Two results on table matrix $L_{\text {-systems }}$

NALINAKSHI NIRMAL
Department of Mathematics, Madras Christian Colloge. Madras 600059 , India.
AND
KAMALA KRITHIVASAN
Computor Contre, Indian Instituto of Technology, Madras 600036 , India.

Abstract

Array control on the ruios of the tablos of Part TMLS are defired as controlled associated derivation. Two main results are proved.

Key words: Partial table matrix L-systems, corlrolled associated derivation, context-free matrix languagos.

1. Introdaction

L-systems have stimulated a substantial amount of research much of which can be found in literature ${ }^{1,8}$. In the recent past, several attempts were made by many investigators to incorporate the developmental type of generation used in L-systems to higher dimensions ${ }^{\mathbf{2}, 4,5}$. Motivated by the idea of generating array languages which expand linearly and where the inner elements also grow apart from the growth along the edges, we define table matrix L-systems ${ }^{4}$. In this madel, in each column (row) of a rectangular amay, the growth or derivation is controlled by tables but in the entire rectangular array, the growth or derivation takes place in such a way that the rectangular format is maintained. The productions are given in the form of row (column) tables. The right side of every rule in a row (column) table has the same number of rows (columns). Every table consists of at least one rule for every element of the alphabet. The axiom is a rectangular array whose elements are elements of the alphabet Σ. The rules from the row (column) tables are applied to the elements of the axiom row by row (column by column). By such application if the derived word is rectangular, then the rules from the row (column) tables can be applied again, othei wise the derivation comes to an end. If the completeness condition is removed then we call the system as partial table matrix L-system.

1.1.ge. \rightarrow

In this paper we define an array control called the controlled associated derivation on the rules of the tables of Part TMLS. The first result that we prove is that the fimly of Part TMLL with det ${ }_{1}$ (Part TMLL) as contrelled associated derivation will be equal to the family of det (Part CTMLL). The authors propose a linguistic model call:d th: ajitract family of matrices for the generation of rectangular array of terminal. ${ }^{6}$, by th: ;ubstitution of regular sets into well-known families of formal languages. This m,dil ganerates interesting class of pictures like token I, T of difterent sizes and propartions.

In this paper, the second result that we prove is that the family of CFML' is a proper subset of the family of CTMLL.

2. Definitions and main results

In this section, we fi-st review some basic definitions including the definitions of table matrix L-systems, Part TMLS and Part CTMLS.

Definition 2.1 : A table matrix L-system with row (column) tables TMLS, (TMLS) is a 3-tuple $G=(\Sigma, \mathscr{P}, \omega)$ where
(i) Σ is a finite non-empty set, the alphabet of G.
(ii) $\mathscr{P}^{\text {is }}$ a finite non-empty set of row (column) tables which we denote as $\mathscr{P}_{r}\left(\mathscr{P}_{\circ}\right)$, i.e., $\mathscr{P}=\left\{P_{1}, P_{\mathbf{2}}, \ldots, P_{f}\right\}$ for some $f \geqslant 1$. Each element of P is a finite subset of $\Sigma \times \Sigma^{* *}$ consisting of rules of the form

$$
\left\{a_{1} \rightarrow a_{1}, a_{2} \rightarrow a_{2}, \ldots, a_{k} \rightarrow a_{k}\right) \text {, where } a_{1}, a_{2}, \ldots, a_{k}
$$

have the same number of rows (columns). $\mathscr{D}^{\text {s }}$ satisfies the following completeness condition

$$
(\forall P)_{P}\left(\forall_{e}\right)_{\Sigma}\left(\exists_{a}\right)_{\Sigma}^{* *}(<a, a>\in P)
$$

(iii) $\omega \in \Sigma^{++}$is the start matrix or axiom of \boldsymbol{G}.

The derivations are defined as follows:

$$
\text { If } \omega=\begin{aligned}
& a_{11} \ldots \ldots \ldots a_{n} \\
& \cdots \ldots \ldots \ldots
\end{aligned} \text { and if } \mathscr{P}=\mathscr{P}_{p}=\left\{P_{1}, P_{2}, \ldots, P_{z}\right\}
$$

$\left(\mathscr{P}=\mathscr{P}_{c}=\left\{P_{1}, P_{2}, \ldots, P_{t}\right\}\right)$, then we apply to ω, the rules from the tables of $\mathscr{P}_{r}\left(\mathscr{P}_{\boldsymbol{s}}\right)$ row by row (column by column), i.e., we choose a $P_{i_{1}}$ in $\mathscr{P}_{r}\left(P_{h_{1}}\right.$ in $\left.\mathscr{P}_{0}\right)$ and apply the rules to the first row (column) of ω. Next we choose a $P_{i_{2}}$ in $\mathscr{D}_{r}\left(P_{i,}\right.$ in $\left.\mathscr{D}_{0}\right)$ and apply the rules to the second row (column). Proceeding in this manner we apply the rules
from a table to a row (column) of ω. By such applications if the resultant array is rectangular then the rules fiom the tables $\mathscr{P}_{p}\left(\mathscr{P}_{e}\right)$ can bs applied again, other wise the derivation comes to an end.

