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Abstract

We now recognise three scgments of the scientific enterprise: The theoretical stage, the empirical stage
and the computational stage. The scientific nature of the theoretical and empirical components of the
procedure of mvestigation into the problems of the natural or hard sciences has been accepted for 2 long
time. It is still not clear if computational modelling and simulation of scientific and engineering problems
can have 4 richness that allows it to be legitimately designated as science. In this paper, an argument has
been advanced to show that the body of knowledge and the modes of enquiry that emerge from a compu-
tational discipline like the finite element method also possesses properties that permit it to meet the
stipulations of the conceptual legislation demanded by Popper’s critical rationalism for admission as a
scrence,
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1. Introduction

“The purpose of the lecture series is to stimulate the student’s critical abilities in order
to enable him to appreciate the excellence of a work, and to induce him to an attempt
to produce good things himself, [with the hope] that each of the lecturers will speak
from his own experience on the work of his art or profession, and that he will de-
monstrate its value by elucidating its nature, formulating its purpose, and explaining
its techniques.”

Extract from letter from Robert Maynard Hutchins, then the Chancellor of the
University of Chicago to Professor S. Chandrasekhar inviting him to give the lecture
on “The Scientist” as part of The Works of the Mind lecture series.

I think, when Professor C.N.R. Rao invited us to deliver these lectures, it was
precisely this motivation he had in mind; that is, to demonstrate in each case, the
value of the work of his art or profession. Note the emphasis placed on art and
profession and not on science. It is in demonstrating its value, its purpose, its

Text of lecture delivered on November 19, 1993, at the Annual Faculty Meeting of the Jawahartal Nehru
Centre for Advanced Scientific Research.
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technique and its universality that the elements of science in an art or profession are
discovered., This morning, [ shall attempt to give such a rationalisation to some of
the work that my colleagues and I have been doing in the field of computational
structural mechanics.

My profession is engineering, my art is structural mechanics and the specialised
area on which ['ve focussed attention in recent years is called computational structural
mechanics. If there is a ring of apologia about my lecture, it is understandable be-
cause as an engineer and as a computationalist, I’'m doubly defensive about my cre-
dentials as a scientist. Let me briefly enunciate the source of my misgivings.

2. Science vs engineering: The nature of technelogical knowledge

The clearest and most concise statement on the nature of technological knowledge
that I've read in recent times is one made by Professor R. Narasimha at his lecture
during the National Debate on Science and Technology organised by the INCASR
earlier this year and which has appeared in full in Current Science'. 1 quote:

“ ... Itis the codification of knowledge that becomes the directive of innovation.

There is a widespread tendency to think of techmnology as indistinguishable from
science, or as being at best applied science. However, while there is nothing more
practical than a good theory, and while scientific knowledge is most valuable for
and increasingly more often can lead to technology development, technology is
not mere applied science; it is enormously richer, and indeed autonomous in many
ways, for technologists will and must develop new artifacts for human use even
when all the ‘understanding’ that is motivation for scicnce is not available.

Science has to do with understanding Nature, and with explaining and predicting
phenomena with the fewest possible independent hypothesis. {It] has to do with
intellectual economy.

The objective of technology . . . is to make new products, or artifacts . . . to meet
human needs . . . in the most economic way possible.”

Thus, while science has to do with economy and unity of understanding, engineer-
ing or technology has to do with economy of utility. It is not always manifest that
the practitioners of the latter art do also conduct themselves in a manner that is in
conformity with cconomy of understanding. Thus, the question arises, How does
technological knowledge become science? Before we answer this question, it is worth-
while to explore the kind or creatures who inhabit these various worlds.

3. The computationalist

There are three kinds of animals in the scientific enterprise; and all these and more
in the engineering zoo, reflecting the vastly greater richness of engineering and
technology—the list shown in Table I is perhaps more representative than exhaustive.

