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Abstract

In this paper, we review two of our recent works dealing with a quadratic equation for ‘the direct calcula-
tion of the electronic density aud properties of atoms and ions. The equation incorporates a first-gradient
kinetic energy correction, Dirac exchange and Wigner-type correlation contributions. Its results for various
atomic and jonic systems are surprisingly good, considering the simplicity of the equation. The equation
also yields a universal density criterion which unifies and correlates various empirical radii (covalent, jonic,
Van der Waals and Wigner-Seitz radii} as well as other properties of atoms and ioms.
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1. Introduction

There was this dreamy, old Russian prospector in search of the largest diamond in
the world. According to his own information and calculation, the diamond was 2 km
fong, 1 km wide and 1/2 km deep. It was believed to have been formed by the
impact of a meteorite on a remote and inaccessible Siberian coalfield. The old man
spent his whole life hunting for the diamond but never found it. He just kept on
getting slightly larger and larger pebbles of diamond which always beckoned him
tantalizingly towards the large mythical diamond. He was only interested in the ple-
asure of seeing this diamond before anybody else did but he died without ever catch-
ing a glimpse of it.

For more than two decades, we too have been pursuing a dream—the dream of
obtaining a single equation for the direct and accurate calculation of electron density
in atoms, molecules and solids, bypassing the many-electron wave function and the
Schrédinger equation. In this lecture, based on two of our recent papers'?, we
describe a simple approach for the direct, approximate calculation of the electronic

Text of lecture delivered on November 19, 1993, at the Annual Faculty Mecting of the Jawaharlal Nehru
Centre for Advanced Scientific Research.
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describe a simple approach for the direct, approximate calculation of the electronic
density and properties of atoms and ions in their ground states. Some interesting
consequences of this approach are also described (for various concepts and formalisms
associated with the electron density as well as its significance in chemistry, the reader
may consult Deb et al*?).

2. The approach
In order to derive a single equation for the direct calculation of electron density in
many-electron systems, we proceed according to the following steps:

(i} Write the electronic energy E[p] as a functional of the three-dimensional electron
density p(7) (a functional may be regarded as a function of a function and is
defined as an integral').

(ii) Minimize E[p] with respect to all trial densities (variation principle), preserving
the total number(N) of electrons such that

[otrar = v M

(iii) This procedure yields the Euler-Lagrange equation for directly determining the
density p(7), viz.,
3E [p]
= 2
% P @
where p is a Lagrange multiplier (constant) and is called the chemical potential
because it is the zero-temperature limit of the chemical potential defined for the
finite-temperature grand canonical ensemble!.

(iv) The terms in the energy functional E[p] are as follows:

E[p] = kinetic energy + electron—nuclear attraction energy -+ interelectronic
Coulomb repulsion e¢nergy + exchange energy + correlation energy  (3)

Of these, the kinetic, exchange and correlation energy functionals for an atom,
molecule or solid are unknown. This is a very serious problem and might even be
unsolvable. In addition, there are other problems as we will see later.

Clearly, we need to use approximate functionals for three unknown functionals. A
great deal of work has been dome in searching for better approxmanons to the
kinetic'?, exchange'®'® and correlation®"® functionals.

2.1. Choosing the kinetic energy functional, T{p]
We write Tp] as

e} = f H{p)d? @

where fp] is the corresponding (interacting) kinetic energy density. The required
properties of T[p] and #[p] are: (i) global accuracy, (ii} local accuracy, and (jii) proper
functional derivatives, 87/3p and 3¢/8p.
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Over the ycars, there have been many proposals for T{p] and i[p], none truly
satisfactory. In particular, the fact that ffp] — « as r — 0, for atoms, seems to have
been ignored.

