian Institute of Science, Printed in India.

Short Communication

Transport properties of argon and krypton according to L-J (12-6) potential in the temperature range 90-270 K

P. C. JAIN National Physical Laboratory, New Delhi 110012.

Received on October 13, 1982.

Abstract

·- .

New values of the potential parameters of the Lennard-Jones (12-6) model derived for argon and krypton in the temperature range 400-2500 K are found useful in describing the transport properties in the low temperature range 90-270 K as well. The agreement of the predicted values with the sophisticated potentials as well as with the recent experimental data is found to be very good.

Key words : Transport coefficients, Lennard-Jones potential, argon, krypton, low temperatures.

Lennard-Jones (12-6) potential with modified parameters has been found^{1,2} to be capable of reproducing the transport properties of rare gases with accuracies comparable to those of the sophisticated potentials in the temperature range 400-2500 K. Recently, Shashkov *et al*³ have reported new experimental data on thermal conductivity of argon and krypton in the temperature range 90-270 K. It is, therefore, appropriate to examine the suitability of the L-J (12-6) potential for predicting the transport properties of argon and krypton in the temperature range 90-270 K.

The modified potential parameters suggested for argon¹ are :

 $\epsilon/k = 135$ K, $\sigma = 3.345$ Å and those for krypton² are : $\epsilon/k = 193$ K, $\sigma = 3.566$ Å.

115

P. C. JAIN

116

The transport properties of argon and krypton calculated on the basis of the modified parameter values in conjunction with the kinetic theory expressions and given in Tables I and II respectively in the temperature range 90-270 K. The collision integrals and the higher approximation correction factors suggested by Klein and Smith⁵ were used for the calculations.

Table I

Temperature K	Thermal conductivity mWm ⁻¹ K ⁻¹	Viscosity µg/cm. s	Self-diffusion coefficient cm ² /s	
90	5.66	72.5	0.0179	
100	6.31	80.8	0.0221	
120	7.62	97.5	0.0320	
140	8.90	114.0	0.0428	
150	9.55	122.3	0.0498	
160	10.18	130.3	0.0566	
180	11.40	146.0	0.0712	
200	12.60	161.3	0.0873	
220	13.76	176.1	0.1046	
240	14-88	190.4	0.1232	
250	15.42	197.4	0.1330	
260	15.96	204.3	0.1431	
270	16.49	211.1	0.1535	

Predicted values of transport properties of argon based on L-J (12-6) potential

Table II

Predicted	values	of	transport	properties (of	krypton	based	on	L-J	(12-6)	potential	
-----------	--------	----	-----------	--------------	----	---------	-------	----	-----	--------	-----------	--

Temperature K	Thermal conductivity mWm ⁻¹ K ⁻¹	Viscosity µg/cm. s	Self-diffusion coefficient cm ² /s	
90	2.83	76.1	0.0090	
100	3.13	84.2	0.0111	
120	3.77	101.2	0.0161	
140	4.41	118.5	0.0220	
150	4.74	127.3	0.0253	
160	5.07	136.2	0.0288	
180	5.72	153-5	0.0366	
200	6.46	173.6	0.0451	
220	7.11	191.0	0.0544	
240	7.74	208.0	0.0645	
250	8.06	216.5	0.0640	
260	8.36	274.7	0.0354	
270	8-68	233.0	0.0812	

These calculated transport coefficients have been compared with the values based on the sophisticated potentials ESBFW for argon^6 and BDVKS for krypton⁷ in fig. 1 (thermal conductivity), fig. 2 (viscosity) and fig. 3 (self-diffusion coefficients). ESBFW and BDVKS potentials have been found by Nain *et al*⁸ to be the best models for describing the transport properties of argon and krypton respectively. The agreement in the case of thermal conductivity of argon is very good (curve 1, fig. 1), the average absolute and maximum deviations being 1.5 and 2.0 per cent respectively, whereas in the case of krypton (curve 2, fig. 1) the agreement below 150 K is not at all good. The average absolute and maximum deviations in the case of viscosity of argon (curve 1, fig. 2) are 1.6 and 2.0 per cent respectively, but like thermal conductivity the agreement for viscosity of krypton (curve 2, fig. 2) is not satisfactory below 150 K. Similarly, the agreement for self-diffusion coefficient of argon (curve 1, fig. 3) is excellent (the average absolute and maximum deviations are 0.9 and 1.3 per cent respectively), but for krypton the same trend is observed as in thermal conductivity and viscosity.

