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Abstract 

A ge ne ra I i std. orthogonality relation containing Bessel functions has been derived to use in solving the 
problem of elasticity in an infinite truncated cylindrical wedge when there are non-homogeneous 
boundary conditions on the lateral sides and homogeneous conditions on the circular surface such that 
there is symmetry of displacement components about the middle radius. 
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1. Introduction 

Schiff' derived generalised orthogonality relation while studying the solution of first 
fundamental problem of elasticity theory for an infinite hollow cylinder. However, 
it was Papkovitchls paper 2, 3  which actually gave impetus to study variant problems 
of elasticity by using generalised orthogonality relations. Grinberg 4, Prokopov5  and 
others dealt the same theory in the framework of plane problems of elasticity. While 
Steklovi used Schiff's method in his work, Filon appraised the work incorrectly in his 
widely known paper'. Nariboli s  also used the method to solve plate problem of elasti- 

city in two dimensions. 

Recently, Nuller 90 0  extended Schiff's method to obtain several general orthogonality 
relations for solving thtee-dimensional problems of elasticity in finite cylinders (solid 
and hollow) with various forms of boundary conditions. Chiu, Weinstein and 
Zorowski n  considered such a problem in an infinite elastic cylinder by using double 

Fourier series with modified Bessel function coefficients. Analytical determination of 
the unknown constants was an involved process in this case and was not indicated by 
the author s . Recently, Prokopovi 2  derived some generalised orthogonality relations 

In conneiction with plane problems of elasticity and pointed out further class of problems 
which can be solved by them. 
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In this paper we have derived a generalised orthogonality relation using modified tes set  
functions with respect to the order in its first section. In the next section we have used 
the same relation in determining the rotation components of an infinite truncated 
cylindrical wedge. 

2. A generalised orthogonality relation 

Let 
4 V2  12, (k 

= r 1:, (kr) — k2- -g-r-fr-a)  12, (kr) 	 (2.1) 

be a function or v such that 

(21 (ka) = 0. 	 (2.2) 
Let 

V = v , • • Vt. Vs, . 	• 	 (2.3) 
form a set of infinite number of distinct roots of (2.2). 

I2,(kr) is modified Bessel function of order 2v and k, r are real positive constants. 
The differential equation satisfied by c 2,(kr) is then 

ldrd 
ei

P 
 (kr)] — [k 2  47:q dr 	 (2, (kr) = 2k .12, (kr) r 	dr 	 (2.4) 

Let us consider the integral 

f 17-E.dv 62.4(kr)]4,1(kr) dr, 

• 

where 1, j = I, 2, 3,... 

Integration by parts yields 

• 

f ard  [r L2p4  (kr)]12p,(kr) dr 
• 

[r 12,j (kr) Tir  c t, i (kr) — r c ni (kr) 1„) (kr)I 

+ 	ird  [r 12,i  (kr)] cui (kr) dr. 	 (2.5) 
0 

Using (2.2) and the properties of modified Bessel function (2.5) becomes 
a 
sad zfrd 

r 	C2ai (kr)] 41;tri  (kr) dr 
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• 

I [ 
d d _ 	r 	12r, (kr)] ( „,(kr) dr + a 2  — 	 k 1 Pi (ka) I, (ka) 

	

7E. 	iii, - 	.S.) 	' a (4r  
0 

Re v > O. 

By virtue of (2.6), expression (2.4) implies that 

a 
dr 

(4v: — 44) 	(2y i  (kr) 12,,(kr) T. + 2k f 12,, (kr) 121, (kr) dr 

	

o 	 0 

= a 2  k 104 (ka) 1 2 ,i (ka), Re v > 0. 

Interchanging the subscripts i and j we obtain 

• a 

(4v; — 4V!) f Cu l  (kr) 12,,(kr) (  rir  + 2k f 12,,(kr)12,,(kr) dr 

• 0 

= 	k 12„,(ka) 	(ka), Re v > 0. 

Subtracting (2.8) from (2.7) we get 

dr 
4 (vt 	v) f [(2,, (kr) 12,, (kr) + c 2,, (kr) 12,,(kr), 17- =-- 0 , Re v > 0. 

(2.6) 

(2.7 

(2.8 ) 

If Vs  and vt, are two distinct roots of (2.2) then we obtain the desired generalised 
orthogonality relation as 

dr 
[(2,,(kr)1215 (kr) + c 2,j (kr) 12Pe (kr)] 	rfl: 0, Re v > O. 	 (2.9) 

3. The problem 

We consider the elastic region to be an infinite truncated cylindrical wedge bounded by 
the planes 0 = + a and curvilinear boundary r = a as shown in the figure. We seek 

to determine the cylindrical components of rotation co„ coo and to where 

fl  u2 	U0 9 
Z 

Ur 	aUti 2C° 9  = 	 9 

I NI, t 20
g 	o, 	(ru 

 

(3.1) 
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Fig. I. 	Elastic region. 

