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Abstract 

In this paper. we review two of our recenl works dealmg with a quadratic equation for >he drect calcula- 
tion of the electronic density and properties of atoms and inns. Tnc eqoatmn incorporates a first-gradient 
kmetic energy correcimn, Dirac exchange and Wignzr-type correlation contributions. Its results for various 
atomic and lomc syslems are surprisingly good, considering the simplicity at the equarion. The equatmn 
also yields a universal density criterion which umfm and correlates various empirical radii (covalent, mmc, 
Van der Wads and Wlgner-Sem radil) as well as other properties of atoms and ions 
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1. Introduction 

There was this dreamy. old Russian prospector in search of the largest diamond in 
the world. According to his own information and calculation, the diamond was 2 km 
long, 1 km wide and 112 km deep. It was believed to have been formed by the 
impact of a meteorite on a remote and inaccessible Siberian coalfield. The old man 
spent his whole life hunting for the diamond but never found it. He just kept on 
getting slightly larger and larger pebbles of diamond which always beckoned him 
tantalizingly towards the large mythical diamond. He was only interested in the ple- 
asure of seeing this diamond before anybody else did but he died without ever catch- 
ing a glimpse of it. 

For more than two decades, we too have been pursuing a dream-the dream of 
obtaining a single equation for the direct and accurate calculation of elcctron density 
in atoms, molecules and solids, bypassing the many-electron wave function and the 
Schrodinger equation. In this lecture, based on two of our recent we 
describe a simple approach for the direct, approximate calculation of the electronic 

Tcnt of lecture delivered on November 19, 1993, at the Annual Faculty Meetmg of the Jawaharlal Nehru 
Centre for Advanced Sclentlfic Research. 
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describe a simple approach for the direct, approximate calculation of the electronic 
density and properties of atoms and ions in their ground states. Some interesting 
consequences of this approach are also described (for various concepts and formalisms 
associated with the electron density as well as its significance in chemistry, the reader 
may consult Deb et U I - ' ~ ' ) .  

2. The approach 

In order to derive a single equation for the direct calculation of electron density in 
many-electron systems, we proceed according to the following steps: 

(i) Write the electronic energy E[p] as a functional of the three-dimensional electron 
density @) (a functional may be regarded as a function of a function and is 
defined as an integral1"). 

(ii) Minimize E[pJ with respect to all trial densities (variation principle), preserving 
the total numher(hi) of electrons such that 

(iii) This procedure yields the Euler-Lagrange equation for directly determining the 
density p(f), viz., 

where p is a Lagrange multiplier (constant) and is called the chemical potential 
because it is the zero-temperature limit of the chemical potential defined for the 
finite-temperature grand canonical ensemble". 

(iv) The terms in the energy functional E[p] are as follows: 

E[p] = kinetic energy + electron-nuclear attraction energy + interelectronic 
Coulomb repulsion energy f exchange energy + correlation energy (3) 

Of these, the kinetic, exchange and correlation energy functionals for an atom, 
molecule or solid are unknown. This is a very serious problem and might even be 
unsolvable. In addition, there are other problems as we will see later. 

Clearly, we need to use approximate functionals for three unknown functionals. A 
great deal of work has been done in searching for better approximations to the 
kinetic'', exchange1*15 and correlati~n~*'~ functionals. 

2.1. Choosing the kinetic energy functional, T[p] 

We write T[pJ as 

where t[p] is the corresponding (interacting) kinetic energy density. The required 
properties of T[p] and t[p] are: (i) global accuracy, (ii) local accuracy, and (iii) proper 
functional derivatives, STIGp and StlGp. 
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Over the years, there havc becn many proposals for n p l  and ~ [ p ] .  none truly 
satisfactory. In particular, Ihe fact that tjp] -. as r -, 0, for atoms, seems to have 
been ignored. 

As an approximation for atomic systems, we replace q p ]  hy Ts[p], the noninteract- 
ing kinetic-energy functional, such that 

q p ]  = Ts[p] + a positive term. ( 5 )  
We then choose I b [p j  as a combination of the Thomas-I'ermi term and a first- 
gradient correction, viz., (atomic units employed throughout this paper, unless other- 
wise specified) 

The factor 1140 may be traced to the fact that 

where T, the Weizsacker correction is given by 

The term, (?.Vp)/? is a component of the term (-114 V2p) which occurs in the kinetic 
energy density of atomic systems. With this prescription, it is clear that t,[pj, as given 
in eqn (G), goes to infinity as r + 0; it has excellent local a c c ~ r a c y ' ~  over the range 
OGrSm. ?,[PI has high global accuracy and, using Hartree-Fock spherical atomic 
densitiesL7, givcs kinetic energies to within 0.4% error, the error being always nega- 
tiveI6, in view of eqn (5). It also sativfies the correct scaling p~operties18. For numer- 
ical seljkonsistet calculations, the parameter (1140) will be replaced by (1M2). 

