J. Indian Inst. Sci., 64 (B), May 1983, Pp. 137-142 O Indian Institute of Science, Printed in India.

Short Communication

Tridentate schiff base complexes of some bivalent metal ions

PRAVEEN MATHUR AND R. K. MEHTA Department of Chemistry, University of Jodhpur, Jodhpur 342 001.

Received on August 21, 1982.

Abstract

2(N-3, 5-dichloro-a-pyridoneimino) ethane sulphonic acid Schiff base (H,PE) chelates with Cu(II), N(II), CO(II), Zn(II), Cd(II), VO^{+2} , and UO_2^{+2} , have been investigated both in solution and solid phase by physico-chemical methods and their stereochemistry established. The stabilities of the chelate, determined by Calvin-Bjerrum pH-titration technique, follow Irving-William's order. The pyridine and picoline adducts have also been synthesised and studied.

key words: Bivalent chelates of 2-(N-3, 5-dichloro-a-pyridoneimino) ethane sulphonic acid, H₂PE.

1. Introduction

Pyridones have shown a strong complex forming tendency¹, and it is very intense with the Schiff bases derived from pyridones. A perusal of the literature²⁻⁴ reveals that much work has not been done on the chelates of Cu(II), Ni(II), Co(II), Zn(II), Cd(II), UO_{2}^{+2} and VO^{+2} with 2-(N-3, 5-dichloropyridone imino) ethane sulphonic acid (H₂ PE); hence the same was undertaken and the findings received are reported in the present communication.

2. Experimental

HPE was synthesised from 3, 5-dichloro-a-pyridone and 2-amino ethane sulphonic and by the synthesised from 3, 5-dichloro-a-pyridone and 2-amino ethane sulphonic. acid by the general procedure reported earlier⁵. It gave satisfactory elemental analysis. 137

M.P. 159°C. The metal nitrates and the reagents used were AnalaR pure (BDH) The solid chelates and their pyridine and picoline adducts were synthesised as report earlier⁶. A digital pH-meter of type DPH-77 (Unitec) was used and other instrument used were the same as reported earlier⁷. Potentiometric titrations were carried on according to Calvin-Bjerrum's method ^{8,9} at 25°, 35° and 45° C (at $\mu = 0.01$ M, 0.65 M and 0° 1 M NaClO₄). The following mixtures were prepared (total volume 40° 0m for stability determinations : (i) 10° 0 ml. 0° 01 M H₂ PE + 4° 0 ml. 1° 0 M NaClO₄ 26° 0 ml. water, (ii) 10° 0 ml 0° 01 M H₂PE+4° 0 ml. 1° 0 M NaClO₄ + 10° 0 ml 0° 01 M metal ion solution + 16° 0 ml water, (iii) 20° 0 ml 0° 01 M H₂ PE + 4° 0 ml. 1° 00 ml 0° 01 M NaClO₄ + 10° 0 ml. 0° 01 M metal ion solution + 6° 0 ml. water.

These mixtures were titrated against carbonate-free 0.1 M NaOH in an inert atmosphere and the titration curves had the usual shapes.

3. Results and discussion

The pK₁ and pK₂ values of H₂PE were found (6.28 and 10.84 at 25°C, 5.52 at 10.20 at 35°C and 4.89 and 9.63 at 45°C) at $\mu = 0.01$ M; (6.05 and 10.9 at 25°C, 5.32 and 9.92 at 35°C and 4.69 and 9.20 at 45°C) at $\mu = 0.05$ M at (5.61 and 10.20 at 25°C, 4.96 and 9.52 at 35°C and 4.42 and 8.75 at 45°C) at $\mu = 0.1$ M, respectively. Thus the pK values fall with the rise in temperature at increase in ionic strength. These values suggest that H₂ PE is a biprotic ligand. It metal-ligand stability constants were read from the formation curves drawn by ploting $\bar{n} v/s - \log[A^-]$. The refinement was done by various computational methods¹⁰ and as, correction terms, convergence formula, successive approximation and interpotion at various \bar{n} values and their average values (log β_2) are summarised in Table I. The log β_2 values of the metal chelates are in the order VO⁺²> U0; > Cu(II) > Ni(II) > Co(II) > Zn(II) > Cd(II), which agrees with the Initi-William rule¹¹.