U,,, u9 , u, being the cylindrical components of 	displacement 	vector 	inside the region 
when their surface values are prescribed as 

= 0, on r = a 	 (3.2) 

cue  = 0, on r = a (3. 3) 

co, rO,on r=a (3.4) 

cor  = + fi  (r, z), on 0 ma ± a (3.5) 

(Di 	f 2 (r, z), on 0 3:u ± a (3.6) 

= is (r, z) , on 0 = ± a. (3.7) 

They represent boundary conditions for non-existence of twist on circular face and 
symmetric resultant twist in the form of couples in opposite directions on plane wedges 
faces. These form boundary conditions which are solvable in a closed f ain. But 

the method is applicable for other boundary conditions to give approximate solution 
in the form of Fredholm integral equation of second kind which is preferable to double 
infinite series solution which is generally obtained in such cases (cf. chiu, weinstein 
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and Zorowski ll). Further, by choice of functions 	(r, z), a = 1, 2, 3 we can give 
it a physical meaning of twist o n  the  plane side faces including the directions at right 
angles to the faces. Introducing Neuber-Papkovitch potentials the solutions of equili- 

terms of displacements are given by brium equation in 

hF 
2pu r  = 	± 4 (i 	a) Ich . COS 0 + 92 sin 01 

1 bi" 
2pue  = 	- 	4(1 —a) E— V I  *sin° + Q2 cos01 r 

2p tat  = 
	hF 	

(3.8) 

where 

F = r cos 0 . Ø  + r sin . vt  + :93  + 
	

(3.9) 

and qt,, i = 0, 1, 2, 3 are harmonic functions in Cartesian co-ordinates. 

We assume that the displacement components u„ u„ are symmetric with respect to 
8 = 0 and thertfore a l)  is antisymmetric about that plane. 	Then the rotation compo- 
nents con  co, are antisymmetric and Nfi is symmetric with respect to 0 = 0. 	Further 
we assume that the displacements and hence the rotation components are periodic with 
respect to : with period 2/. 	Let 	the 	prescribed surface values f i (r, z) and f 2 (r, z) 
of co, and 0.4 respectively be given in the form 

nit 
where k = -7 	Accordingly, we set the potervials q, 

• 

co 
f i (r, :7) = E g. (r)cos 

IS is 1 

co 
f 2(r, z) = 	hk (r)sin kz, 

eel 

co 
9e = E E E (v) I,(kr) cos v0 sin k a, 

a 1 10  

oo 
= E 1' A (v) I, (kr) cos ve sin kz, 

as ], P 

co 
92 = 	r (v) 	(kr) sin vg sin kz, 

aa. 2 if 

(3.10) 

(3.11) 

i = 0, 1, 2, 3 as 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

under the rotriction that Re v > 0, 
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Since the loads are periodic in the axial direction and since any one of the above kur 
potentials oi  , i 0, 1, 2. 3 can always be chosen atbitrartly, we choose vs aS zero in (3.15). Then the displacement components in (3.8) and (3.9) become 

co 

2/1 u, = 5-%  sin kz 	E 
~MIPS 
S=1 	 V 

r di.  {a (v) 	(kr) + (v) 1 2,4 1  (kr)) 

E (2v) Jr 	(kr) + (3 — 40) fa ( 4P-1 (kr) + fl(v) 4444 (kr)dcos 2w? , 
 

(3.16) 

2„ us 	2 sin kz 	[(2v + 	4) a (v) 	(k r) 
se: 

	

+ (2v— 4a+ 4) fl(v) 4,4 	
2v 

4  (kr)+ 	E (2v) 4, (kr)isin 2v6 , 

2p u, 	— 	k cos kz E [r fa (v) 12t-t (kr) + (v) 120 +1 (kr)) Nat 

+ E(2v) 12, (kr)] co s 2 v0, 

where 

(3.17) 

(3.18) 

a ( v) = I [A ( v — 1) — B(v 	1)1, 	(v) = [A (v) + B (v)]. 