2.2. Choosing lhe exchange energy functional E,[pl 

In order to keep the approach as simple as possible, we choose the Dirac exchange 
functional 

Like the kinetic energy functional, a first-gradient correction can be incorporated in 
eqn (lo), but we refrain from doing so for reasons which will be clear below. It may 
be noted that the Dirac cxchange is less in magnitude than the Hartree-Fock 
exchange energy. 

2.3. Chuoslng the correlation energy functional E,[p] 

This is a rather difficult problem. It has not been satisfactorily tackled so far although 
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many forms have been suggested. Here, we adopt Wigner's expression for EJp] which 
has been parametrized by Brual and ~o ths t e in '~ .  

Correlation energy values calculated for atomic systems, by using eqnn, are generally 
overestimated by a few per centi. Therefore, the above E,[p]+E,[p] is likely to be a 
good approximation to the ground-state exchange-correlation energy due to a partial 
cancellation of errors. It may also be noted that both EJp] and EJp] are local func- 
tional~ of the electron density. 

The electron-nuclear attraction energy and the interelectronic coulomb repulsion 
energy functionals can readily be written as 

where Z is the nuclear charge of the atomic system. 

With all the component functionals written above, the total energy functional now 
becomes 

In eqn (14), the second term on the right hand side has the factor (1140) replaced 
by (1132). The former is preferred for HartreeFock densities while the latter is pre- 
ferred for densities calculated self-comistently according to eqn (14); as we will see 
later, such self-consistent densities are not of Hartree-Fock quality. 

Using eqn (14), the Euler-Lagrange equation (2) now becomes a quadratic equation 

A02 + BO+C = 0 (15) 

where 
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U(r) = Electrostatic potential at r 

The quadratic equation (15) is rather surprising and disquieting, because quantum 
mechanical equations are known to be either differential or integral or integro-diffe- 
rential, for calculations on many-electron systems. Indeed, eqn (15) appears to be 
rather naive and one's first impulse might be to discard it. But, before discarding the 
equation, it is necessary to examine it carefully. 

Equation (15) can be solved numerically and point-to-point in a self-consistent man- 
ner' starting with a trial p and a trial k, subject to the normalization constraint. The 
solution yields self-consistent p and k .  Only the positive solution of the quadratic 
equation is taken, i.e., is positive. It may be noted that 0 is an unusual 'orbital' 
in the sense that its cube, not the square, gives the electron density. 

2.4. Tests for internal consistency of the quadratic equation 

Since the wave function is being bypassed in our calculations, we must ensure that 
the calculated p(?) satisfies the following conditions which would ensure that our 
methodology is internally consistent: 

(i) N-representability 

This ensures that our calculated electron density corresponds to an antisymmetric 
wave function. 

(ii) Cusp condition 

where Z is the nuclear charge. This ensures that the density falls off from the nuclear 
site at the correct rate. 

(iii) Asymptotic condition 

p(r) - exp [-2(-2k)ln r], r -t m. 

This is trivially satisfied while conditions (i) and'(ii) are built into our cdculation. 
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(iv) The virial theorem 

Although 2 7  [p] + V[p] = 0, (23) 

where q p ]  is thc interacting kmetic energy and V[p] is the total potential energy, 

In fact, it can be shown' that the correct statement of virial theorem in the present 
context is 

Condition (25) is generally, although not invariably. satisfied in our calculations. 
However, 2?;[p] + V[p] 1s always close to zero in our calculations. 

(v) The chen~ical potential p = (8E18N) should satisfy the following conditions: 

(a) p is negative for a neutral atom A and its cation. 
(b) p is positive for the anion of A .  
(c) IIJ-(A')I ' IIL(A)I. 

(vi) The electrostatic potential U(r) for a mononegative ion (A-)  should satisfy the 
following  condition^'^: 

(a) 7J(r) passes through a minimum at a finite, nail-zero r, say r,. 
(b) r,, satisfies the relations 

and (28) 

where Z is the nuclear charge of the anion. Conditions (v) and (vi) above are satisfied 
in our calculations. It may be uotzd that mononegative ions constitute a challenge 
for any quantum-chemical method because of the diffuseness of the (extra) electron 
cloud. 