The thermodynamic stability constants (log K°) (Table I) is obtained by extrapoltion of measured formation constants to zero ionic strength. The vaules of overall changes in free energy ($\triangle G^\circ$), enthalpy ($\triangle H^\circ$) and entropy ($\triangle S^\circ$) have been evaluated (Table I). The negative values of $\triangle G^\circ$, $\triangle H^\circ$ and $\triangle S^\circ$ of the metal chelates suggest spontaneity of the chelation reaction.

. . .

In terms of Harned's relation^{12,13} the values of θ (the temperature at which p^{K^2} is minimum) and pK_m^H (pK^H at t° = 0°C) for the ligand, are found to be 1308 and $-66^{\circ}.64$ at $\mu = 0.01$ M, 1285 and $-62^{\circ}.96$ at $\mu = 0.05$ M and 1255 and $-58^{\circ}.35^{\circ}$ M = 0.1M, respectively. The values of \triangle H obtained by Harned's equation and Gibbs-Helmholtz equation are also found similar.

Metal ions		Average stability constants at $\mu = 0.1 M \text{ NaClO}_4$		Log K°			$(- \triangle G^{\circ})$ K. Joules mole ⁻¹			$(-\Delta H^{\circ})$ K. Joules mole ⁻¹	$(- \triangle S^{\circ})$ Joules mole ⁻¹	
		25°C 35°C 45°		45°C	25°C	35°C	45°C	25°C	35°C	45°C	at 35° C	at 35° C
VO ⁺²	log K ₁	8.62	8·02	7.29	17.01	15.98	14.08	97.06	94·24	85·73	265.83	557-11
	log K ₂	6.43	6.06	5.27								
	$\log \beta_*$	15.35	14.08	12.56						1		
JO ₂ ^{4.2}	lok Kı	8.14	7.36	6.55	16·26	14.54	12.82	92·78	85.75	78·06	312.09	734.87
	log K ₂	6.17	5.42	4.61								
	log β_1	14.31	12.78	11.16								
CU (II)	log K ₁	7.43	6.62	5.82	14·34	12.98	11.66	81.83	76·55	70 [.] 99	243.15	540-91
	log K ₂	5.55	4.82	4.03								
	$\log \beta_3$	12.98	11.44	9.85								
Ni ([[]	log K1	6.79	5.98	5.09	12.86	12.12	10 [.] 16	73.38	71.48	61 . 86	244.96	563.25
•	log K ₂	4.91	4.22	3.44	interest. The costs							
	$\log \beta_2$	11.70	10.20	8·53								
Co ([[)	log K ₁	6.12	5.37	4.43	12.12	11.08	8.98	69·16	65·34	54.68	284 88	712.79
	log K ₂	4.45	3.75	2.92								
	$\log \beta_2$	10.59	9.12	7.35								
Zn (f1)	log K ₁	5.45	4.71	3.91	6.96	6.14	5.24	39 [.] 71	36-21	31.91	156.05	389.09
Cd (II)	log K1	4.82	4.11	3-34	6.14	5.62	4.76	35.04	33.14	28·98	125-20	298 .89

Average stability constants and thermodynamic parameters of bivalent metal chelates of 2-(N-3,5-dichloro-a-pyridone imino) ethane sulphonic acid at 25°, 35° and 45° C

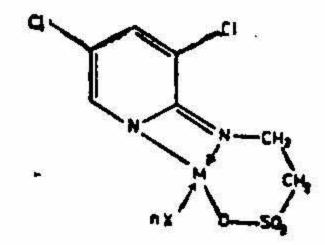
139

COMPLEXES OF BIVALENT METAL IONS

3.1. Solid chelates

The results of microanalysis (elemental analysis and molecular weight), magnetic moment, electronic absorption spectra of the solid chelates and their pyridine and pine line adducts are given in Table II.