As an approximation for atomic systems, we replace 7{p] by Ts[p], the noninteract-
ing kinetic-energy functional, such that

TTp] = Tslp] + a positive term. %)

We then choose TIs{p] as a combination of the Thomas-Termi term and a first-
gradient correction, viz., (atomic units employed throughout this paper, unless other-
wise specified)

m=6f5"-’<?>f—i RO (®)
siP k| P 0 s
C, = (3/10) (3nH)*. @)
The factor 1/40 may be traced to the fact that
1 1 7.V
?T”'>’4_0J = F ®)
where T, the Weizsdcker correction is given by
_ 1 (Vo) Py
T, = 3 J o ¥. 9

The term, (7.Vp)/# is a component of the term (—1/4 V?p) which occurs in the kinetic
energy density of atomic systems. With this prescription, it is clear that [p], as given
in eqn (6), goes to infinity as r — 0; it has excellent local accuracy'® over the range
Osr<sw. Tfp] has high global accuracy and, using Hartree~Fock spherical atomic
densities'’, gives kinetic energies to within 0.4% error, the error being always nega-
tive's, in view of eqn (3). It also satisfies the correct scaling properties'®. For numer-
ical self-consistent calculations, the parameter (1/40) will be replaced by (1/32).

2.2. Choosing the exchange energy functional E,[p]

In order to keep the approach as simple as possible, we choose the Dirac exchange
functional

Elo) = ~C. [ p°0)F; C. = (l4m) (3", (10)

Like the kinetic energy functional, a first-gradient correction can be incorporated in
eqn (10), but we refrain from doing so for reasons which will be clear below. It may
be noted that the Dirac exchange is less in magnitude than the Hartree-Fock
exchange energy.

2.3. Choosing the correlation energy functional E[p]
This is a rather difficult problem. It has not been satisfactorily tackled so far although
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many forms have been suggested. Here, we adopt Wigner's expression for E[p] which
has been parametrized by Brual and Rothstein™.

p()
Elel == J TR0 ) an

Correlation energy values calculated for atomic systems, by using eqn’, are generally
overestimated by a few per cent’. Therefore, the above E[p]+E,[p] is likely to be a
good approximation to the ground-state exchange—correlation energy due to a partial
cancellation of errors, It may also be noted that both E,[p] and E.[p] are local func-
tionals of the electron density.

The electron—-nuclear attraction energy and the interelectronic coulomb repulsion
energy functionals can readily be written as

Vedlp] = — J(Z/Y)P(}))d';; (12)
and
Veult] = ” —"l—(f):Q drd. (3)

where Z is the nuclear charge of the atomic system.

With all the component functionals written above, the total energy functional now
becomes

E[p] = (3/10) (3™ J (P)d? — (1/32)[ ’:P e

J (Z/me(®) & + (112) ” pl(')p( l) aF @

> P(?)
-G Cﬁz)mf pm(')d-;_j 9.810+21.437 p- % (P ar. S

In eqn (14), the second term on the right hand side has the factor (1/40) replaced
by (1/32). The former is preferred for Hartree~Fock densities while the latter is pre-
ferred for densities calculated self-consistently according to eqn (14); as we will see
later, such self-consistent densities are not of Hartree~Fock quality.

Using eqn (14), the Euler-Lagrange equation (2) now becomes a quadratic equation

A8 + Bo+C =0 (15}

where 6= pl'3 (16)
A= =53 C = ~(12) Bm)¥ an

B =43 C, = (Un) (3m)R (18)
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C=p+ UF - (132) 1
9.81 + 28.5835

B8t + 23T a9
U(r) = Electrostatic potential at r
p()
= (Z/H) — J TR dr'. (20)

The quadratic equation (15) is rather surprising and disquieting, because quantum
mechanical equations are known to be either differential or integral or integro-diffe-
rential, for calculations on many-electron systems. Indeed, eqn (15) appears to be
rather naive and one’s first impulse might be to discard it. But, before discarding the
equation, it is necessary to examine it carefully.

Equation (15) can be solved numerically and point-to-point in a self-consistent man-
ner* starting with a trial p and a trial u, subject to the normalization constraint. The
solution yields self-consistent p and . Only the positive solution of the quadratic
equation is taken, i.e., §=p'? is positive. It may be noted that 8 is an unusual ‘orbital’
in the sense that its cube, not the square, gives the electron density.