In recent years, a new branch of scientific and engineering activity called computa-
tional modelling and simulation has emerged. Today, there are increasingly large
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Table I

Scientists Engmeers

. Toolmakers, mventors, mnovators
Scientists
a) Theornsts
b) Expenmentalists
¢) Computanonalists
. Designers
Analysts
Manufacturers, fabricators
. Planners, managers
. Diagnosticists, troubleshooters

1. Theorsts
2. Expenmentalists

()

3. Computationalists

[RIP NS

~N oo

Computationalists
Egyptians, Babylonians
Archimedes

Kepler

Halley

numbers of people, who work entirely with computational modelling—often totally
ignoring theoretical and experimental work. Computationalists, as I shall call the
group of workers who deal exclusively with such problems, are not really a new
breed emerging suddenly in the post-computer age. The Egyptians who devised com-
putational schemes to monitor the flooding of the Nile and maintain their water
works; the ancient astronomers who invented algorithmic procedures to predict as-
tronomical phenomena; Archimedes’ work on integratory schemes for computing
areas and volumes which foreshadowed the emergence of the integral calculus by
several centuries; the twenty or more vears that Kepler spent in immensely laborious
calculations using Tycho Brahe's data are classical examples of science beginning as
computation. Thus, much before there was algebra or analysis, computation was used
to solve problems of a scientific or technical nature.

It goes without debate that theorists and experimentalists do science, their roles
have been traditionally defined. But what about those who perform tasks that are
entirely computational in nature. Is their work scientific? Is computation unavoidable
poisonous drudgery needed only to fill in the gaps on a scientific map or can compu-
tation be revelatory as well? Can modelling and simulation itself have a richness in
its activity that allows it to be held to scrutiny by methods which are used to verify
or falsify the scientific quality of any area or branch of knowledge? This is the ques-
tion I will address now using as an example some of my recent work in the area of
the finite element method in computational structural mechanics.

4. Structural hanics and the engi

Let me briefly explain how and where structural mechanics plays a crucial role in
the life of the engineer. The most poetic description of the role of an engineer in
society was made, perhaps very predictably, by Shelley. In his A Defence of Poetry,
Shelly wrote thus about the role of technology:
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“Undoubtedly the promoters of utility, in this limited sense, have their appointed
office in society. They follow the footsteps of poets, and copy the sketches of
their creations into the book of common life. They make space and give time.”

The structural engineer’s appointed office in society is to enclose space for activity
and living, and sometimes does so giving time as well—the ship builder, the railway
engineer and the aerospace engineer enable travel in enclosed spaces that provide
safety with speed in travel. He did this first, by imitating the structural forms already
present in Nature. Shelly was therefore only partially right—engineers also copy the
sketches of their creations from the book of common life. From Art imitating Life,
one 18 led to codification of the accumulated wisdom as science—the laws of
mechanics, elasticity, theories of the various structural elements like beams, plates
and shells, etc.

From Archimedes’ use of the Principle of Virtnal Work to derive the law of the
lever, through Galileo and Hooke to Fuler, Lagrange, Love, Kirchhoff, Rayleigh,
etc., we see the theoretical and mathematical foundations being laid, and then copi-
ously used by engineers to fabricate structural forms for civil and military functions.
Solid and structural mechanics is therefore the scientific basis for the design, testing,
evaluation and certification of structural forms made from material bodies to ensure
proper function, safety, reliability and efficiency.

Today, analytical methods of solution, which are too restricted in application, have
been replaced by computational schemes ideal for implementation on the digital com-
puter. By far the most popular method in computational structural mechanics is that
called the finite element method.

5. The finite element method

The carly history of the finite element method shows the convergence of methods
and practices from three distinet branches of knowledge. From civil engineering, it
borrowed the concept of matrix method of analyses. From aerospace engineering
came the finite element discretisation procedures, as we know it today. Variational
calculus then provided the formal mathematical rationalisations in terms of energy
theorems, least action principles, virtual work methods, etc.

The finite element world is now a billion doliar industry, both in terms of software
sold and in terms of analyses costs using such installed software. It is one area of
engineering knowledge that has become an undisputed commercial success.

This is not to say that the growth of the method was free of difficulties. There
were enormous hurdles to cross as well. The best known is a problem known as
locking. We shall take it up for closer examination now.

6. Finite element discretisation and the locking phenomenon

At the heart of the finite element method is a process of discretisation providing
algorithms that capture the physics of the structural behaviour of the constituent
parts of the structure in terms of matrices of discrete numbers relating forces to



THE SCIENCE IN COMPUTATION: AN ENGINEER’S DEFENCE 573

displacement at the nodes. All structural regions are replaced by a set of sub-domains
called finite elements. Each element has to model the elasto-mechanical behaviour
of the region it replaces. In effect, the differential equations of the infinitesimal
calculus governing the region are now substituted with discrete matrix relationships.
These matrices are eminently amenable for manipulation on a digital computer
through clever book-keeping and database operations. Thus, very large problems
which are dtherwise intractable by analytical techniques can be solved.

