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Abstract 

We now recognise three scgmcnts of the scientific enterprise: Tnc thcaretical stage, the empirical stage 
and the computational stage. The scientific nature of the theoretical and empirical components of the 
procedure of mvestigat~on into the problcms of thc natural or hard scienccs has been accepted for a long 
time. It 1s still not clear if computational modelling and simulation o i  scientific and engineering problems 
can have a richness that allows 11 to be legitmately designated as science. In this papcr, an argurncnt has 
been advanced to shou, that the body of knowledge and the modes of enquiry that emerge from a compu- 
tational disciphne like the finite element method also possesses propcrtles that permit it to meet the 
stlpulatians of the conceptual legislation demandcd by Poppcr's critical rationalism for admission as a 
saence. 

Key words: Computational stmctural mechanics, finite element method, scientific computing, scientific 
method, critical rationalism, ialsification. 

1. Introduction 

"l'he purpose of the lecture series is to stimulate the student's critical abilities in order 
to enable him to appreciate the excelZence of a work, and to induce him to an attempt 
to produce good thing.? himself, [with thc hope] that each of the lecturers will speak 
from his own experience on the work of his art or profession, and that he will de- 
monslrate its value by elucidating its nature, formulating its purpose, and explaining 
its techniques. " 

Extract from letter from Robert Maynard Hutchins, then the Chancellor of the 
University of Chicago to Professor S. Chandrasekhar inviting him to give the lecture 
on "The Scientist" as part of The Works of the Mind lecture series. 

I think, when Prolessor C.N.R. Rao invited us to deliver these lectures, it was 
precisely this motivation he had in mind; that is, to demonstrate in each case, the 
value of the work of his art or profession. Note the emphasis placed on art and 
profession and not on sczence. It is in demonstrating its value, its purpose, its 
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technique and its universality that the elements of science in an art or profession are 
discovercd. This morning, I shall attempt to give such a rationalisation to some of 
the work that my colleagues and J have been doing in the field of co~nputational 
structural mechanics. 

My profession is engineering, my art is structural mechanics and the specialised 
area on which I've focussed attention in recent years is called computational structural 
mcchanics. IC there is a ring of apologia about my Iccture, it is undcrstandablc be- 
cause as an engineer and as a compota~ionalist, I'm doubly defensive about my cre- 
dentials as a scientist. Lct me briefly enunciatc the source of my misgivings. 

2. Science vs engineering: The nature of technological knowledge 

The clearest and most concise statemcnt on the nature of technological knowlcdge 
that I've read in recent times is one made by Professor R. Narasimha at his lecture 
during the National Debate on Science and Technology organised by the JNCASR 
earlier this year and which has appeared in full in Current Science1. I quote: 

" . . . It is the codification of knowledge that becomes the directive of innovation. 

There is a widespread tendency to think of technology as indistinguishable from 
science, or as being at best applied science. However, while there is nothing more 
practical than a good theory, and while scientific knowledge is most valuable for 
and increasingly morc often can lead to technology development, technology is 
not mere applied science; it is enormously richer, and indeed autonomous in many 
ways, for technologists will and must develop new artifacts for human use even 
when all the 'u~iderstanding' that is motivation for scicnce is not available. 

Science has to do with understanding Nature, and with explaining and predicting 
phenomena with the fewcst possible independent hypothesis. [It] has to do with 
intelleclual economy. 

The objective of technology . . . is to make new products, or artifacts . . . to meet 
human needs . . . in the most economic wdy possible." 

Thus, while science has to do with economy and unity of understanding, engineer- 
ing or tcchnology has to do with economy of utility. It is not always manifcst that 
the practitioners of the lalter art do also conduct themselves in a manner that is in 
confornlity with cconomp of understanding. Thus, the question arises, How does 
technological knowledge becomc science? Before we answer this question, it is worth- 
while to explore the kind or creatures who inhabit these various worlds. 

3. The computationalist 

There are three kinds of animals in the scientific enterprise; and all thesc and morc 
in the engineering zoo, reflecting the vastly greater richness of engineering and 
technology-the list shown in Table I is perhaps more representative than exhaustive. 