Definition 2.2 : Let $G=(\Sigma, \mathscr{D}, \omega)$ be a TMLS. Let $M_{1}, M_{2} \in \Sigma^{++}$.

where $a_{41} \in \Sigma$ and $a_{41} \in \Sigma^{+1}$. We say that M_{1} directly derives M_{2} in $G\left(M_{1} \underset{G}{\Rightarrow} M_{2}\right)$ if M_{2} is the resultant rectangular array obtained by applying rules in \mathscr{P} to M_{1} row by row (column by column). \Rightarrow * is the reflexive transitive closure of \Rightarrow.

Let $G=(\Sigma, \mathscr{P}, \omega)$ be 3 TMLS. The language generated by G is defined as

$$
L(G)=\left\{x \in \Sigma^{* *} / 0 \omega_{G}^{*} x\right\} .
$$

Let Σ be a finite alphabit and $L \subseteq \Sigma^{* *}$. L is called a table matrix L language (TMLL) if and only if, there exists a TMLS G such that $L=L(G)$.

We denote the TMLS with iow (column) tables by TMLS (TMLS) and the largingre by TMLL, (TMLL_). If the meaning is clear, we omit c or r and just write as TMLS and TMLL.

Definition 2.3: Let $G=(\Sigma, \mathcal{P}, \omega)$ be a TMLS. G is said to be (i) deterministic iff for each P in \mathscr{P} and each a in Σ there is exactly one rule $a \rightarrow a$ in P,
(ii) propagating if for each P in \mathcal{P} we have $P \subset \Sigma \times \Sigma^{++}$.

It is seen that if the completeness condition is not imposed in definition 2.1 , then some interesting clarsers of picture, like Kirsch's triangles will be generated ${ }^{4}$.

Definition 2.4: A partial table matrix L-system row (column) (Part TMLS, (Purt TMLS. $)$ is a 3-tuple $G=(\Sigma, \mathcal{P}, \omega)$ where
(i) Σ is a finite non-empty set, the alphabet of G.
(ii) \mathfrak{P} is a finite non-empty set of row (column) tables which we denote as $\mathscr{P}_{r}\left(\mathscr{P}_{e}\right)$, i.e., $\mathscr{P}=\left\{P_{1}, P_{2}, \ldots, P_{f}\right\}$ for some $f \geqslant 1$, each element P_{1} is a finite subset of $\Sigma \times \Sigma^{* *}$, consisting of rules of the form $\left\{a_{1} \rightarrow a_{1}, a_{2} \rightarrow a_{2}, \ldots, a_{k} \rightarrow a_{k}\right)$, where a_{1}, \ldots, a_{k} have the same number of rows (columns).
(iii) $\omega \in \Sigma \Sigma^{++}$is the start matrix or axiom of G.

The derivations are defined as follows:

	$a_{11} \ldots \ldots a_{11}$	
If $\boldsymbol{\omega} \boldsymbol{\sim}$	and if $\mathscr{S D}=\mathscr{P}_{r}=\left\{P_{1}, P_{2}, \ldots, P_{s}\right\}$
	
	$a_{11} \ldots \ldots a_{16}$.	

$\left(\mathscr{P}=\mathscr{P}_{\&}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}\right)$, then we apply to ω, the rules from the tables of $\mathscr{P}_{r}\left(\mathscr{P}_{\bullet}\right)$ row by row (column by column) i.e., if we choose a P_{4} in $\mathscr{P}_{r}\left(P_{4}\right.$ in $\left.\mathscr{P}_{0}\right)$ which has rules with $a_{11}, a_{12}, \ldots, a_{1},\left(a_{11}, a_{21}, \ldots \ldots, a_{t 1}\right)$ on the left side and apply to the first row (column) of ω. Next we choose a P_{f} in $\mathscr{P}_{p}\left(P_{1}\right.$ in $\left.\mathscr{P}_{s}\right)$ which has rules with a_{21}, a_{22}. $a_{25}\left(a_{18}, a_{83}, \ldots, a_{18}\right)$ on the left side and apply to the second row (second column) of ω.