Over nearly four decades, a systematic process by which continuum structural be-
haviour is replaced by a discretised description has evolved. At first, efforts to do
this were founded on engineering intuition and heuristic judgement. It was extremely
successful in most cases although there were instances where mere technique could
not resolve difficulties. A scientific basis was required to reconcile this.

To furnish a scientifically acceptable basis to the procedure it is necessary to estab-
lish that paradigmatic principles can be identified. Our studies® show that four funda-
mental criteria inform this procedure—we shall call them the c-concepts, namely,
Continuity, Completeness, Consistency and Correctness. This conceptual framework is
then used to guide the construction of stiffness matrices and to assess the performance
of these matrices.

It is not surprising that of particular concern to us in the finite element method is
the quality of approximation that can be achieved. We desire a quick convergence
to the correct solution as the number of elements increase (or the element sizes
decrease). This will depend on the quality of the element stiffness matrix which is a
function of element shape, size and aspect ratio and of the order of the chosen
displacement field representation by what are called the shape functions (also called
basis functions, trial and test functions, etc.). In simple displacement elements, these
shape functions are usually taken in the form of polynomials. The conventional wis-
dom around the time we began our work around 1978 specified two well-known
conditions that these polynomial functions must satisfy to ensure convergence: these
are the completeness and continuity conditions.

Continuity

The displacement functions chosen must allow strains at element interfaces to be
finite—this means that there must be a certain degree of continuity of displacement
between adjacent elements. It is not always easy to ensure this. Within each element,
one can argue that the continuous representation of the displacement fields will en-
sure compatibility, but this may be violated along element edges unless special care
is taken. Where strains are defined by first derivatives of the displacement fields, a
simple continuity of the displacement fields across element edges suffices—this is
called C‘O—continuity. There are problems, as in the classical Kirchhoff-Love theories
of plates and shells, where strains are based on second derivatives of displacement
fields—in this case, continuity of first derivatives of displacement fields across element
edges are demanded; this is known as C'-continuity.

We shall, however, find a large class of problems (Timoshenko beams, Mindlin
plates and shells, plane stress/strain flexure, incompressible elasticity) where this
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simplistic view of continuity does not assure reasonable (i.e., practical) rates of con-
vergence—in fact, formulations that take liberties, e.g., the non-conforming or incom-
patible approaches, significantly improve convergence. The reasons for this will be
found in the consistency requirements later,

Completeness

Displacement functions must be so chosen that no straining within an clement takes
place when nodal displacements equivalent to a rigid body motion of the whole ele-
ment are applied. This is called the strain-free rigid body motion condition. In addi-
tion, it is necessary that each element must be able to reproduce a state of constant
strain, i.e., if nodal displacements applied to the element are compatible with a con-
stant strain state, this must be reflected in the strains computed within the element.
There are simple rules that allow these conditions to be met and these are cailed the
completeness requirements. If polynomial trial functions are used, then a simple assur-
ance that the polynomial functions contain the constant and linear terms, etc. (e.g.,
1, x in a one-dimensional C’problem; 1, x,y in a two-dimensional Cproblem) will
meet this requirement.

Unfortunately, elements derived rigorously from these basic paradigms can behave
in unreasonably erratic ways in many important situations; errors as large as 100%
are often reported! These difficulties are most pronounced in the lowest order finite
elements. The problems encountered were called locking, parasitic shear, etc. By
locking, we mean that finite element solutions vanish quickly to zero (errors saturat-
ing quickly to nearly 100% 1) as some structural parameters become very large.

Some of the problems may have gone unrecorded with no adequate framework or
terminology to classify them. As a very good example, for a very long time, it was
believed that curved beam and shell elements performed poorly because they could
not meet the strain-free rigid body mofion condition. However, more recently, the
correct error-inducing mechanism has been discovered and these problems have come
to be called membrane locking.

Initially, this discouraged the use of low-order displacement elements and attention
was turned to higher order elements and to the assumed strain/stress elements.
Around the same time, many ‘tricks’ were tried out on the displacement formulations,
and some of these resulted in acceptably accurate elements. These tricks included
techniques such as reduced integration, addition of non-conforming modes, energy
balancing, B-bar methods, etc. Some of these violated the well-known norms for
finite element formulation but were accepted because the elements thus formulated
were more accurate than the rigorously formulated ones. It was clear at this stage
that the paradigms known so far were neither sufficient nor always necessary. It was
imperative that some new paradigms be found to make the study of such elements
more scientific. We address one aspect of this problem in this lecture.

