# On a generalised orthogonality relation and its use in the problem of elasticity of a truncated cylindrical wedge 

BAIDYANATH PATRA<br>Department of Mathematics, Bengal Enginecting College, Howrah 711 103, West Bengal, India.

Received on June 23, 1980; Revised on January 15, 1981.


#### Abstract

A generalised orthogonality relation containing Bessel functions has been derived to use in solving the problem of elasticity in an infinite truncated cylindrical wedge when there are non-homogeneous boundary conditions on the lateral sides and homogeneous conditions on the circular surface such that there is symmetry of displacement components about the middle radius.


Key words: Orthogonality relations, Neuber Papkovitch potentials, harmonics.

## 1. Introduction

Schiff ${ }^{1}$ derived generalised orthogonality relation while studying the solution of first fundamental problem of elasticity theory for an infinite hollow cylinder. However, it was Papkovitch's paper ${ }^{2,3}$ which actually gave impetus to study variant problems of elasticity by using generalised orthogonality relations. Grinberg, Prokopov ${ }^{5}$ and others dealt the same theory in the framework of plane problems of elasticity. While Steklov used Schiff's method in his work, Filon appraised the work incorrectly in his widely known paper ${ }^{7}$. Nariboli ${ }^{8}$ also used the method to solve plate problem of elasticity in two dimensions.

Recently, Nuller9, 10 extended Schiff's method to obtain several general orthogonality relations for solving three-dimensional problems of elasticity in finite cylinders (solid and hollow) with various forms of boundary conditions. Chiu, Weinstein and Zorowski ${ }^{11}$ considered such a problem in an infinite elastic cylinder by using double Fourier series with modified Bessel function coefficients. Analytical determination of the unknown constants was an involved process in this case and was not indicated by the authors. Recently, Prokopov ${ }^{12}$ derived some generalised orthogonality relations in connection with plane problems of elasticity and pointed out further class of problems which can be solved by them.
I.I.Sc.-3

In this paper we have derived a generalised orthogonality relation using modified Besse functions with respect to the order in its first section. In the next section we have used the same relation in determining the rotation components of $a_{n}$ infinite truncated cylindrical wedge.

## 2. A generalised orthogonality relation

Let

$$
\begin{equation*}
c_{2 p}(k r)=r I_{z p}^{\prime}(k r)-4 v^{2}-\frac{I_{2 v}(k a)}{k^{2} a} \frac{I_{2 v}^{\prime}(k a)}{I_{2 p}^{\prime}(k r)} \tag{2.1}
\end{equation*}
$$

be a function of $v$ such that

$$
\begin{equation*}
c_{2 y}(k a)=0 \tag{2.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
v=v_{1}, v_{2}, v_{3}, \ldots, v_{n}, \ldots \tag{2.3}
\end{equation*}
$$

form a set of infinite number of distinct roots of (2.2).
$I_{2 r}(k r)$ is modified Bessel function of order $2 v$ and $k, r$ are real positive constants. The differential equation satisfied by $c_{2 p}(k r)$ is then

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}\left[r \frac{d}{d r} \epsilon_{2 p}(k r)\right]-\left[k^{2}+\frac{4 v^{2}}{r^{2}}\right] c_{2 p}(k r)=2 k I_{2 p}(k r) \tag{2.4}
\end{equation*}
$$

Let us consider the integral

$$
\int_{0}^{\bullet} \frac{d}{d r}\left[r \frac{d}{d r} \epsilon_{2 r_{i}}(k r)\right] I_{2 r_{j}}(k r) d r
$$

where $i, j=1,2,3, \ldots$
Integration by parts yields

$$
\begin{align*}
& \int_{0}^{e} \frac{d}{d r}\left[r \frac{d}{d r} c_{2 \nu_{4}}(k r)\right] I_{2 v,}(k r) d r \\
& =\left[r I_{2 v_{j}}(k r) \frac{d}{d r} c_{2 v_{1}}(k r)-r c_{2 v_{1}}(k r) \frac{d}{d r} I_{2 v_{j}}(k r)\right]_{0}^{a} \\
& +\int_{0}^{0} \frac{d}{d r}\left[r \frac{d}{d r} I_{2 p j}(k r)\right] c_{2 p_{1}}(k r) d r . \tag{2.5}
\end{align*}
$$