Proceeding in this way we choose a P_{k} in $\mathscr{P}_{p}\left(P_{z}\right.$ in $\left.\mathscr{D}_{a}\right)$ which has rules with a_{n}, $a_{12}, \ldots \ldots, a_{68}\left(a_{1,}, a_{2}, \ldots \ldots, a_{18}\right)$ on the left side and apply to the t th row (sth column) of ω. Tbe rules are applied in such a manner that a rectangular array results. Rulcs miy again be applied to the resultant rectangular ausay in a similar manncr. If a rectangular array cannot be obtained by applying the rules row by row (column by column) then the derivation comes to an end. $\quad M_{1} \underset{G}{\Rightarrow} M_{2}$, the language generated by a Part TMLS can be defined similar to that of TMLS.

Definition 2.5: Let $G=(\Sigma, \mathscr{D}, \omega)$ be a Part TMLS, G is said to be (i) deterministic of the first kind if there is only ane rule in \mathscr{P} for any $a \in \Sigma$ and denoted by det_{1} (Part TMLS). (ii) deterministic of the second kind if for every P in \mathscr{P} there is atmost one rule $a \rightarrow a$ for any $a \in \Sigma$ and denoted by det $_{2}$ (Part TMLS), (iii) propagating if for each P in \mathscr{P} we have $P \subset \Sigma \times \Sigma^{++}$.

Definition 2.6: The partial coding table matrix L-system row (column) (Part CTMLS, (Part CTMLS)) is a 5 -tuple $G=(V, \mathscr{P}, \omega, \Sigma, h)$ where
(i) (V, \mathcal{P}, ω) is a Part TMLS.
(ii) Σ is a non-empty finite set called the target alphabet.
(iii) h is the partial coding from V into Σ.

Starting from ω, arrays are derived by Part TMLS (V, \mathscr{D}, ω) and then coding h is applied to these arrays, where

a_{41} for which $h\left(a_{4 j}\right)$ is not defined.
Let $G=(V, \mathcal{P}, \omega, \Sigma, h)$ be a Part CTMLS. The language generated by G is defined as

$$
L(G)=\left\{M \in \Sigma^{* *}, \omega \rightarrow M^{\prime}, h\left(M^{\prime}\right)=M\right\}, \quad L \subseteq \Sigma^{* *}
$$

is called a Part C'TMLL if and only if there exists a Part CTMLS G such that $L=$ $L(G)$.

Definition 2.7: Let $G=(V, \mathcal{D}, \omega, \Sigma, h)$ be a Part CTMLS. G is said to be (i) deterministic of the first kind if the Part TMLS (V, \mathcal{P}, ω) is deteiministic of the fist kind, (ii) deterministic of the second kind if the Part $\operatorname{TMLS}(V, \mathcal{P}, \omega)$ is deterministic of the second kind. (iii) propagating if the Part TMLS (V, \mathcal{P}, ω) is. propagating.

Now let us define an associated derivation of a Part TMLS.
Definition 2.8: Let $G=\left(\Sigma, \mathcal{P}_{r}, \omega\right)$ be a Part TMLS, $\mathscr{P}_{r}=\left\{P_{1}, P_{2}, \ldots, P_{\mathrm{z}}\right\}$, each P_{1} consists of a set of rules of the form $a_{i} \rightarrow a_{i}$.

$$
a_{11} \ldots \ldots . a_{3 n} \quad a_{11}: \ldots \ldots . a_{1 n}
$$

If $M_{1}=$

$$
\text { and } M_{1} \underset{G}{\Rightarrow} M_{2}, M_{2}=
$$

$a_{m 1} \ldots . .$.
$a_{m 1} \ldots a_{m n}$
where $\left\{a_{11} \rightarrow a_{n}, \ldots \ldots, a_{4 n} \rightarrow a_{4 n}\right\}$ is a table of $\mathscr{D}_{r}, a_{11} \ldots \ldots, a_{6 n}$ having the same number of rows. We attach a label to each rule in a table, i.e., lab $(a \rightarrow a)=t$, If t_{4} is the label of the production $a_{1} \rightarrow a_{i f}$, then the
array

$$
t_{11} \ldots \ldots \ldots \ldots t_{1}
$$

$=\beta$ is associated with the derivation

$$
t_{m 1} \cdot \cdots .
$$

$M_{\mathbf{I}}^{\underset{G}{\Rightarrow}} M_{\mathbf{2}}$. We call β the array associated with the derivation $M_{\mathbf{G}} \underset{\boldsymbol{G}}{\Rightarrow} M_{\mathbf{2}}$.