To put the locking phenomenon in a proper perspective, it is first necessary to
recognise that errors, whether in displacements, stresses or energies, due to finite
element discretisation must converge rapidly, at least in a O(hz) manner or better,
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where £ is the ‘diameter’ of the element. If a large structure (domain) of dimension
L is sub-divided into clements (sub-domains) of dimension /, one expects errors of
the order of (I/L)*. Thus, with ten ¢lements in a one-dimensional structure, errors
must not be more than a few per cent. However, in problems where locking is
noticed, errors are much larger—the discretisations fail in a dramatic fashion, and
this cannot be resolved by the classical (pre-1977) understanding of the finite element
method. We shall explain the issues involved using the example of the linear
Timoshenko beam element.

Most published literature, including all textbooks, associate locking with the rank
or non-singularity of the stiffness matrix linked to the penalty term (e.g., the shear
stiffness matrix in a Timoshenko beam element which becomes very large as the
beam becomes very thin). However, on retlection, it is obvious that these are
symptoms of the problem and not the cause. The high rank and non-singularity is
the outcome of certain assumptions made (or not made, i.e., leaving certain unantici-
pated requirements unsatistied) during the discretisation process. It is therefore neces-
sary to trace this to the origin. An explanation offered by Prathap and co-workers?
is promising—they have argued that it is necessary in such problems to discretise the
penalty-linked strain fields in a consistent way so that only physically meaningful
constraints appear. In this lecture, we show how what originated as an exercise in
computation led to the formulation of a paradigmatic principle like consistency.

7. Analysis of the Timoshenko beam element

The Timoshenko beam theory® offers a general formulation of beam flexure. The
total strain energy functional is now constructed from the two independent functions
for transverse deflection (wx) and section rotation 6(x), and it will now account for
the bending (flexural) energy and an energy of shear deformation.

L

o= J (172 EI 0.2 + 172 a(6=w,,)*—gw) dx 6]
1]

where the curvature x = 0,,, the shear strain vy = 6—w,, and o« = k£GA is the shear
rigidity. £ and G are the Young’s and shear moduli and &, the shear correction
factor used in Timoshenko’s theory. I and A are the moment of inertia and the area
of cross-section.

The Timoshenko beam theory will asymptotically recover the elementary beam
theory as the beam becomes very thin, or as the shear rigidity becomes very large,
i.e., a — oo, This requires that the Kirchhoff constraint 8—w,— 0 must emerge in
the limit. For a very large o, these equations lead directly to the simple fourth-order
differential equation for w of elementary beam theory. Thus, this is secured very
easily in the infinitesimal theory but it is this very same point that poses difficulties
when a simple finite element approximation is made.

A two-noded beam element based on this theory will need only € continuity and
can be based on simple linear interpolations®. It was therefore very attractive for
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general-purpose applications. However, the clement was beset with problems, as we
shall presently see. We can show that Jocking in C° displacement-type finite element
formulations is due to a lack of consistent definition of the strain fields that are
constrained in the penalty regime when the discretisation is made.

7.1. The conventional formulation of the linear beam element

The strain energy of a Timoshenko beam element of length 2/ can be written as the
sum of its bending and shear components as

J(l/Z EI x™x + 172 kGA vy™y)dx (2)

where
x =0, (3a)
Y= 8-wh (3b)

In the conventional procedure, linear interpolations are chosen for the displacement
field variables*. This ensures that the clement is capable of strain-free rigid body
motion and can recover a constant state of strain (completeness requirement) and
that the displacements are continuous within fhe element and across the element
boundaries (continuity requirement). We can compute the bending and shear strains
directly from these interpolations using the strain gradient operators given in eqns
(3a) and (3b). These are then introduced into the strain encrgy computation in cqn
(2), and the element stiffness matrix is calculated in an analytically or numerically
exact (a 2-point Gauss Legendre integration rule) way.

For the beam element of length 2/ the stiffness matrix can be split into two parts,
a bending rclated part and a shear related part’. It turns out that the rank of the
shear stiffness matrix is two. It is also useful to introduce a note about the singularity
aspect. This element stiffness matrix can be used to model a cantilever beam by
assembling into a global stiffness system with the rigid body motions suppressed. This
can be done by deleting the first two rows and columns of the stiffness matrices. It
can be seen that the shear related part of the assembled global stiffness matrix is
non-singular.