Using (2.2) and the properties of moditied Bessel function (2.5) becomes

$$
\int_{0}^{a} \frac{d}{d r}\left[r \frac{d}{d r} \epsilon_{2 r_{i}}(k r)\right] I_{2 y_{j}}(k r) d r
$$

$$
\begin{align*}
= & \int_{0}^{0} \frac{d}{d r}\left[r \frac{d}{d r} I_{2 p_{i}}(k r)\right] c_{v_{i}}(k r) d r+a^{2} k I_{\cdot v_{i}}(k a) I_{2 v_{j}}(k a), \\
& \operatorname{Re} v>0 . \tag{2.6}
\end{align*}
$$

By virtue of (2.6), expression (2.4) implies that

$$
\begin{align*}
& \left(4 v_{i}^{z}-4 v_{j}^{z}\right) \int_{0}^{0} c_{2 v_{i}}(k r) I_{2 v_{j}}(k r) \frac{d r}{r}+2 k \int_{0}^{a} I_{2 p_{i}}(k r) I_{2 v_{j}}(k r) d r \\
& =a^{2} k I_{y v_{i}}(k a) I_{2 v_{j}}(k a), \quad \operatorname{Re} v>0 .
\end{align*}
$$

Interchanging the subscripts $i$ and $j$ we obtain

$$
\begin{align*}
& \left(4 v_{j}^{2}-4 v_{0}^{2}\right) \int_{0}^{0} C_{2 v}(k r) I_{2 v_{i}}(k r)_{r}^{d r}+2 k \int_{0}^{0} I_{2 v_{1}}(k r) I_{2 v_{j}}(k r) d r \\
& =a^{2} k I_{2 v_{1}}(k a) I_{2 v_{j}}(k a), \quad \operatorname{Re} v>0 . \tag{2.8}
\end{align*}
$$

Subtracting (2.8) from (2.7) we get

$$
4\left(v_{i}^{2}-v_{j}^{2}\right) \int_{0}^{0}\left[c_{2 v_{i}}(k r) I_{2 v_{j}}(k r)+c_{2 v_{j}}(k r) I_{2 v_{i}}(k r)^{-} \frac{d r}{r}=0, \quad \operatorname{Re} v>0 .\right.
$$

If $v$, and $v$, are two distinct roots of (2.2) then we obtain the desired generalised orthogonality relation as

$$
\begin{equation*}
\int_{i}^{0}\left[\epsilon_{2 v_{i}}(k r) I_{2 v_{j}}(k r)+\epsilon_{2 v_{j}}(k r) I_{2 v_{i}}(k r)\right] \frac{d r}{r}=0, \quad \operatorname{Re} v>0 . \tag{2.9}
\end{equation*}
$$

## 3. The problem

We consider the elastic region to be an infinite truncated cylindrical wedge bounded by the planes $0= \pm a$ and curvilincar boundary $r=a$ as shown in the figure. We seek to determine the cylindrical components of rotation $\omega_{r}, \omega_{\theta}$ and $\omega_{s}$ where

$$
\begin{align*}
& 2 \omega_{r}=\frac{1}{r} \frac{\partial u_{z}}{\partial \theta}-\frac{\partial u_{\theta}}{\partial z}, \\
& 2 \omega_{\theta}=\frac{\partial u_{r}}{\partial z}-\frac{\partial u_{z}}{\partial r}, \\
& 2 \omega_{\theta}=\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{\theta}\right)-\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}, \tag{3.1}
\end{align*}
$$



