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Abstract

A generalised orthogonality relation containing Bessel functions has been derived to use in solving the
problem of e¢lasticity in an infinite truncated cylindrical wedge when there are non-homogeneous
boundary conditions on the lateral sides and homogeneous conditions on the circular surface such that
there 1s symmetry of displacement components about the middle radius.
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1. Imtroduction

Schiff! derived generalised orthogonality relation while studying the solution of first
fundamental problem of elasticity theory for an infinite hollow cylinder. However,
it was Papkovitch's paper? 3 which actually gave impetuS to Study variant problems
of elasticity by using generalised orthogonality relations. Grinberg?, Prokopov® and
others dealt the same theory in the framework of plané problems of elasticity. * While
Steklov* used Schiff’s method in his work, Filon appraised the work incorrectly in his
widely known paper’. Nariboli® also used the method to solve plate problem of elasti-

city in two dimensions.

Recently, Nuller® 1° extended Schiff's method to obtain several general orthogonality
relations for solving three-dimensional problems of elasticity in fimte cylinders (solid
and hollow) with various forms of boundary conditions. Chiu, Weipstein and
Zorowski!! considered such a problem in an infinite elastic cylinder by using C_ioublﬁ‘
Fourier serieS with modified Bessel function coefficients. Analytical dﬁtel:lmflatlon of
the unknown copstants was an involved process in this cas€ and was not {ndlcatﬂq by
the authors. Recently, Prokopov!? derived some generalised orthogonality relations
In connection with plane problems of clasticity and pointed out further class of problems

which can be solved by them.
25
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In this paper we have derived a generaliSed orthogonality relation using modified Ress
functions with respect to the order in its first section, In the nextsection we have use?
the same relation in determining the¢ rotation components of an infinite truncateq
cylindrical wedge.

2. A generalised orthogonality relation

Let

Cop (kr) = r I, (kr) — :,i %E*%f—::: Iy (kr) (2.1)
be a function of v such that

oy (k1) = 0. (2.2)
Let

Vi W Wi Vo v o e Py wos (2.3)

form a set of infinite number of distinct roots of (2.2).

l;, (kr) is modified Bessel function of order 2v and &, r are real positive constants,
The differential equation satisfied by ¢, (kr) is then

ld d 4 y2
rc-;’; r;; €sy (kr)] = [ka T }'E"] Cap (kr) = 2k sy (kr) (2.4}

Let us copnsider the iptegral

“d[ d
j E’ [r ;.ir €2y, (kr)] lz,’ (kr) dr,
where i, j =1, 2, 3,...
Integration by parts yields
“d[ d
f dr [’2‘; €25, (kf')] Ly (kr) dr
L

d
= [J" lz".l (kr) pre [zr‘(kf) = T Cgy, (kr)g; Izr; (kr):l

a@ d d ’
+ j < [ra; I, (kr)] (o (kP) dr. (2.5)

Using (2.2) and the properties of moditied Bessel function (2.5) becomes

'd P
I‘?; [r dr €2, (k!’)] Igrj (kr) dr
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f A7 d
= | &' !2.,(:«)]( w(kr)dr + a*k I, (ka) I, (ka),
0
Rev > (. (2.6)
By virtue of (2.6), expression (2.4) implies that
a d a
(4v: — 4v}) j Cop; (KP) 1y, (KT) }f + 2k f Loy (kr} 1y, (kr) dr
@ 0
= a%k Iy, (ka) Iy, (ka), Rev > 0. 2.7
Interchanging the subscripts i and j we obtain
(4¥? — 42) f Cay, (KT !,,{(kr){:r + 2k f Loy, (kr) I, (KT) dr
® o
=a*k I,, (ka) I,, (ka}), Rev > 0. (2.8)

Subtracting (2.8) from (2.7) we get

' . d
4("? - vj!) f [(Eri (kf') !:!n (kr} + Ca;; (kr) Iir; (kr)., ; e 0; RE’ V> 0.
o

If v, and v, are two distinct roots of (2.2) then we obtain the desired generalised
- orthogonality relation as

J dr
j [fhi(kr) !hj (kr) + C'.'.rj(kr) Ly, (kr)] r =0, Rev>0. (2.9)