Following Hughes et al* we shall model a thin cantilever beam under a tip load
using this element. We choose E=1000, G=37500000, ¢t=1, L=4; using a fictitiously
large value of G to simulate the thin beam condition. Table II gives the normalized
tip displacements for this case as obtained by Hughes et al* (where an error was
present) and as later corrected by Prathap and Bhashyam® We can see a trend
emerge as the number of elements are increased. The tip deflections obtained for
the thin beam, which are several orders of magnitude Jower than the correct answer,
are directly related to the square of the number of elements used for the idealization.
In other words, the discretisation process has introduced an error so large that the
resulting answer has*a stiffness related to the inverse of N?, where N is the number
of elements used in the computation. This is clearly unrelated to the physics of the
Timoshenko beam and also not the usual sort of discretisation errors encountered in
the finite element method. It is this very phenomenon that is known as shear locking.
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Table It
Normalised tip deflectivas for a thin canuiever beam

No. of elements Hnghes et al® Prathup & Bhashyam®
i 0.00002 0.00002
2 0.00008 0 00008
4 0.00032 0.60032
8 0.000128 1.00128
16 0.000512 0.00512

The error in cach element must be related to the element length, and therefore
when a beam of overall length L is divided into N elements of equal length 2/, the
additional stiffening introduced in each element due to shear locking is seen to be
proportional to 2. In fact, numerical experiments® showed the locking. stiffness prog-
resses without lmit as the element depth ¢ decreases. Thus, we now have to look
for a mechanism that can explain how this spurious stiffness of (/f)* can be accounted
for by considering the mathematics of the discretisation process.

The magic formula proposed by Hughes et al* to overcome the locking seen for
the linear beam element is the reduced integration method. The bending component
of the strain energy of a Timoshenko beam element of length 2/ shown in egn (2)
is integrated with a one-point Gaussian rule as this is the minimum order of integra-
tion required for exact evaluation of this strain energy. However, a mathematically
exact evaluation of the shear strain energy will demand a two-point Gaussian integra-
tion rule. It is this rule that resulted in the shear stiffness matrix of rank two that
locked. Hughes er al* experimented with a one-point integration of the shear strain
energy component and the shear-related stiffness matrix changed, the rank now hav-
ing reduced to one. The performance of this element was extremely good, showing
no signs of locking at all.

If we repeat the exercise of using a single element to model a cantilever beam,
the shear-related part of the assembled global system matrix will be singular. The
conventional wisdom was to relate this singularity to the improved performance scen
above. The argument proceeded thus. The functional of eqn (2) becomes constrained
when kGAP? >> EI. This leads to finite element equations (after assembly) of the
form ’

(Ki+aK)a+f=0 “4)

where a is the displacement vector and f, the load vector. K is the unconstrained
part of the stiffness matrix (in this instance, that derived from the bending energy)
and K, the constrained part (here derived from the shear energy). The penalty
parameter « (here, we know this is kGAP/ET) increases as the beam becomes thinner,
and it js argued that eqn (4) degenerates to

Ky = —fla — 0. )
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This degeneration can take place only if K5 is non-singuiar. it is possible 1o establish
then that locking will set in, fe., a—+ 0 as o becomes very large. In a conventional
displacement-type formulation of consirained media elasticity {(as in the exactly integ-
rated case}, this singuiarity does not arise naruraily. The reduced integration strategy
is therefore viewed as an artifice that can bring about the required singularity so that
in the penaity limit, the eqn (4) does not degenerate as seen above.

There are several weaknesses in this heuristically appealing argument. It is not
certain that no violaton of the variational theorems has taken place in this ‘trick’ of
introducing singultarity into the constrained mamrix. The argument also does not assert
that there is a unique way in which singularity must be achieved. Thirdly, there is
no possibility of constructing a numerical experiment that can ‘falsify” (verify) this
paradigm and lead at the same time to a measare of error in rerms of the penalty
parameter kGAIYEI With the field-consistency paradigm it was possible to do this®.