2.5. Results and discussion 

Our computer program, based on the above method, operates on an Apollo-3000 
workstation in our laboratory. The program has bcen executed on mainframe comput- 
ers as well. It can be applied to any atom or ion, including undiscovered systems; 
the only necessary inputs are Z and N for a given system. 
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Using the calculated clcctron density, several aver:lgc values (moments) can be 
calculated by usmg thc dcfinit~on 

U) = \P!?)f &. (29) 

where f=r,?, llv, 113 in the present calculations. While (7) and (3)  probe the long- 
range accuracy oi the calculated density, (llr) and (llr") probc its short-range accu- 
racy. It is well-known that (r) is assoc~ated with dipole moment, (2) with diamagnetic 
susceptibility, (Ilr) with potential cnelgy, nuclear magnetic shielding. (I/?) with elec- 
tric ticld, force and so on. 

Since the present method is essentially a Thomas-Fe~mi-Dirac-type method, the 
plot of radial density ( h i p )  against rl" tor any atom or lon shows only one peak, 
indicating the absence of shell structure in these calculations. This is characteristic of 
Thomas-Fermi-Dirac-type methods. Table 1 reports the calculated results on several 
neutral and ionic systems. For other systems and a detailed d~scuss~on we refer to 
Deb and Chattaraj1. However, one can make the following observations from Tahlc 1: 

(a) Comparison with Hartree-Fock ~alculations"~~'  shows satisfactory agreement with 
our results. Since our calculat~ons include correlation energy, in every case our 
total energy has gone below thc IIartree--Fock energy. 

(b) The internal consistency tests mentioned in Section 2.5 can be verified from Table 
I (except the U(r) test). 

(c) The method concentrates more electron density than necessary near the nucleus. 
'lbis is also a feature of Thomas-Fermi-Dirac-type calculatrons. Thus, the larger 
(llv) and (l/?)values in our calculations are generally accompanicd by smallcr (r) 
and (3) values (see Deb and Chattarail for additional explanation). 

(d) It is very difficult to calculate the electron affinity of alkaline earth metal atoms. 
Comparison with relativistic density-functional  calculation^^^ for C a  and Ba shows 
our results to he satisfactory. 

(e) F~gure 1 shows that C u  shows an electrostatic potential minimum at r,,, = 3.648 
au. Thc calculated Z from eqn (27) is 20.02 (the actual value is 20) and U(r,) 
from eqn (28) is -0.2038 compared with the actual value of -0.1995 au. 

For other aspects and features of these calculalions, we refer to Deb and Chat- 
tarajl. 

To  conclude this section, we make the following observations: 

(a) The quadratic equation (15) ia viable, internally consistent and capable of rapidly 
delivering good quality results for atoms and ions: especially for negative ions. 
However, the method is not applicable to H - ion. 

(b) A single 'orbital' is defined for the whole system. This is and not as in 
the usual orbital approach. 

(c) The computational effort is minimal and does not increase significantly with the 
number of electrons in the svstem. 
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Table 1 
Electronic properties (a") of three neutral atnms IS well as their cations and anions in their ground states 

(llr) 596.0 596.2 596 3 81 '14 82 28 82 68 624 9 625 2 625.2 
(59d 597) (594 920) (595 195) (622.884) (623.067) 

(113) 48312 28312 48312 2152 7 2153.0 2454 1 51985 51985 51979 
(38088. (38088. (38088 (40938. (40938. 
971) 800) 736) 032) 232) 

TS=Nonmteractlng k ~ n e t ~ c  energy, V=Potentml energy, P=?btal mergy, ~ = C h e m ~ c a l  potentd ,  IP=-E 
(catlonj-F.(neutral), EA=E (anion)-t(neutra1). Values [17,21,22] In pmntheses are for comparison. All 
recults are taken from Deb and Churraral'. 

(d) Internal details such as atomic shell structure are missing in these calculations, 
but the equation should be satisfactory in cases where such details are not re- 
quired. 

(e) A quadrat~c equation may be envisaged for molecules and solids. If successful, 
this would be revolutionary. 
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PIC. 1 .  Elearurlatlc potenual, eqn (20), for tlrc Cil ion, plotted agamsr r"', m atomic umls The min~murn 
occurs at r'" = 1.91 au (reproduced from Dcb and Chatlaraj' by perrnlaaion ) 

3. h universal density criterion for correlating various empirical radii in molecules, 
solids and solutions 

In structural chemistry, empirical concepts and values of covalent radii(r,,,), ionic 
radii (r,,,), Van der Waals radii(rVd,), Wigner-Seitz radii (r,) for molecules, solids 
arid solutions have proved to be very useiul. These radii are trarisCerable from one 
environn~ent to another within a small range of variations. In this section we d~scuss 
a that in any environment an atom or ion 'looks for' that distance at 
which it acquires a universal density value. In case this proposition is correct, one 
should be able to correlate this distance with any emp~rical radius and perhaps with 
other electronic properties as well. 