3. The problem

We consider the elastic region to be an infinite truncated cylind.r_ical wedge bonirl}ciec:e:]{
the planes 0 = + a and curvilincar boundary r = & as shown in the ﬁhgll?-
to determine the cylindrical components of rotation @,, @y and &, Wher

2z or
1) 1 du, | (3.1)
20)!'}'5';("“3)";3 »
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; B=+Q
g

Fig. 1. Elastic region.

u, uy, u, being the cylindrical components of displacement vector inside the region

when their surface values are prescribed as
w,=0,onr=a
wg=0,0nr=a
w,=0,onr=a
w,==%fi(r,2),onl0 = +q
w,= % f,(r,z),onfl =  q

wa =f3(r: Z), on ¢ = + a.

(3.2)
(3.3)
(3.4)
(3.5)
(3.6)

3.7

They represent boundary conditions for non-existence of twist on circular face and
symmetric résultant twist in the form of couples in opposite directions on plane wedge-
faces. These form boundary conditions which are Solvable in a closed fcrm. But
the method is applicable for other boundary conditions to give approximate solution
in the form of Fredholm integral equation of second kind which is preferable to double
infinite series Solution which is generally obtained in Such cases (¢f. Chiu, Weinstein



| and Zor owskil). Further, 'by choice of functions £ (r, 2),
' it a physical meaning of twist on the plane side faces includin

|
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i=1,2,3 we can give
g the directions at right

' angles to the faces. Introducing Neuber-Papkovitch potentials the solutions of equili-

prium equation in terms of displacements are given by

d)F :
uu, = — o +4( — o) [p,.Ccos8 + g5ind)
I dF :
uuy = — - o+ 4(1 =6} [- ¢, .5in0 + g,cos0)
OF
uu, =~ . +4( —a)g, (3.8)
wheére
F=rcosl.¢, +rsin@ .o, + 20s + @ (3.9)

and ¢,i =0, 1.2, 3 are harmonic functions in carieSian co-ordinates.

We assume that the displacement components u,, u, are symmetric with respect to
@ = 0 and thercfore uy 1s antisymmetric about that plane. Then the rotation compo-
pents o, , w, afe antisymmetric and o, IS symmetric with réspect to @ = 0. Further
we assume that the displacements and hence the rotation components are periodic with
respect to - with period 2/. Let the prescribed surface values f;(r, z) and f,(r, 2)
of w, and «, respectively be given in the form

Salr, 2) = E‘ g, (r)cos kz, (3.10)

=]

f:(f, zZ) = Ehl(r)sinkzi (3.11)

t Db

where k = i’f" Accordingly, we set the potenti.is ¢,, i =0,1,2,3 as

9o = 3 5 E(v) 1, (kr)cos Wsink,, (3.12)

0, =3 X AW 1, (kr)cos visin kz, (3.13)
n=l »

Yo = f S B(v)I, (kr)sin v0sin kz, (3.14)

?3 =0 (3.15)

Under the rystriciion that Re v > 0,
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Since the loads are periodic in the axial direction and since any one of the above
potentials ¢,.7 = 0, 1, 2. 3 can always be chos¢n aibitrarily, we choose @, as ;::r
in (3.15). Then the displacement components in (3.8) and (3.9) become .

= =]

i, =y sinks > [ =7 £ (a0 s (1) + BO) Iy, ()

d
~E@v) 5 Iy, (kr) + (3 = 49) {a (V) Ipyey (k7) + (V) Iy, (k,-)}] -

(3.16)
St o z sin kz Z [(2» + 40 = &) a (v) Iy, (k)

+Qv= 40+ ) B0) fya (k)4 T E@) I k) [sin2w, @y
2y, = — }5 kcos kz 2 [ {a () fapy (k1) + B(V) Typuy (kP))

+ E(2v) L, (kr)] cos 240, (3.18)

where

a(V=3[A(v-D =B -1D] B =404+ BW).

The rotation components are therefore given by

pow, = (1 - g) -2-'1 k cos kzZ; [a (V) Iy, (kr) — B (W Loy (kr)] sin 200, (3.19)

uog = (1 =0) ' keos kz 5 [a () Ly (kr) + A Lyey (k)] cos 200 (3.20

and

nw, =(l —o) zsmkz Z 7[(21; = 1) a (M Iy (kr) + (20 + 1)

X B(v) Iy, (kr) — r-‘%_ {a(v) Lyey (kr) = B(V) 1,4y (kr)}] sin 2v8.