Our findings indicate that K, (after assembly) is non-singular ounly in the lowest
order representations. For higher order clements, therefore, even with exact integra-
tion, there will be true consuaints which reflect some degree of singnlarity. An argu-
ment in terms of rank becomes more useful here; however, it is not always easy to
establish for a high-order element what the correct rank of the penalty-linked stiffness
matrix should be. Our paradigmatic requirement that there should only be true con-
straints and no spurious consiraints, which we will derive befow, will automatically
ensure that the correct rank is maintained.

There are other closely related arguments which have found their way to the
textbooks but which are no more scientifically valid than the singularity argument.
One relates to the rank of the shear stiffness matrix—we can understand why it is
insisted that the rapk must not be too high. Reduced integration heips to reduce this
rank condition. Another very closely reiated paradigm concerns the numaber of con-
straints contained in the stiffoess maurix, the so-cailed constraint-counting procedure,
Reduced integration lowers the constraint count as one can show quite easily that
the number of constraints activated are linked to the number of integration points
used to integrate the constrained stain energy. Another argument that was current
some time ago was that of relating locking to the spectral condition number: exactly
integrated stiffness marrices always had a higher speciral condition number and this
was linked to the iocking effect. Note that these are all heuristic arguments, reflecting
the symptoms of the problem (locking is seen where there is a non-singular con-
strained matrix, or where the rank is too high, erc.) and not really the cause of the
problem. We shall now lpok forward to a paradigm that can trace the problem o
the root and then can arguc torward to what can be called a falsifiable error estimate.

7.2 The field-consistency paradigim

It is clear from the tormulavion of the linear Timoshenko beam element using exact
integration (we shall call it the field-inconsisient clement) that thc completeness and
continuity paradigms, which had been for a long time considered to be necessary and
sufficient conditions for describing displacement Interpolations, are really not enough
in some problems. We shall propose a requirement for a consisient interpolation of
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the consirained strain ficlds as the necessary puradigm te mul
the phenomena compiete.

our undag

If we start with Hoear ria! funcuons wor w and &, we can
displacerncnt constants with each of the erpotauons i the
wo= oy +oay (!

8= by + by (x/0). {ch}

We can relate such constants to the field variables ovtaming in rris ciement and in
discretised sense; thus, @ = w,, at x = U, &y = ¢ and H/0 = v, ar x = . This «
tation would become useful when we Ty 0 expiain now 0 isCiensacon process
can alter the infinitesimal descriprion of the problem i e nOL Coits
sistently defined.

ain diclds

If the strain ficlds are now derived from the dispiacement fields given in equs
we get

(&/): (7a}

It

X

i

v o= (by — aly + by i) )]

An exact evaluation of the strain energies for an elewent of lengih 21 will now yicld
the bending and shear stramn energy as

Up = 172 (ED 20) (b1} (8a)
Uy = 12 (kGA) (2)) {{bg — ay/ly + U3 b}, {8b)

It is possible to see¢ from this that in the constrauimg puysical nrmr o1 & very thin
beam modelled by clements of lengih 2/ and depin ¢, e swear sirawn energy i eqn
{8b) must vanish. An examivaunon of the conditons proguced DY s 1cguuement
shows that the following constramis would emerge in such a limit

by — afi— 0; {9a)
by — 0. (Ub)

In the new terminology, constraint (Ya) is field consistent as it conrains consiants
from both the contributing displacement interpoiations refevant o the descriptions of
the shear strain field. These comstrainis can then accommodare the true Kirchhotf
constramis in a physically meaningful way, i.e., in an mnairesimal sense, this is equal
to the condition (8—w,,) — 0 at the element cemrond. fn direct contrast, constraint
(9b) contains only a term from the section rotauwn 9. A constraiat inposed on This
will lead to an undesired restricrion on 6. In an iniiniresimal sease, this is equa 10
the condition 8,, — 0 at the element centroid (i.e., no bending is allowed 1o deveiop
in the element region). This is the ‘spurious constraint’ that leauds 10 shear focking
and also violent disturbances in the shear force prediction over the elernent™.
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7.3. A ‘falsifiable’ error model for the field-consistency paradigm

We must now determine that this ficld-consistency paradigm has a scientific quality.
To do this, we borrow an idea from the philosophy of science, the falsifiability
theorem of Karl Popper®. We know that the discretised finite element model will
contain an error which can be recognised when digital computations made with these
elements are compared with analytical solutions where available. The consistency re-
quirement has been offered as the missing paradigm for the error-free formulation
of the constrained media problems. Therefore, to establish the scientific validity of
this coneptual scheme, it is necessary to first devise a procedure that will trace the
errors due to an inconsistent representation of the constrained strain field and obtain
precise a priori measures for these. We must then show by actual numerical experi-
ments with the original elements that the errors are as projected by these a priori
error models. Only such an exercise will complete the scientific validation of the
consistency paradigm. Fortunately, a procedure we shall call the functional re-
constitution technique makes it possible to do this verification®®, It is however beyond
the scope of this lecture to go into the details of this procedure here.