2.4. Tests for internal consistency of the quadratic equation

Since the wave function is being bypassed in our calculations, we must ensure that
the calculated p(7) satisfies the following conditions which would ensure that our
methodology is internally consistent:

(i) N-representability
Jp(?) 4t = N; p(H=0, V3. @1

This ensures that our calculated electron density corresponds to an antisymmetric
wave function.

(ii) Cusp condition

(5—") — —220(0) @2)
dr r=0

where Z is the nuclear charge. This ensures that the density falls off from the nuclear
site at the correct rate.

(iii) Asymptotic condition

p(r) ~ exp [2(=2w)"" 7], r > e,

This is trivially satisfied while conditions (i) and‘(ii) are built into our calculation.
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(iv) The virial theorem
Although 2T [p] + V[p] = 0, (23)

where T]p] is the interacting kinetic energy and V[p] is the total potential energy,
2T:[p]+VIp]l # 0. (24)

In fact, it can be shown’ that the correct statement of virial theorem in the present
context is

—VIT, > 2. (25)

Condition (25) is generally, although not invariably, satisfied in our calculations.
However, 27[p] -+ V[p] is always close to zero in our calculations.

(v) The chemical potential u = (3E/8N) should satisfy the following conditions:
(a) p is negative for a neutral atom A and its cation.
(b) p is positive for the anion of A.
(©) (AT > [u(4)l- (26)

(vi) The electrostatic potential U(7) for a mononegative ion (A7) should satisfy the
following conditions™:

(a) U(r) passes through a minimum at a finite, non-zero r, say 7,.

(b) r,, satisfies the relations

Z = 47rJlrzp(r) dr (27

and U(ry,) = ~417frp(r) dr (28)

Fu

where Z js the nuclear charge of the anion. Conditions (v) and (vi) above are satisfied
in our calculations. Tt may be noted that mononegative jons constitute a challenge
for any quantum-chemical method because of the diffuseness of the (extra) electron

cloud.

2.5. Results and discussion

Our computer program, based on the above method, operates on an Apollo-3000
workstation in our laboratory. The program has been executed on mainframe comput-
crs as well. It can be applied to any atom or ion, including undiscovered systems;
the only necessary inputs are Z and N for a given system.
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Using the calculated electron density, several average values (moments) can be
calculated by using the definition

¢ = [sr @ @9

where f=r,/%, 1/r, 1/ in the present calculations. While {+} and (" probe the long-
range accuracy of the calculated density, (1/r) and (/7% probe its short-range accu-
racy. It is well-known that (r) is associated with dipole moment, (% with diamagnetic
susceptibility, (1/r) with potential energy, nuclear magnetic shielding, (1//7%) with elec-
tric field, force and so on.

Since the present method is essentially a Thomas-Fermi-Dirac-type method, the
plot of radial density (4nrp) against r for any atom or ion shows only one peak,
indicating the absence of shell structure in these calculations. This is characteristic of
Thomas-Fermi-Dirac-type methods. Table T reports the calculated results on several
neutral and ionic systems. For other systems and a detailed discussion we refer to
Deb and Chattaraj'. However, one can make the following observations from Table I:

a) Comparison with Hartree-Fock caleulations’”? shows satisfactory agreement with
p y ag

our results. Since our calculations include correlation energy, in every case our
total energy has gone below the Hartree-Fock energy.

(b) The internal consistency tests mentioned in Section 2.5 can be verified from Table
1 (except the U(r) test).

(c) The method concentrates more electron density than necessary near the nucleus.
This is also a feature of Thomas-Fermi-Dirac-type calculations. Thus, the larger
(1/r) and (1/r*jvalues in our calculations are generally accompanied by smaller (r}
and () values (see Deb and Chattaraj’ for additional explanation).

(d) It is very difficult to calculate the electron affinity of alkaline earth metal atoms.
Comparison with relativistic density~functional calculations® for Ca and Ba shows
our results to be satisfactory.