Consider again, eqns (15)-(20). Let us choose an r-value, designated as r ~ ,  so that 
C in eqn (19) vanishes at r,. Therefore, from eqn (15). the density p, = p(rD) is 
given by 

which is a universal value. Accordingly, this r, is defined2 as the character~stic, finite, 
non-zero value of r at which an atom or ion acquires the universal density value of 
0.008714. This rD may be used to correlate and unify the various empirical radii. 

Since the quadratic equalion15 itself docs not show shell structure, we have com- 
puted rD for about 100 atomr and ion5 by using their Hartree-Fock densities"~" 
Detailed results and their discussion have been presented in Deb et UP. Here we 
discuss only some of the salient features of our results. 
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FIG 2. Variations m (a) r ,  (au) and (b) r.,,. (A) among verilcal groups of atoms (reproduced from Deb 
ei o? by permissaon). 

Figures 2-5 depict the variations in r ,  corresponding to the variations in r,,,, r,,, 
rvdw and r,,, respectively, among vertical groups of atoms. There are striking 
similarities between the variations in r, and those in the different types of empirical 
radii. Apart from these empirical radii, r~ also correlates linearly with the first ioni- 
zation potential, electronegativity, softness", logarithm of dipole polarizability and of 
London dispersion coefficient(C6), etc. for groups of atoms2. 

However, the horizontal variations in r~ and r,,, are not identical, because r ,  has 
more information content than any type of empirical radius. Figure 6 depicts such 
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Fm 2 .  Vanauonh In (s) r,, (au) ,md (hl r,,,,, 6) .lmong vcrtlcal g r o u p  ol mun0posltir.c .lnd Inmollr i?al lvi .  
~ a n s  (reproduced Irom I h h  rr ii12 by ypeirn~saion). 

varratlotls for thc K-period, Rb-period and the lanthanons. ' h e  variations in r,, 
appear more interesting than those in I;,,,.. Especially intel-esting are the Nessic (the 
legendary Loch Ness Monster)-type variations in rD for the K- and Rb-periods. In 
contrast to thr r,,, variations. the r, vamtions pinpolnt Important chalaclerlst~cs in 
thc electronic configuration. In particular, half-filled and completely filled suhshells 
arc clcarly picked out. Among the lanthanons, the lanthanide contraction is clearly 
discernible in r~ but  not in F~,, , . .  Obviously r,,,,, does not deal-ly show .ruth important 
char-acteristics of the electronic configuration 

The pcrccntage of thc total clectro~iic charge within a sphere of radius r,, is given 
h.. 
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PIG. 4. Vanatmu ~n (a) ro tau) and (b) rvdu (A) among the noble gas atoms (reproduced from Ocb r! 
oi' hy permissmn) 

where q~ = rp (7) ci?. (32) 

For the nearly one hundred atoms and Ions exammed by us, NU exceeds 95% on 
the average and exceeds 98% for a numbcr of systems. 

To conclude this section, we make the following observations: 

(a) The characteristic radius r ~ ,  is a quantity of great interest and contains much 
more information than any of r ,,,, r ,,,, rvdrr, rws. 

(b) Since rD is linearly related to a host of electronic properties of atoms and ions, 
it 1s clear that all these properties are interrelated by a single, master equation. 
The search for such a non-empirical equation should bc rewarding. 

(c) A fundamental question arises concerning the universality of our results: Why 
should r~ and the universal density value of 0.008714, obtained from the ratlo of 
the Dirac exchange constant to the Thomas-Fermi kinetic energy constant, bc of 
such crucial importance? 

(d) Although an answer to this question is not available at present, through r~ we 
have tried to provide a unifying, universal explanation for the existence of various 
empirical atomic and ionic radii. 
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FIG. 5 Plot of r, (a") against r ,  (au) for vertical groups of atoms (reproduced from Deb et nl' by 

permission). 

4. Conclusions 

The formalism and results presented in this paper strongly suggest that it is necessary 
to examine algebraic equations, for the direct calculation of electron density in many- 
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FE 6 Honrontal variarlons in r,, (au) and r.,,, (A) among (a) third row aroma, (b) fourth row atoms, 
and ( c )  lanthsnons (reproduced from Deb er ai' by permssmnj. 

electron systems. Such equations, by virtue of their simplicity, may reveal interesting, 
unifying features which may otherwise remain concealed from us. The extension of 
such algebraic equations to excited states and time-dependent situations should be of 
considerable interest. 
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