Based on microanalysis, the metal chelates and their adducts display 1:1 (metal ligand) stoichiometry and possess the composition $[M(PE)X_*]$ where M = bivalent metal ion, $PE = C_7H_6Cl_2N_2SO_3$, the deprotonated form of $H_2PE(C_7H_8Cl_2N_2SO_3)$ and X may be H_2O , C_5H_5N or C_6H_7N . Pyrolysis (T.G.A.) of the hydrated chelates show a weight loss compared to three molecules (n = 3) when M = Mn(II), Fe(II), Co(II), Ni(II) or Cu(II), two molecules of water (n = 2) when $M = VO^{+2}$, and one water molecule (n = 1) when M = Zn(II), Cd(II) or UO_2^{+2} .


The magnetic moments (Table II) indicate the presence of 5, 4, 3, 2, 1 and 1 unpaired electrons in Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and VO⁺² chelates and their address respectively. The remaining chelates were found diamagnetic as expected. From the magnetic moment data it is apparent that there is no metal-metal bonding in these chelates and therefore spin-exchange does not take place and they exist as monome.

The molar conductance values (3.4-6.8 ohm⁻¹ cm² mole⁻¹) of all these chelates in dioxane and D.M.F. suggest them to be non-electrolytes.

3.2. Infrared spectra

140

The I.R. spectra of H₂ PE was found to consist of three bands at 3210, 1650 and 11% cm⁻¹ assignable to $v_{N=H}$ $v_{c=N}$ and v_{so_2H} , respectively. In the spectra of metal chelate the bands at 3210 and 1190 cm⁻¹ were found absent indicating their elimination due to chelation. The metal chelates showed three bands in the ranges of 1630-1610, 500-400 and 400-370 cm⁻¹ attributed to the presence of $v_{c=N}$ $\gamma_{M=N}$ stretching and $v_{M=0}$ stretching

where X may be H₂O, C₆H₇N or C₅H₅N when n = 1 M(1) Zn, Cd, or UO₂ n = 2 M(1) VO n = 3 M(1) Mn, Fe, Co, Ni, or Cu Fig. 1. Bivalent metal chelates of 2-(N-35-dichloro-a-pyridoneimino) ethane sulphonic acid (H³^{FE)}.

pyridine and picoline adducts Hydrated chelates			Pyridinc	adducts				Picoline adducts		Assignments		
Composition	Mol. wt. found (calc.)	μ.,,, (B.M.) at 308° K	Absorp- tion (cm- ¹)	Composition	Mol. wt. found (calc.)	μ.,, (B.M.) at 308° K	tion- (cm ⁻¹)			μ.,, (B.M.) at 308° K	Absor- ption (cm ⁻¹)	
$Mn(PE)(H_2O)_3]$	367 (378)	5.91	23700 28800 34900	[Mn (PE) (Py) ₃]	553 (561)	5.99	23000 28300 34000	[Mn (PE) (pic)3]	594 (603)	6·10	2 3800 29200 35100	${}^{6}A_{1g} \rightarrow {}^{4}E_{g}(G)$ ${}^{6}A_{1g} \rightarrow {}^{4}E_{g}(D)$ ${}^{6}A_{g} \rightarrow {}^{4}A_{2g}(F)$
$e(PE)(H_2O)_3]$	362 (379)	5.36	10900	[Fe (PE) (py) ₃]	555 (562)	5.43	10250	[Fe(PE)(pic) ₃]	598 (604)	5. 28	11100	${}^{5}T_{2g} \rightarrow {}^{5}E_{g}(D)$
CO (PE) (H ₂ O) ₃]	372 (382)	4 99	8450 17400 20800	[Co(PE)(py) ₃]	551 (565)	5.12	9100 16900 20100	[Co (PE) (pic) ₃]	599 (607)	5·18	8600 18100 21050	${}^{4}T_{g}(F) \rightarrow {}^{4}T_{2g}(F)$ ${}^{4}T_{g}(F) \rightarrow {}^{4}A_{2g}(F)$ ${}^{4}T_{1g}(F) \rightarrow {}^{4}T_{1g}(P)$
Ni (PE) H ₂ O) ₃]	371 (382)	3.28	9900 15100 26200	[Ni(PE)(py) ₃]	550 (565)	3.32	9500 14410 25600		596 (607)	3.21	9950 15200 26300	${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}(F)$ ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)$ ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$
Cu (PE) (H ₂ O) ₃]	372 (387)	2.03	12650	[Cu (PE) (py) ₃]	553 (570)	2.09	12000	[Cu(PR)(pic) ₃]	601 (612)	2.12	12700	${}^{2}E_{g} \rightarrow {}^{2}T_{2g}$
$Zn(PE)(H_2O)$]	341 (352)	dia.		[Zn (PE) (py)]	399 (413)	dia.		[Zn (PE) (pic)]	415 (427)	dia.		
Cd (PE) (H_2O)]	381 (399)	dia.		[Cd(PE)(py)]	451 (460)	dia.		[Cd(PE)(pic)]	405 (474)	dia.		
UO2 (PE) (H2O)]	550 (557)	dia.		[UO ₂ (PE) (py)	609 (618)	dia.		[UO ₂ (PE) (pic)	624 (632)	dia.		
$[VO (PE) (H_2O)_2]$	365 (372)	1.79	11950	[VO (PE) (1 y)2]	483 (494)	1.90	11450	[VO (PE) (pic)2	515 (522)	1 · 99	12300	${}^{2}B_{2} \rightarrow {}^{2}E_{1}$
			20500				19050		/		20950	$^{2}B_{3} \rightarrow ^{2}B_{1}$