Fig. 1. Elastic region.
$u_{r}, u_{\theta}, u_{s}$ being the cylindrical components of displacement vector inside the region when their surface values are prescribed as

$$
\begin{align*}
& \omega_{r}=0, \text { on } r=a  \tag{3.2}\\
& \omega_{\theta}=0, \text { on } r=a  \tag{3.3}\\
& \omega_{z}=0, \text { on } r=a  \tag{3.4}\\
& \omega_{r}= \pm f_{1}(r, z), \text { on } \theta= \pm a  \tag{3.5}\\
& \omega_{t}= \pm f_{2}(r, z), \text { on } \theta= \pm a  \tag{3.6}\\
& \omega_{\theta}=f_{3}(r, z), \text { on } \theta= \pm a . \tag{3.7}
\end{align*}
$$

They represent boundary conditions for non-existence of twist on circular face and symmetric resultant twist in the form of couples in opposite directions on plane wedgefaces. These form boundary conditions which are solvable in a closed fcrm. But the method is applicable for other boundary conditions to give approximate solution in the form of Fredholm integral equation of second kind which is preferable to double infinite series solution which is generally obtained in such cases (cf. Chiu, Weinstein
and Zorowski ${ }^{11}$ ). Further, by choice of functions $f_{1}(r, z), i=1,2,3$ we can give it a physical meaning of twist on the plane side faces including the directions at right angles to the faces. Introducing Neuber-Papkovitch potentials the solutions of equilibrium equation in terms of displacements are given by

$$
\begin{align*}
& 2 \mu u_{r}=-\frac{\partial F}{\partial r}+4(i-\sigma)\left[\varphi_{1} \cdot \cos \theta+\varphi_{2} \sin \theta\right] \\
& 2 \mu u_{\theta}=-\frac{1}{r} \frac{\partial F}{\partial \theta}+4(1-\sigma)\left[-\varphi_{1} \cdot \sin \theta+\varphi_{2} \cos \theta\right] \\
& 2 \mu u_{z}=-\frac{\partial F}{\partial z}+4(1-\sigma) \varphi_{3} \tag{3.8}
\end{align*}
$$

where

$$
\begin{equation*}
F=r \cos \theta \cdot \phi_{1}+r \sin \theta \cdot \varphi_{9}+z \varphi_{9}+\varphi_{n} \tag{3.9}
\end{equation*}
$$

and $\varphi_{1}, i=0,1,2,3$ are harmonic functions in cartesian cc-ordinates.

We assume that the displacement components $u_{r}, u_{s}$ are symmetric with respect to $\theta=0$ and thercfore $u_{\theta}$ is antisymmetric about that plane. Then the rotation components $\omega_{r}, \omega_{n}$ are antisymmetric and $\omega_{\theta}$ is symmetric with respect to $\theta=0$. Further we as sume that the displacements and hence the rotation components are periodic with respect to $=$ with period $2 l$. Let the prescribed surface values $f_{1}(r, z)$ and $f_{2}(r, z)$ of $\omega_{r}$ and $\omega_{s}$ respectively be given in the form

$$
\begin{align*}
& f_{1}(r, z)=\sum_{n=1}^{\infty} g_{k}(r) \cos k z  \tag{3.10}\\
& f_{2}(r, z)=\sum_{n=1}^{\infty} h_{k}(r) \sin k z \tag{3.11}
\end{align*}
$$

where $k=\frac{n \pi}{l}$. Accordingly, we set the potenti.|s $\varphi_{i}, i=0,1,2,3$ as

$$
\begin{align*}
& \varphi_{0}=\sum_{n=1}^{\infty} \sum_{\nu} E(v) I_{n}(k r) \cos v 0 \sin k_{z},  \tag{3.12}\\
& \varphi_{1}=\sum_{n=1}^{\infty} \sum_{\nu} A(v) I_{v}(k r) \cos v 0 \sin k z  \tag{3.13}\\
& \varphi_{2}=\sum_{n=2}^{\infty} \sum_{v} B(v) I_{\nu}(k r) \sin v 0 \sin k z  \tag{3.14}\\
& \varphi_{3}=0 \tag{3.15}
\end{align*}
$$

under the restricion that Re $v>0$.