In reccnt years, a new branch of scientific and engineering activity called computa- 
tional modelling and simulation has emerged. Today, there are increasingly large 
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Table 1 

Screnrrsrs E,tgmecri. 

I .  Theorists 1. Taolmakcis, ~nvenbrs,  i~~novators 
2. Expenmentalists 2 Scientists 

a )  T h e o r m  
b) Expenmentaiis:~ 
c) Compul,~noriali~rs 

5. ConzpurarronnI~,srs 3 .  Deazgnen 
4 Analysts 
5. Manufacturcrs, tabrimtors 
6 Planners. managers 
7. Diagnost~cists, troubleshootem 

Computationalists 

Egypt~ans, Babylonians 
Archmedes 
Krpie~ 
Halley 

numbers of people, who work entirely with computational modelling-often totally 
ignoring theoretical and experimental work. Computationalists, as I shall call the 
group of workers who deal exclusively with such problems, are not really a new 
breed emerging suddenly in the post-computer age. The Egyptians who devised com- 
putational schemes to monitor the flooding of the Nile and maintain their water 
works; the ancient astronomers who invented algorithmic procedures to predict as- 
tronomical phenomena; Archimedes' work on integratory schemes for computing 
areas and volumes which foreshadowed the emergence of the integral calculus by 
several centuries; the twenty or more gears that Kepler spent in immensely laborious 
calculations using Tycho Brabe's data are classical examples of science beginning as 
computation. Thus: much before there was algebra or analysis, computation was used 
to solve problems of a scientific or technical nature. 

It goes without debate that theorists and experimentalists do science, their roles 
have been traditionally defined. But what about those who perform tasks that are 
entirely con~putational in nature. Is their work scientific? Is computation unavoidable 
poisonous drudgery needed only to fill in the gaps on a scientific map or can compu- 
tation be revelatory as well? Can modelling and simulation itself have a richness in 
its activity that allows it to be held to scrutiny by methods which are used to verify 
or falsify the scientific quality of any area or branch of knowledge? This is the ques- 
tion I will address now using as an example some of my recent work in the area of 
the finite element method in computational structural mechanics. 

4. Structural mechanics and the engineer 

Let me briefly explain how and where structural mechanics plays a crucial role in 
the life of the engineer. The most poetic description of the role of an engineer in 
society was made, perhaps very predictably, by Shelley. In his A Defence of Poetry, 
Shelly wrote thus about the role of technology: 
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"Undoubtedly the promoters of utility, in this limited sense, have their appointed 
office in society. Thcy follow thc footsteps of poets, and copy the sketches of 
their creations into the book of common life. They make space and give time." 

The structural engineer's appointed office in society is to enclose space for activity 
and living, and sometimes does so giving time as well-the ship builder, the railway 
engineer and the aerospace engineer enable travel in enclosed spaces that provide 
safety with speed in travel. He did this first, by imitating the structural forms already 
present in Nature. Shelly was therefore only partially right--engineers also copy the 
sketches of their creations from the book of common life. From Art imitating Life, 
one is led to codification of the accumulated wisdom as science-the laws of 
mechanics, elasticity, theorics of thc various structural dements like beams. platcs 
and shells, etc. 

From Archimedes' use of the Principle of Virtual Work to derive the law of thc 
lever, through Galileo and Hooke to Euler, Lagrange, Love, Kirchhoff, Rayleigh, 
ctc., we see the theoretical and mathematical foundations being laid, and then copi- 
ously used by engineers to fabricate structural forms for civil and military functions. 
Solid and structural mechanics is therefore the scientific basis for the design, testing, 
evaluation and certification of structural forms made from material bodies to ensure 
proper function. bafety, reliability and efficiency. 

Today, analytical methods of solution, which are too restricted in application, have 
been replaced by computational schemes ideal for implementation on the digital s m -  
puter. By far the most popular method in computational structural mechanics is that 
callcd the finite clement method. 