The rotation components are therefore given by 

= ( 1  k cos kz E [a (v) 12N-1, (kr) — (v) 1 2,41  (kr)] sin 24 (3.19) 

iii00 —(I 

P a; 

k cos kz E [a (v) 12,, (kr) + /1(v) I2„, (kr)] cos 2v0 (3.20 

and 

=(1 
co 

9ill kz 1) a (v) 4p-i (kr) + (2v + 1 ) 

x 8(v) 12R+1 (kr) 	r cab. {a (v) 12.-1, (kr) 	fit (v) 12y+i (kr)}1sin 2v9. 

The last expression for co, after scme simplification becomcs 

pals = ( 1  — 	Di sin kz E [ — a (v) + fl(v)] /2, (kr) sin 2v0 sat 
(3.20 



= 
co 

tr) E 
sri 

k cos kz E 

x lin 2v0, 
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Using the boundary conditions (3.2) and (3.3) in (3.19) and (3.20) respectively, 

we  get for each particular value of k, the equations 

a  (V) 12,-1 (ka) 	fi (11 4,4- 1  (ka) = 0, 

	

— (v) alv2r+1 (ka) = 0. 	 (3.22) 

Front (3.22) we get the characteristic equation for the determination of v as 

bier't (ka) • 121141 k4) 21̀.1  

or 4,2 
inka) 	 y tka) = 0. 

a2 : 	
(3.23) 

comparing (3 .23) with (2.2) we see that the infinite sct oi roots of (3.23) aie same as 
those of (2.2) for which 0 < Rev < 4. Hence, if we choose v = 	i = 1, 2, ..., 

where v, are those toots of (2.2) for which 0 < Rev < 4 in the summation in (3.19) 
and (3.20), the boundary conditions' (3.2) and (3.3) will be identically satisfied. Further 

by virtue - of (3.22), tht; unknciwn constants a (v) and kw) take the following form: 

a (v) = L (v) 1 2, 4. ;  (ka). 

11(bo;  =  

So expresciions for components of rotation Satisfying (3.2) and (3.3) bccome 

L (v) 1121+1 (ka) 12W -1 (kr) — israt (ka) 4r+) ( kr)] 

(3.24) 

(v) [12„ 1  (ka)1 2" (kr, + 10-1 (ka) 121, 1  (hi] 

(3.25) 

2v 
L(v)--I2, (ka) /2. (kr) sin 2v0. 

ak 
(3.26) 

and 

cc 
Jule = (I — 	k cal k.: 

in  
x cos 2v0 

(I — a) >, sin kzi 

!i-i 	V* 

Now using boundary conditions (3.5) and (3.6), the 
by virtuc of (3.10) and (3.11) respectively give 

expressions (3.24) and (3.26) 

to 

k cos kz 
	L (v) 	f , (ka) tr, (kr) — 	(ka) 1.21, 1  (kr)] sin 2 va 

(3.27) 
• . = p1 	

gt  (r) cos kz. 

Sal 

— a I 
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and 

co 

sin kr 	L (v) 12, (ka) 1 , ( kr) s in 2va 
Ps 

11 	hk  (r) sin kz. 1 — a 
Pea 

(3.2 8) 

Equating like harmonics from the two sides of (3.27) we get 

k 	L (v)[1 1,,,, (ka) 	(kr) - 
17111 

= 	(r) 
1 — a gk  • 

4" (ka) 121 , (kr)J sin 2va  

Introducing cs, (kr) defined in (2.1), a little simplification of the above relation leads to 

2vsin2va 
L (v) 4, (ka) (2, (kr) = — 	 

` 	 — a) k gk(r). 	 (3.29) 
7:  

Again equating like harmonics from the two sides of (3.28) we get 

2v sin 2va 	 p 	(r) L (v) 12p  (ka) 12, (kr) = 

	

kar 	 (3.30) 
— a r • 

Pa 

Now, making use of the general orthogonality relaticn derived in (2.9) we ebtain the 
unknown coefficient L(v,) from (3.29) and (3.20) as, 

' L 
 

(v,) sin 2v a 14P)  (ka) ka 

g - E 	c2, (kr) 12,, (kr) dr— itt 

r  [ (1--Trk f (r) I2r )  (kr) dr 
0 	

0 

+ 1 	f irk  (r) 2p ) (kr) --dr]. — a 	 (3 .31) 

	

0 	
• 

Thus L (v1) will be obtained from (3.31) after performing the integiations. Hence 
the solution of the prcblem is reduced to a quadrattre •  This value of L (v1) the values co, only which satisfies the conditions (3.2) and (3.5). Pi oceecing similarly 

ng with other sets and other orthogonality relations we can determine coo , cog  satisfyi 
(3.3) and (3.7), (3.4) and (3.6) respectively. 	

determines 
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