Since the loads are periodic in the axial direction and since any one of the above fcur potentials $\varphi_{i}, i=0,1,2,3$ can always be chosen albitrarily, we choose $\varphi_{3}$ as zero in (3.15). Then the displacement components in (3.8) and (3.9) become

$$
\begin{aligned}
2 \mu u_{r} & =\sum_{n=1}^{\infty} \sin k z \sum_{\nu}\left[-r \frac{d}{d r}\left\{a(v) I_{2 v-1}(k r)+\beta(v) I_{2 v-1}(k r)\right\}\right. \\
& \left.-E(2 v){ }_{d r}^{d} I_{2 p}(k r)+(3-4 \sigma)\left\{a(v) I_{2 v-1}(k r)+\beta(v) I_{2 v+1}(k r)\right\}\right] \cos 2 v e,
\end{aligned}
$$

$$
\begin{align*}
2 \mu u_{\theta} & =\sum_{n=1}^{\infty} \sin k z \sum_{v}\left[(2 v+4 \sigma-4) a(v) I_{2 v-1}(k r)\right.  \tag{3.16}\\
& \left.+(2 v-4 \sigma+4) \beta(v) I_{2 v+1}(k r)+\frac{2 v}{r} E(2 v) I_{2 v}(k r)\right] \sin 2 v \theta,  \tag{3.17}\\
2 \mu u_{z} & =-\sum_{n=1}^{\infty} k \cos k z \sum_{v}\left[r\left\{a(v) I_{2 v-1}(k r)+\beta(v) I_{2 v+1}(k r)\right\}\right. \\
& \left.+E(2 v) I_{z v}(k r)\right] \cos 2 v \theta, \tag{3.18}
\end{align*}
$$

where

$$
a(v)=\frac{1}{2}[A(v-1)-B(v-1)], \quad \beta(v)=\frac{1}{2}[A(v)+B(v)] .
$$

The rotation components are therefore given by

$$
\begin{align*}
& \mu \omega_{r}=(1-\sigma) \sum_{n=1}^{\infty} k \cos k z \sum_{\nu}\left[a(v) I_{2 v-1}(k r)-\beta(v) I_{2 v+1}(k r)\right] \sin 2 v \theta,  \tag{3.19}\\
& \mu \omega_{\theta}=(1-\sigma) \sum_{N=1}^{\infty} k \cos k z \sum_{\nu}\left[a(v) I_{2 v-1}(k r)+\beta(v) I_{2 v+1}(k r)\right] \cos 2 v \theta \tag{3.20}
\end{align*}
$$

and

$$
\begin{aligned}
\mu \omega_{z} & =(1-\sigma) \sum_{n=2}^{\infty} \sin k z \sum_{r} \frac{1}{r}\left[(2 v-1) \alpha(v) I_{2 v-1}(k r)+(2 v+1)\right. \\
& \left.\times \beta(v) I_{2 v+1}(k r)-r \frac{d}{d r}\left\{a(v) I_{2 v-1}(k r)-\beta(v) I_{2 v+1}(k r)\right\}\right] \sin 2 v \theta .
\end{aligned}
$$

The last expression for $\omega_{\mathrm{z}}$ after scme simplification becomes

$$
\begin{equation*}
\mu \omega_{z}=(1-\sigma) \sum_{n=1}^{\infty} \sin k z \sum_{\nu}[-a(v)+\beta(v)] I_{2 v}(k r) \sin 2 v \rho . \tag{3.21}
\end{equation*}
$$

Using the boundary conditions (3.2) and (3.3) in (3.19) and (3.20) respectively, we get for each particular value of $k$, the equations

$$
\begin{align*}
& a(v) I_{2 p-1}(k a)+\beta(v) I_{2 p+1}(k a)=0, \\
& a(v) I_{2 v-1}(k a)-\beta(v) I_{2 p+1}(k a)=0 . \tag{3.22}
\end{align*}
$$

From (3.22) we get the characteristic equation for the determination of $v$ as

$$
I_{2 v-1}(k a) \cdot I_{2 v+1}(k a)=0
$$

or

$$
\begin{equation*}
I_{i v}^{\prime 2}(k a)-\frac{4 v^{3}}{k^{2} a^{2}} I_{i v}^{2}(k a)=0 . \tag{3.23}
\end{equation*}
$$