5. The finite element method 

The early history of the finite element method shows the convergence of methods 
and practices from three distinct branches of knowledge. From civil engineering, it 
borrowed the concept of matrix method of analyses. From aerospace engineering 
came the finite element discretisation puocedures, as we know it today. Variational 
calculus then provided the formal mathematical rational~sations in terms of energy 
theorems, least action principles, virtual work mcthods, etc. 

The finite element world is now a billion dollar industry, both in terms of sottware 
sold and in terms of analyses costs using such installed software. It is one area of 
engineering knowledge that has become an undisputed commercial success. 

'lhis is not to say that the growth of the method was free of difficulties. There 
were enormous hurdles to cross as well. The best known is a problem known as 
locking. We shall take it up for closer examination now. 

6. F i t e  element discretisalion and the locking phenomenon 

At the heart of the finite element method is a process of discretisation providing 
algorithms that capture the physics of the structural hehaviour of the constituent 
parts of the structure in terms of matrices of discrete numbers relating forces to 
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displacement at the nodes. All structural regions are replaced by a set of sub-domains 
called finite elements. Each element has to model the elasto-mechanical hehaviour 
of the region it replaces. In effect, the differential equations of the infinitesimal 
calculus governing the region are now substituted with discrete matrix relationships. 
These matrices are eminently amenable for manipulation on a digital computer 
through clever book-keeping and database operations. Thus, very large problems 
which are Otherwise intractable by analytical techniques can be solved. 

Over nearly four decades, a systematic process by which continuum structural be- 
haviour is replaced by a discretised description has evolved. At first, efforts to do 
this were founded on engineering intuition and heuristic judgement. It was extremely 
successful in most cases although there were instances where mere technique could 
not resolve difficulties. A scientific basis was required to reconcile this. 

To furnish a scientifically acceptable basis to the procedure it is necessary to estah- 
lish that paradigmatic principles can be identified. Our studiesz show that four funda- 
mental criteria inform this procedure-we shall call them the c-concepts, namely, 
Continuity, Completeness, Consirtency and Correctness. This conceptual framework is 
then used to guide the construction of stiffness matrices and to assess the performance 
of these matrices. 

It is not surprising that of particular concern to us in the finite element method is 
the quality of approximation that can be achieved. We desire a quick convergence 
to the correct solution as the number of elements increase (or the element sizes 
decrease). This will depend on the quality of the element stiffness matrix which is a 
function of element shape, size and aspect ratio and of the order of the chosen 
displacement field representation by what are called the shape functions (also called 
basis functions, trial and test functions, etc.). In simple displacement elements, these 
shape functions are usually taken in the form of polynomials. The conventional wis- 
dom around the time we began our work around 1978 specified two well-known 
conditions that these polynomial functions must satisfy to ensure convergence: these 
are the completeness and continuity conditions. 

Continuity 

The displacement functions chosen must allow strains at element interfaces to be 
finite-this means that there must he a certain degree of continuity of displacement 
between adjacent elements. It is not always easy to ensure this. Within each element, 
one can argue that the continuous representation of the displacement fields will en- 
sure compatibility, but this may be violated along element edges unless special care 
is taken. Where strains are defined by first derivatives of the displacement fields, a 
simple continuity of the displacement fields across element edges suffices-this is 
called C%ontinuity. There are problems, as in the classical Kirchhoff-Love theories 
of plates and shells, where strains are based on second derivatives of displacement 
f i e lde in  this case, continuity of first derivatives of displacement fields across element 
edges are demanded; this is known as C1-continuity. 

We shall, however, find a large class of problems (Timoshenko beams, Mindlin 
plates and shells, plane stressistrain flexure, incompressible elasticity) where this 



574 G. PRATHAP 

simplistic view oi continuity does not assure reasonable (i.e., practical) rates ol con- 
vergence-in Eacl, formulations that take libcrties, e.g., the non-conforming or incom- 
patible approaches, significantly improve convergence. The reasons for this will be 
found in the consistency requirements later. 