Table 11 Molecular weight*, magnetic moment, electronic spectral data and possible transitions of the bivalent chelates of H₂PE and its

* All the complexes gave satisfactory C, N, S and metal analysis. py = pyridine and pic. = picoline,

.....

frequencies, respectively. The presence of a broad band at 3350 cm⁻¹ due to indicate the presence of coordinated water molecules in all the metal chelater. It loss of water molecules in the temperature range of 180-290° C suggest them to present as coordinated and not lattice held.

Thus based on the above data, an octahedral geometry may be suggested for Mn(II), Fe(II), Co(II), Ni(II), UO_2^{+2} and VO^{+2} chelates and their adducts. In and Cd(II) chelates may possess tetrahedral stereochemistry, as expected. The Coll chelates and its adducts may exhibit a distorted octahedral configuration in terms Jahn-Teller effect ¹⁴. These structures may be represented as shown in fig. 1.

References

1.	HOUK, C. C. AND ENERSON, K.	J. Inorg. Nucl. Chem., 1968, 30(6), 1493
2.	HODGSON, D. J.	Prog. Inorg. Chem., 1975, 19, 173.
3.	SYAMAL, A.	Coord. Rev., 1975, 16, 309.
4.	HOLM, R. H., EVERETTE (JR) G. W. AND CHAKRAVORTY, A.	Prog. Inorg. Chem., 1966, 7, 83.
5.	MATHUR, R. P., SHARMA, K. G. AND MEHTA R K	J. Chinese Chem. Soc., 1981, 28, 173.

142

- 6. MEHTA, R. K., RAO, S. P. Indian J. Chem., 1976, 7, 933. AND KAPOOR, R. C. 7. SEHGAL, D. C., Indian J. Chem., 1978, 16 (A), 910. GUPTA, C. P. AND MEHTA, R. K. 8. CALVIN, M. AND J. Am. Chem. Soc., 1945, 67, 2003. WILSON, K. W. Metal amine formation in aqueous solution, P. Haast & Sta 9. BJERRUM, J. Copenhagen, 1941, 298. 10. IRVING, H. AND J. Chem. Soc., 1953, 3397. Rossotti, H. S. 11. IRVING, H. AND J. Chem. Soc., 1953, 3192. WILLIAM, R. J. P. 12. HARNED, H. S. AND J. Am. Chem. Soc., 1934, 56, 1050. EMBREE, N. D. 13. HARNED, H. S. AND J. Am. Chem. Soc., 1933, 55, 652. EHLERA, R. W. 14. JAHN, H. A. AND Proc. R. Soc. London, 1937, 161, 220. TELLER, E.