(e) Figure 1 shows that Ca™ shows an electrostatic potential minimum at r,, = 3.648
au. The calculated Z from eqn (27) is 20.02 (the actual value is 20) and U(r,,)
from eqn (28) is —0.2038 compared with the actual value of ~0.1995 au.

For other aspects and features of these calculations, we refer to Deb and Chat-
taraj'.
To conclude this section, we make the following observations:

(a) The quadratic equation (15) is viable, internally consistent and capable of rapidly
delivering good quality results for atoms and ions, especially for negative ions.
However, the method is not applicable to A~ ion.

(b) A single ‘orbital’ is defined for the whole system. This is p'
the usual orbital approach.

(c) The computational effort is minimal and does not increase significantly with the
number of electrons in the system.

® and not p*? as in
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Table 1
Electronic properties (aw) of three neutral atoms as well as their cations and anions in their ground states

Electronic  Systems

properiies
Ar” At Ar” Ca* Ca Ca~ Ra* Ra Ra”

Ty 21371.0 213711 21370.0 697.65  G98.19  (99.68 231752 23175.1 23169.9
(21266.  (21266. (21266.  (676.569) (676.756) (23094 (23094.
517) 809) 924) 042) 214)

~V 427602 427605 427593 13856 13863 13877 464235 464237 46418.4
(42533, (42533, (42533, (1353.139) (1353.514) (46188 (46188.
048) 674) 862) 1488y 504)

~-£ 21389.2  21389.4 21389.4 688.0 688.1 688.1 232483 23248.5  23248.3
(21266 (21266.  (21266. (676 (676. (23094 (23094.
531) 865) 958) 570) 758) 146) 290)

~VIT, 2.001 2.001 2.001 1.986 1.986 1983 2.003 2.003 2.003
(2.000)  (2.000y (2000) (2.000)  (2.000) (2.000)  (2.000)

i -051 -0.16  0.12 —0.41 —0.07 010 —0.51 -0.16 0.12

Ji - 0.2 — — 0.1 — — 0.2 —

(0.334) (0.188) (0.144)
EA — 0.0 - — 0.0 — — 0.0 -
(~00927) (=0 0048) (- 00047)

r 50.34 53.74 59.32 14.57 17.88 22.06 51.74 55.14 60.59
(49.624) (53.062) (57.107) (54.015)  (60.221)

A 73.23 85.48 114.3 21.17 32.92 33.58 75.15 87.40 1150
(68.534) (81.565) (99.862) (90 122)  (132.828)

{1ry 596.0 596.2 396.3 8194 8228 82 68 624.9 6252 6252
(594.597) (594 920) (595.195) (622.884) (623.067)

Qe 48312 48312 48312 24527 2453.0 24541 51985 51985 51979
(38088.  (38088. (38088 (40938. (40938,
971) 800) 36) 032) 232)

Ts=Noninteractimg kmetic energy, V=Potential energy, E=Total energy, u=Chemical potential, IP=E
(cation)-E(neutral), EA=E (apion)~E(neutral). Values [17,21,22] in parentheses are for comparison. All
results are taken from Deb and Chattaraj’.

(d) Internal details such as atomic shell structure are missing in these calculations,
but the equation should be satisfactory in cases where such details are not re-
quired.

(e) A quadratic equation may be envisaged for molecules and solids. If successful,
this would be revolutionary.
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Fic. 1. Electrostatic potential, egn (20), for the Ca ' ion, plotted against 7%, m atonue umts. The mintmum
oceurs at 7% = 1.91 au. (reproduced from Deb and Chattaraj’ by permussion.)

3. A universal density criterion for correlating various empirical radii in molecules,
solids and solutions

In structural chemistry, empirical concepts and values of covalent radii(r,,), ionic
radii (r,,), Van der Waals radii(r,,,), Wigner-Seitz radii (r,,) for molecules, solids
and solutions have proved to be very useful. These radii are transferable from one
environment to another within a small range of variations. In this section we discuss
a proposition® that in any environment an atom or ion ‘looks for’ that distance at
which it acquires a universal density value. In case this proposition is correct, one
should be able to correlate this distance with any empirical radius and perhaps with
other electronic properties as well.