Completeness 

Displacement iunclions must he so chosen that no straining within an elemcnt takes 
place when nodal displacements equivalent to a rigid body motion of the whole ele- 
ment are applied. This is called the strain-free rigid body morion condition. In addi- 
tion. it is necessary that each elemenl must be able lo reproduce a state of constant 
strain, i.e., if nodal displaccmcnts applied to the element are compatible with a con- 
stant strain state. this mus! be retlccted in the strains computed within the element. 
There are simple rules that allow these conditions lo be met and these are called the 
completeness requirements. If polynomial trial functions are used, then a simple assur- 
ance that the polynomial functions contain the constant and linear terms, etc. (e.g., 
1, x in a one-dimensional (?problem; 1, x,y in a two-dimensional C?problem) will 
mcet this requirement. 

Unfortunately, elements derived rigorously from these basic paradigms can behave 
in unreasonably erratlc ways in many important situations; errors as large as lOQ'% 
are often reported! These difiiculties are most pronounced in the lowest order finite 
elements. The problems enconntered were called locking, parasitic shear, etc. By 
locking, we mean that finite element solutions vanish quickly to zero (errors saturat- 
ing quickly to ncarly 100% !) as somc struclural parameters become vely largc. 

Some of the problems may have gone unrecorded w~ th  no adequate framework or 
terminology to classify them. As a vcry good cxample, for a vcry long time, it was 
believed that curved beam and shell elements performed pooriy because they could 
not meet the strain-free rigid body motion condition. However, more recenlly, the 
correct error-inducing mechanism has been discovered and these problems have come 
to be called mrmlmme locking. 

Initially, this discouraged the use of low-order displacement elements and attcntion 
was turned to higher order eienients and to the assumed strainistress elements. 
Around the same time, many 'tricks' were tried out on the displacement tormulations, 
and somc of these resulted in acceptably accurate elements. These tricks included 
techniques such as reduced integration. addition of non-confon-ining modes, energy 
balancing, B-bar methods, etc. Some of these violated the well-known norms for 
finite elcment formulation but were acceptcd because the elements thus formulated 
were more accurate than the rigorously formulated ones. It was clear at this stage 
that the paradigms known so far were neither sllfficient nor always necessary. It was 
imperative that some new paradigms be Lound to make the study o l  such elements 
more scientific. We address one aspect of this problem in this lecture. 

To put the locking phenomenon in a propcr perspective, it is first necessaly to 
~recognise that errors, whether in displacements, stresses or energies, due to finite 
element discretisation must converge rapidly, at least in a 0(h2) manner or better, 
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where h is the 'diameter' of the element. if a Ialge structure (domain) of dimension 
L is sub-divided into elements (sub-domalns) of dimension I ,  one expects errors of 
the ordcr of (UL)'. Thus, %ith ten dements in a one-dimciisional structure, errors 
must not be more than a few per cent. However, in problems where locking is 
noticed, en-ors are much larger-the discretisstions fail in a dramatic lashion, and 
this cannot be resolved by the classical (pre-1977) understanding of the finitc element 
method. We shall explain the issues involved using the example of the linear 
Timoshenko beam elen~ent.  

Most published literature, including all textbooks, associate locking with the rank 
or non-singularity ot the stiffness matrix linkcd to the penalty Lcrm (e.g., the shea~ 
stil'fness matrix in a Timoshenko beam element which becomes very large as the 
beam becomes very thin). Howcver, on retlcction, it is obvious that these are 
syn~ptoms o i  the problem and nor the cause. The high rank and non-singularity is 
the outcome of certam assumpiions made (or nor made, i . e . ,  leaving certain unantici- 
pated requirements unsatisfied) during the discretisation process. It is therefore neces- 
sary to trace this to the origin. An explanation offered by Prathap and co-workersz 
is promising-they have argued that it is necessary in such problems to discretisc the 
penalty-linked strain fields in a consistent way so h a t  only phvsicallq meaningful 
constraints appear. In this lecture, we show how what originated a7 an exercise in 
computation led to the formulation of a paradigmatic principle like consistency. 