A comparison of the thermal conductivity values calculated on the basis of L-J (12-6) potential with the experimental data of Shashkov et al³, shown in fig. 1, reveals that

Fig. 1. Comparison of the thermal conductivity based on the predictions of L-J (12-6) potential with the predictions of sophisticated potentials and experimental data.

Curve 1 : Ar (ESBFW potential, Aziz⁶) Curve 2 : Kr (BDVKS potential, Buck et al⁷) (Common for figs. 2 and 3 too) Curve 3 : data on Ar (Shashkov et al²) Curve 4 : data on Kr (Shashkov et al³) FIG. 2. Comparison of viscosity based on the predictions of L-J (12-6) potential with the predictions of sophisticated potentials and recommended data. Curve 3: data on Ar (Maitland and Smith⁹) Curve 4: data on Kr (Maitland and Smith⁹)

FIG. 3. Comparison of self-diffusion coefficient based on L-J (12-6) potential and the sophistics:

the agreement is very good for argon (curve 3) above 120 K, but for krypton (curve) it is good above 200 K only. A similar inference can be drawn if the viscous values calculated on the basis of L-J (12-6) potential are compared with the values recommended by Maitland and Smith⁹, curves 3 and 4 of fig. 2 representing argue and krypton respectively.

The new parameters of L-J (12-6) potential were earlier found satisfactory in the temperature range 400-2500 K for argon¹ and in the range 400-2000 K for kryptor. Thus, the simple L-J (12-6) potential with the modified parameters is capable d reproducing the transport properties in both the low- and high-temperature range-90-2500 K for argon and 150-2000 K for krypton—with the accuracies comparable to those of the sophisticated potentials.

This study also affirms that the measurements on thermal conductivity taken on \mathbb{W} different apparatuses in different temperature ranges are reliable in the temperature range 120-2500 K for argon and in the range 200-2000 K for krypton and are competible with the viscosity values as the latter were used to derive the distance parameter σ^{1} ;

Acknowledgement

The author is grateful to the Director, National Physical Laboratory, New Delbi, fill permission to publish this paper.

References

1.	JAIN, P. C.	Indian J. Pure Appl. Phys., 1978, 16, 1058.
2.	JAIN, P. C.	Indian J. Pure Appl. Phys., 1980, 18, 459.

TRANSPORT PROPERTIES OF ARGON AND KRYPTON

3.	SHASHKOV, A. C., Abramenko, T. N., Nesterov, N. A., Joshi, R. K., Afshar, R. and Saxena, S. C.	Chem. Phys., 1978, 29, 373.
4.	HIRSCHFELDER, J. O., CURTISS, C. F. AND BIRD, R. B.	Molecular theory of gases and liquids, Wiley, New York, 1967, 534-540.
5.	KLEIN, M. AND Smith, F. J.	J. Res., NBS, 1968, 72A, 359.
6.	Aziz, R. A.	Chem. Phys. Lett., 1974, 28, 47.
7.	BUCK, U., DONDI, M. G., VALBUSA, U., KLEIN, M. L. AND SCOLES, G.	Phys. Rev., 1973, 8A, 2409.
8.	NAIN, V. P. S., Aziz, R. A., Jain, P. C. and Saxena, S. C.	J. Chem. Phys., 1976, 65, 3242.
9.	Maitland, G. C. and Şmith, E. B.	J. Chem. Engng. Data, 1972, 17, 150.