The last expression for w, after scme simplification becomes

peo, = (1 =) I sinkz £ [= a() + B(0)] y (kr)sin 200, (3.21)

n~l 1 4
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Using the boundary conditions (3.2) and (3.3) in (3.19) and (3.20) respecti
we get for each particular value of k, the equations { ) reéspectively,

a (“’) Iar-l (kﬂ) + B("') IEIH], (ka) = 0,
a (v) Tay-y (KG) — B(v) Iy, (ka) = 0. (3.22)

From (3.22) we get the characteristic equation for the determination of v as

[2,..1 (ka) . Igr-ﬂ (kfl) = 0
or

i L o,
L3 (ka) = pag Livlka) = 0. (3.23)

Comparing (3.23) with (2.2) we soc that the infinite sct 0i roots of (3.23) ale same as
those of (2.2) for which 0 < Re v < 4. Hence, if we choose v=v,, i=12,...,
where v, are thosc roots of (2.2) for which 0 < Rév < } in the summation in (3.19)
and (3.20), the boundary conditions (3.2) and (3.3) will be identically satisfied. Further
by virtue-of (3.22). the unknown constants a (v) and f(v) take the following form:

a(v) = L{V) Iy +; (ka).
B(v} = L(v) 4y, (ka).

So expressions for components of rotation satisfying (3.2) and (3.3) btcome

po, = (1 =) E kcos kz X L () [Ty41 (k@Y Iy (kr) — Iy (ka) I,y (k)]

n=1 ¥y
x n 2v8. (3.24)

Hidg = (! —a) E kcos ko 2 L.(v} AT (ka}]y-l (kl": + Iy (ka} Izr:fl(k”]
Lol !

Yn

X ¢0s 2vl (3.29)
and
% 2
o, = (1 — o) Z 51N kzz L(v) a_: I, (ka) 1y, (kr) sin 2v0, (3.26)

Now using boundary conditions (3.5) and (3.6), the expressions (3.24) and (3.26)

by virtue of (3.10) and (3.11) respectively give

o0
Z kccs kz Z L(v) [y (kaY Ly (kr) = I (ka) Iy, (kr)] S0 2va

pan 1 Y

o0
3.27
. = lig 2 g, (r)cos kz. (3-27)

Lt |
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[+ o)
Z sin kz Z j—; L(v) 1, (ka)I,, (kr)sin 2va

— ﬂ 1 -
= B Z hy (r)sin kz. (3.28)

e |

Equating like harmonics from the two sides of (3.27) we get

k Z L(v) [I:n-l (kl’l) [ar-l (kr) ~ lyyy (ka) I:gm (kf':] sin 2vg

== ; g—‘& & (r).

Iotroducing e,, (kr) defined in (2.1), a little simplification ot the above relation leads to

N\ 2vsin2va
2 Tka o LO) k) ok = - o F g ), (3.29)

Again equating like harmonics from the two sides of (3.28} we get

2y Sin 2vq

Fir 1 (3.30)

L(") ,2' (ka) ,2, (kr) = e———

l —6 r

Now, making use of the general orthogonality relaticn derived in (2.9) we cbtain the
unknown coefficient L (v,) from (3.29) and (3.20) as,

4y :
.’E: L(v,)sn 2y, a I, (ka)

& Ir o1 i ]
= €9, (k1) 1y (kr) f—-—] [-— X Y L, (kr) dr
[of ‘ 1 r (1 _a)kofg,(r_ w; (K7)

32 e
t TT.‘;I e (r) €3, (kr) dr:l- @330
0

";'
'Thus L(.v,) will be obtained from (3.31) after performing the integiations. Henct
the solution of the problem js reduced to a quadrati.re, This value of L(v,) determnines
the values w, only which satisfies the conditiors (3.2) and (3.5). Pioceecing similarly
with other sets and other orthogonality relations we can determine w,, @, satisfying
(3.3) and (3.7), (3.4) and (3.6) respectively. "
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