7. Analysis of the Timoshenko beam element 

The Timoshenko beam theory3 offers a gcneral formulation of beam flexure. The 
total strain encrgy functional is now constructed from the two independent functions 
for transverse deflection (wx) and section rotation 0(x), and it will now account for 
the bending (flexural) energy and an energy of shear deformation. 

where the curvature x = R,, the shear stram y = 0 - w , ,  and a = kCA is the shear 
rigidity. E and G are the Young's and shear moduli and k, the shear correction 
factor used in Timoshenko's theory. I and A are the moment of inertia and the area 
of cross-section. 

The Timoshenko beam theory will asymptotically recover the elementary beam 
theory as the beam becomcs very thin, or as thc shear rigidity becomes very large, 
i.e., a + m, This requires that the Kirchhoff constraint 8- w,,+ 0 must emerge in 
the limit. For a very large a ,  these equations lead directly to the simple fourth-order 
differential equation for w of elementary beam theory. Thus, this is securcd very 
easily in the infinitesimal theory but it is this very same point that poses difficulties 
when a simple finite element approximation is made. 

A two-noded beam element based on this theory will need only d' continuity and 
can be based on simple linear interpolations! It was therefore very attractive for 



general-purpose applications. However, the clement was beset with problems, as we 
shall presently see. We can show that locking in (? displacement-type finite element 
formulations is due to a lack of consistent definition of the strain fields that are 
constrained in the penalty regime when the discretisation is made. 

7.1. The conventional formulation of the linear beam element 

The stram energy of a 'l'imoshenko beam element of length 21 can be written as the 
sum of its bending and shear components as 

[ ( i n  N rTx + 112 ~ G A  ( 2 )  
where 

x = o,, (34  

y = 8 - w , ~ .  (3b) 

In the conventional procedure, linear interpolations are chosen for the displacement 
field variables4. This ensures that the element is capable of strain-free rigid body 
motion and can recover a constant state of strain (completen~ss requirement) and 
that the displacements are continuous within {he element and across the element 
boundaries (continuity requirement). We can compute the bending and shear strains 
directly from these interpolations using the strain gradient operators given in eqns 
(321) and (3b). These are then introduced into the strain energy computation in cqn 
(2), and the element stiffness matrix calculated in an analytically or numerically 
exact (a 2-point Gauss Legendre integration rule) way. 

For the beam element of length 21 the stiffness matrix can be split into two parts, 
a bcnding rclated part and a shear related part? It turns out that the rank of the 
shear stiffness matrix is two. It is also useful to introduce a note about the singularity 
aspect. This element stiffness matrix can be used to model a cantilever beam by 
assembling into a global stiffness system with the rigid body motions suppressed. This 
can be done by deleting the first two rowa and columns ol  the stiffness matrices. It 
can be seen that the shear related part of the assembled global stiffness matrix is 
non-singula~ . 

Following Hughes et aP we shall model a thin cantilever beam under a tip load 
using this element. We choose E=1000. G=37500000, t-1,  L=4; using a fictitiously 
large value of G to simulate the thin beam condition. Table I1 gives the normalized 
tip displacements for this case as obtained by Hughes et ap  (where an error was 
present) and as later corlected by Pratl~ap and Bhashyams. We can see a trend 
emerge as the number of elements are increased. The tip deflections obtained for 
thc thin beam, which are several orders of magnitude lower than the correct answer, 
are directly related to the square of the number of elements used for the idealization. 
In other words, the discretisation process has irhroduced an error so large that the 
resulting answer has'a stiffness related to the inverse of N2, where N is the number 
of elements used in the computation. Tlis is clearly unrclated to the physics of the 
Timoshenko beam and also not the usual sort of discretisation errors encouulered in 
the finite element method. It is this very phenomenon that is known as shear locking. 
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Table II 

Nornlalised tip deflertiuna lor a thin caniiiever h a m  

The error in each element must be related to rhe elenlent length. and therefore 
when a beam of overall length L is divided into N elements of equal length 21. the 
additmnal stiffening introduced in each elernent due to shear locking is seen to be 
proportional to 1'. In t k t .  numerical experimenls5 showed thc locklng atilfness prog- 
resses without limit as the element depth t decreases. Thus, we now have to look 
for a mechanism that can esplain how this spurious stilfness of (lit)' can be accounted 
for by considering the mathematics of the discretisation proccss. 