7.4. Numerical experiments to verify error prediction

Our functional reconstitution procedure (note that this is an auxiliary procedure,
distinct from the direct finite element procedure that yields the stiffness matrix) now
provides an instrument for the critical self-examination of the consistency paradigm.
It indicates that an exactly integrated or field-inconsistent finite element model tends
to behave as a shear flexible beam with a much stiffened flexural rigidity 7’. This
can be related to the original rigidity 7 of the system by comparing the expressions
derived from the functional reconstitution exercise®® as

I/l =1 + kGARBEL (10)

We can show through a numerical experiment that this estimate for the error,
which has been established entirely @ priori, starting from the consistency paradigm
and introducing the functional reconstitution technique, anticipates very accurately,
the behaviour of a fieid-inconsistent linearly interpolated shear flexible element in an
actual digital computation®®. This has shown us that the consistency paradigm can be
scientifically verified. Traditicnal procedures such as counting constraint indices, or
computing the rank or condition number of the stiffness matrices could offer only a
heuristic pictare of how and why locking sets in.

7.5. Concluding remarks on the Timoshenko beam element

These exercises show us why it is important to maintain consistency of the basis
functions chosen for terms in a functional which are linked to penalty multipliers.
The same conditions are true for the various finite element formulations where lock~
ing, poor convergence and stress oscillations are known to appear. It is also clear
why the imposition of the consistency condition into the formulation allows the cor-
rect rank or singularity of the penalty-linked stiffness matrix to be maintained so that
the system is free of locking or sub-optimal convergence. Again, it is worthwhile to
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observe that non-singularity of the penalty-linked matrix occurs only when the ap-
proximate fields are of very low order. In higher order inconsistent formulations,
solutions are obtained which are sub-optimal to solutions that are possible if the
formulation is carried out with the consistency condition imposed a priori. Devices
such as reduced integration permit the consistency requirement to be introduced when
penalty-linked matrix is computed so that the correct rank which ensures the impos-
ition of the true constraints only is maintained. It is easy to predict all this by examin-
ing the constrained strain-field terms from the consistency point of view rather than
performing a post-mortem examination of the penalty-linked stiffness matrix from
rank or singularity considerations as is mostly advocated in the literature.

8. Conclusions

What I’ve sought to demonstrate in this lecture is that a critical rationalisation® can
be made of the procedures adopted in the finite element method (FEM). The FEM
is a procedure for solving field equations appearing in engineering analysis. It can be
viewed as a purely computational device to eliminate the drudgery from the painful
analysis and algebra otherwise required to solve such boundary and initial value prob-
lems. However, when difficulties were noticed when the procedures were applied to
certain problems (e.g., the locking phenomenon), it became clear that the conceptual
framework which existed then (continuity and completeness) was insufficient to ac-
count for this phenomena. When we sought to enlarge this conceptual framework,
the consistency paradigm was one that emerged as a satisfactory explanatory scheme.
In this lecture, I've briefly outlined how it was used to provide a critical rationalisa-
tion of the difficulties encountered. Some of the questions we asked or were asked
as we went about this task werc:

1. Are there laws (theories, hypotheses, paradigms) governing FEM methodology
(or computational methodology in general) as therc are in descriptions of natural
phenomena, space and time?

2. Can singular statements be derived from these that can be falsified by numerical
experimentation?

3. Is error analysis (from the point of view of FEM or any other computational
methodology) predictive?

I end my lecture on optimistic note that my answers to all these questions are in
the affirmative. We could trace the evolution of paradigms in FEM practice from
myth and superstition to the consistency paradigm as a falsifiable basis®. I hope this
lecture has captured this spirit—that concepts like completeness, continuity, consis-
tency and correctness (not dealt with here; see Prathap? for details) are relevant not
only in a paradigmatic description of natural phenomena but also in areas of derived
(secondary?) knowledge like computational mechanics.
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