Comparing (3.23) with (2.2) we see that the infinite sct o. roots of (3.23) are same as those of (2.2) for which $0<\operatorname{Re} v<\frac{1}{2}$. Hence, if we choose $v=v_{i}, i=1,2, \ldots$, where $v$, are thase roots of (2.2) for which $0<R e v<\frac{1}{2}$ in the summation in (3.19) and ( 3.20 ), the boundary conditions (3.2) and (3.3) will be identically satisfied. Further by virtuc of (3.22), the unkncwn constants $a(v)$ and $\beta(v)$ take the following form:

$$
\begin{aligned}
& a(v)=L(v) I_{2 v+i}(k a) . \\
& \beta\left(v \vdots=L(v) I_{2 v-1}(k a) .\right.
\end{aligned}
$$

So expressions for components of rotation satisfying (3.2) and (3.3) become

$$
\begin{align*}
\mu \omega_{r}= & (1-\sigma) \sum_{n=1}^{\infty} k \cos k=\sum_{\nu_{n}} L(v)\left[I_{2 v+1}(k a) I_{2 v-1}(k r)-I_{2 v-1}(k a) I_{2 v+1}(k r)\right] \\
& \times \sin 2 v \theta . \\
\mu\left(1, \rho_{\theta}\right. & =(1-\sigma) \sum_{n=1}^{\infty} k \operatorname{co}, k z \sum_{\nu_{n}} L(v)\left[I_{2 v+1}(k a) I_{v p-1}(k r)+I_{2 v-1}(k a) I_{2 v+1}(k)\right]  \tag{3.25}\\
& \times \cos 2 v \theta
\end{align*}
$$

and

$$
\begin{equation*}
\mu \omega_{z}=(1-\sigma) \sum_{n=1}^{\infty} \sin k z \sum_{v_{n}} L(v) \frac{2 v}{a k} I_{2 v}(k a) I_{z v}(k r) \sin 2 v \theta . \tag{3.26}
\end{equation*}
$$

Now using boundary conditions (3.5) and (3.6), the expressions (3.24) and (3.26) by virtuc of (3.10) and (3.11) respectively give

$$
\sum_{n=1}^{\infty} k \cos k z \sum_{\nu_{n}} L(v)\left[I_{z v+1}(k a) I_{z y-1}(k r)-I_{2 y-1}(k a) I_{z p+1}(k r)\right] \sin 2 v a
$$

$$
\begin{equation*}
y_{.} .=\frac{\mu}{1-\sigma} \sum_{n=1}^{\infty} g_{k}(r) \cos k z \tag{3.27}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{n=1}^{\infty} \sin k z \sum_{v=n} \frac{2 v}{a k} L(v) I_{2 v}(k a) I_{z v}(k r) \sin 2 v a \\
& =\frac{\mu}{1-\sigma} \sum_{n=1}^{\infty} h_{z}(r) \sin k z \tag{3.28}
\end{align*}
$$

Equating like harmonics from the two sides of (3.27) we get

$$
\begin{aligned}
& k \sum_{v n} L(v)\left[I_{2 \gamma+1}(k a) I_{2 y-1}(k r)-I_{z v-1}(k a) I_{2 v-1}(k r)\right] \sin 2 v_{\alpha} \\
& =1 \frac{\mu}{-\sigma} g_{k}(r) .
\end{aligned}
$$

Introducing $\epsilon_{\nu}(k r)$ defined in (2.1), a little simplification of the above relation leads to

$$
\begin{equation*}
\sum_{\nu_{n}} \frac{2 v \sin 2 v_{a}}{k a r} L(v) I_{2 v}(k a) \epsilon_{2 v}(k r)=-\frac{\mu}{(1-\sigma) k} g_{k}(r) . \tag{3.29}
\end{equation*}
$$