Consider again, eqns (15)-(20). Let us choose an r-value, designated as rp, so that

C in eqn (19) vanishes at rp. Therefore, from eqn (15), the density pp = p(rp) is
given by

pp = —(B/AY = (4C/5C)° = 0.008714 (30)

which is a universal value. Accordingly, this rp is defined® as the characteristic, finite,
non-zero value of r at which an atom or jon acquires the upiversal density value of
0.008714. This 7p may be used to correlate and unify the various empirical radii.

Since the guadratic equation“ itself does not show shell structure, we have com-
puted rp for about 100 atoms and ioms by using their Hartree-Fock densities'’**
Detailed results and their discussion have been presented in Deb er af’. Here we
discuss only some of the salient features of our results.
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F1G 2. Variations in (a) #p (au) and (b) 1., (&) among vertical groups of atoms (reproduced from Deb
er aff by permission).

Figures 2-5 depict the variations in rp corresponding to the variations in 7., #om
7oaw and r,, respectively, among vertical groups of atoms. There are striking
similarities between the variations in 5 and those in the different types of empirical
radii. Apart from these empirical radii, r, also correlates linearly with the first ioni-
zation potential, electronegativity, softness', logarithm of dipole polarizability and of
London dispersion coefficient(Cy), etc. for groups of atoms?.

However, the horizontal variations in rp and r., are rot identical, because rj, has
more information content than any type of empirical radius. Figure 6 depicts such
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Fra 3. Vanations in (2) r;, (au) and (b) 7, (A) among vertical groups of monopositive and mononegative
1ons (reproduced from Deb ez af? by permission).

variations for the K-period, Rb-period and the lanthanons. The variations in rp
appear more interesting than those in r.,. Especially interesting are the Nessie (the
legendary Loch Ness Monster)-type variations in 7, for the K- and Rb-periods. In
contrast to the ., variations, the »p variations pinpoint important characteristics in
the electronic configuration. Tn particular, haif-filled and completely filled subshells
arc clearly picked out. Among the lanthanons, the lanthanide contraction is clearly
discernible in rp but not in r,,. Obviously r.,, does not clearly show such important
characteristics of the electronic configuration.

The percentage of the total clectronic charge within a sphere of radius rj, is given
by
Np = — 12 [€29)
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Fi1G6. 4. Vanations mn (a) rp {au) and (b) rup (K) among the noble gas atoms (reproduced from Deb er
al* by permission).

where Gp = Jp (7 d#. (32)
0

For the nearly one hundred atoms and ions examined by us, Np exceeds 95% on
the average and exceeds 98% for a number of systems.

To conclude this section, we make the following observations:

(a) The characteristic radius rp is a quantity of great interest and contains much
more information than any of 7.o, Tions Todws Vs

(b) Since rp is lincarly related to a host of electronic properties of atoms and ions,
it is clear that all these properties are interrelated by a single, master equation.
The search for such a non-empirical equation should be rewarding.

(c) A fundamental question arises concerning the universality of our results: Why
should rp and the universal density value of 0.008714, obtained from the ratic of
the Dirac exchange constant to the Thomas—Fermi kinetic energy constant, be of
such crucial importance?

(d) Although an answer to this question is not available at present, through rp, we
have tried to provide a unifying, universal explanation for the existence of various
empirical atomic and ionic radii.
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Fig. 5 Plot of rp (au) agamst r,, (au) for vertical groups of atoms (reproduced from Deb et af by

permission).

4. Conclusions

The formalism and results presented in this paper strongly suggest that it is necessary
to examine algebraic equations, for the direct calculation of electron density in many-
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Fic 6 Homzontal vanatons i ry {au) and r,, (1&) among (a) third row atoms, (b) fourth row atoms,
and (c) lanthanons (reproduced from Deb er af’ by permission).

electron systems. Such equations, by virtue of their simplicity, may reveal interesting,
unifying features which may otherwise remain concealed from us. The extension of
such algebraic equations to excited states and time-dependent situations should be of
considerable interest.
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