If $\omega=M_{0} \Rightarrow M_{1} \Rightarrow M_{2} \Rightarrow \ldots \ldots \Rightarrow M_{n}$ is a derivation in Part TMLS, σ and β_{1} is the array associated with the derivation $M_{i-1} \rightarrow M_{1}$, then we call $\left\{\beta_{1}, \beta_{2}, \ldots \ldots \ldots, \beta_{n}\right\}$ the sequence of arrays associated with the derivation $M_{0} \Rightarrow{ }^{*} M_{n}$ in the Part TMLS, G. We note that the size of the arrays M_{t-1} and β_{i} are the same, $\beta_{1}, \ldots \ldots, \beta_{n}$ are the arrays over the alphabet Σ^{\prime}, which is the set of labels of rules in \mathscr{P}_{r}, i.e., $\Sigma^{\prime}=1 a b\left(\mathscr{P}_{r}\right)$.

Now in any Part TMLS \boldsymbol{G}, instead of allowing all possible derivations, we allow only derivations where the sequence of arrays $\left\{\beta_{1} \ldots \ldots, \beta_{n}\right\}$ associated with the derivation $M_{0} \Rightarrow{ }^{*} M_{n}$, is a sequence of steps in a derivation $\beta_{1} \Rightarrow \beta_{2} \Rightarrow \ldots \ldots \Rightarrow \beta_{n}$ in some system, then we obtain a Part TMLS with controlled associated derivation.

As would be naturally expected, the generative power of Part TMLS increases. If $\beta_{1} \Rightarrow^{*} \beta_{n}$ is a derivation in a system G^{\prime} (G^{\prime} may be a Part TMLS itself) then $L\left(G^{\prime}\right)$ is callad the controlled associated derivgtion language (CADL).

Definition 2.9: If $G=\left(\Sigma, \mathcal{P}_{,}, \omega\right)$ is a Part TMLS and C is the controlled associated derivation language. then

$$
L(G . C)=\left\{M \in \Sigma \underset{\beta_{1}}{\left.\underset{\beta_{2}}{\boldsymbol{\beta}_{2}} \cdots \cdots \underset{\beta_{n}}{\Rightarrow} M_{n}\right\}, ~}\right.
$$

$\beta_{1}, \beta_{2} \ldots \ldots \ldots, \beta_{n}$ in C and $\beta_{1} \Rightarrow \beta_{2} \Rightarrow \ldots \ldots \Rightarrow \beta_{n}$ is a derivetion in the grammar generating C.

Now we :tate the main results without proofs as the proofs can be found in Nirmal.
Theorem 2.1: If G is a Part TMLS, and C is a deterministic Part TMLL, of the first kind, then $L(G, C)$ is a deterministic Pait CTMLL, of the first kind.

Theorem 2.2: Corresponding to every det_{1} (Part CTMLL) L, a Part TMLS G^{\prime} and a det_{1} (Part TMLL) C can be found such that $L=L\left(G^{\prime}, C\right)$.

Definition 2.10: Let \mathcal{L} (Part TMLS, \mathcal{F}) dencte the family of languages of the form $L(G, C)$ where G is a part TMLS and $C \in \mathscr{F}$.

Theorem 2.3 If $\boldsymbol{C}=\mathscr{F} \operatorname{det}_{1}$ (Part TMLL) then,
\mathcal{L} (Pait TMLS, $\boldsymbol{C})=\mathscr{F} \operatorname{det}_{1}$ (Part CTMLL) .
Now let us compare \mathcal{F} Part CTMLL with the family of CFML ${ }^{6}$. CFMG will generate pictures like token I, T of all sizes and propartions. But token I and T of fixed proportions are generated by a Part CTMLS, but not by a CFMG. Hence, we have the second main results.

Theorem 2.4; $\mathscr{F} \mathrm{CFML} \underset{+}{\subset}$ Pait CTMLL

References

1. Rozbnberg, G. and Saloman, A.
2. Herman, G. T. and Rozbnberg, G.
3. Carlyle, J., Greibach, S. A. and Paz, A.
4. Nirnali, N. and Krithivasan, K .
5. Siromoney, R. and Siromonty, \boldsymbol{G}.
6. Siromoney, G., Siromoner, R. and Krtthivesan. K.
7. Nirmal, N

The mathematical theory of L systems, Acadomic Press, 1980.
Developmental systems and languages, North-Holland, 1975.

A two-dimonsional generating system modelling growth by binary cell division, Proc. 15th SWAT Conf., 1974, pp. 1-12.

Table matrix L systoms, Int. J. Comput. Math. (to appear).

Extondod controllod tablo L-arrays, Inf. Control, 1971, 35, 119-132.

Abstract familios of matricos and picture languagos, Comput. Graphics Imaze Processing, 1972. 1, 284-307.

Studies in iwo-dimensional developmental systens and languages, Ph.D. Thesis, University of Madras, 1979.