Again equating like harmonics from the two sides of (3.28) we get

$$
\begin{equation*}
\sum_{r=0} \frac{2 \nu \sin 2 v_{a}}{k a r} L(v) I_{2 v}(k a) I_{2 \nu}(k r)=\frac{\mu}{1-\sigma} \frac{r_{k}(r)}{r} \tag{3.30}
\end{equation*}
$$

Now, making use of the general orthogonality relaticn dcrived in (2.9) we cbtain the unknown coefficient $L\left(v_{j}\right)$ from (3.29) and (3.30) as,

$$
\begin{align*}
& \frac{4 v_{j}}{k a} L(v,) \sin 2 v_{j} a I_{z p}(k a) \\
& =\left[\int_{0}^{0} \epsilon_{2 v j}(k r) I_{2 v j}(k r) \frac{d r}{r}\right]^{-1}\left[-\frac{\mu}{(1-\sigma) k} \int_{0}^{a} g_{k}(r) I_{2 v,}(k r) d r\right. \\
& \left.+\frac{\mu}{1-\sigma} \int_{0}^{0} h_{k}(r) \epsilon_{2 v},(k r) \frac{d r}{r}\right] . \tag{3.31}
\end{align*}
$$

Thus $L\left(v_{j}\right)$ will be obtained from (3.31) after purforming the integrations. Hence the solution of the problem is reduced to a quadrath re. This value of $L\left(v_{j}\right)$ determines the values $\omega_{r}$, only which satisfies the conditions (3.2) and (3.5). Pi oceecing sinilarly with other sets and other orthogonality relations we can determine $\omega_{\theta}, \omega_{z}$ satisfying (3.3) and (3.7), (3.4) and (3.6) respectively.

## Acknowledgement

The author is grateful to Prof. S. C. Dasgupta for suggesting the problem and for guidance at various stages of the work.

## References

I. Schiff, P. A.
2. Papkovitch, P. F.
3. Papkoittich, P. I.
4. Grinarg. G. A.
5. Prokopov, I. K.
6. Stexiov, V. A.
7. Fuon, L. N. G.
8. Nariboli, G. S.
9. Nuller, B. M.
10. Nuler, B. M.
11. Chit, Y. P., Weinstein,
A. S. AND Zorowski, C. F.
12. Prokopov, V. K.

Sur I'équilibre d' un cylindre ‘’ lastique, J. Math. Pure Appl. Ser. III, 1883, 9.

One form of the solution of the plane problem of elasticity theory for a rectangular strip, Dokl. Akad. Nauk. SSSR, 1940, 27 (4).

Two problcms in the theory of bending of thin elastic plates, P.Af.M., 194I, 5 (3).

On the Papkovitch method for solving the plane problems of clasticity theory for a reclangular domain and the problem of bending of a rectangular thin plate with two fixed cdges and some generalisation of this method, P.M.M., 1953, 17 (2).

On the relation of the gencraliscd orthogonality of P. F. Papkovitch for rectangular plate, P.M.M., 1964, 18 (2).

On the equilibrium of elastic solids of revolution, Soobshcheniia Khar' kovsk. Mat. Obshchestva. Series 2, 1893, 3.

On the elastic equilibrium of circular cylinders under certain practical systems of load, Trans. Roy. Phil. Soc. (London) Series A, 1902, 193.
Eigenfunctions for the strip problem, Mathematica, 1965, 12 (23), Part 1.
On the homogencous solution of elasticity theory and the orthogonality relation of P. A. Schiff, Inzh. Zhurnal Mekh. Tverd. Tela, 1968, No. 2.

On the generalised ot thogonality relation of P. A. Schiff, P.M.M., 1969, 33 (2).
Flastic behavicur of a cylinder subjected to a biaxially symmetric normal surface loading, Q. J. Mech. Appl. Maths., 1964, 17, Part 2, 199.
O Sootnosheniakh Obobshennoi Ortogonalnosti, imeushikh prilozhenia V teorii uprugosti, Proceedings of symposium on continuum mechanics and related problems of analysis (Tbilisi, 23-29. IX. 1971), 1.