The magic formula proposed by Hughes er UP to overcome the locking seen for 
the liriear beam element is the reduced integration method. The bending component 
of tne strain errerg! of a Tlrnoshenko beam elcmcnt of length 21 shown in eqn (2) 
is integrated with a one-point Gaussian rule as this is the minimum order of inregra- 
tion required for exact evalui~tion of this strain energy. However, a mathematically 
exact evaluation of the shear strain energy will denland a two-point Gaussian integra- 
lion rule. It is this rule that resulted in the shear stiffness matrix ot rank two that 
locked. Hughcs et a14 experimented with a one-point integration of the shear strain 
energy component and the shear-related stiffness matrix changed, the rank now hav- 
ing reduced to one. The performance of this element was extremely good, showing 
no signs of locking at all. 

If we repeat the exercise of using a single element to model a cantilever beam, 
the shear-related part of the assembled global system matrix will be singular. Thz 
convenlional wisdom was to relate this singularity to the improved periormance seen 
above. The argument proceeded thus. The functional of eqn (2) becomes constrained 
when   GAP >> El. This lcads to  finite element equations (aftcr assembly) of the 
form 

( K ,  + aK2) a + f = 0 (4) 

where a is the displacemcnt vector and f, the load vector. K1 is the unconstrained 
part of ihe stiffness matrix (in this instance, that derived from the bending energy) 
and K2 the constrained part (here derived from the shear energy). The penally 
parameter u (here, y c  know this is kGA121H) increases as the beam becomes thinner, 
and it i s  argued that eqn (4) degenerates to 

K2a = -fla -t 0. (5 



This degemerat~on can rake place only if K2 is non-singular. It is possihle ro establish 
then that locking will set in. i.e., a -i (1 as a becomes very large. In a conventional 
dispiacement-type tormirlation o i  constrained media elasticity (as in rhe exacriy integ- 
rated case), rhis singularity does nor arlse naturally. The reduced inregration stratcgy 
is therefore viewed as an arritice that can bring about the required singularity so that 
in the penalty limit, the eqn (4) does not degenerare as seen above. 

There are seve~al  weaknesses in this heuristically appealing argument. Ir is not 
cenain thar no violar~on ot the variarional theorems has &en place in this 'trick' of 
introducing singularity into the consirained rnarrix. The argument also does rior asscrt 
that rhere is a unique way in which singularity must be achieved. 'l'hirdly, there is 
no possibility of constructing a numerical cxpcriment that can 'falsify' (verify) this 
paradigm and lead ar rbe same time to  a meashre ot error in terms of the pcnalty 
paramerer kGA121EI. With the field-consistency paradrgm it was possiblc to do this2. 

Our findings indicate thar K, (aiter assembly) is non-singular only in the lowesr 
order rcprcsentatlons. For higher order elements, therefore, evcn with exacr intcgra- 
tion, there will be rnle consrraints which reflect some degree of sirrgulari~y. An argu- 
menr in terms of rank becomes more useful here; however, it is not always easy to 
establish for a high-order element whar the correct rank of ihe penalty-linked stiffness 
marrix should be. Our paradigmatic requirement that there should only be true con- 
straints and no spurious constraints, which we will derive below, will auromarically 
ensure rhar rhe correct rank is mainrained. 

There are other closely related arguments which have found their way to thc 
textbooks but which are no more scientikalty valid than the singularity argument. 
One relares to  the rank of thc shear stiffness matnx-we can undersrand why it is 
insisted that the rank Inusr not be too high. Reduced integration heips to reduce this 
rank condirion. Another very closely relared paradigm concerns the number ot con- 
straints contained in the stiffness marnx, the so-called consrraint-counting procedure. 
Reduced inregrar~on Lowers the consrrainr counr as one can show quire easily thar 
the number of consrramrs acrivared arc linked to the number of integral1011 points 
used to integrate the constrained srram energy. Anothcr argumenr that was current 
some trme ago was that of relating locking ro the spectral condition number: exactly 
integrated sr~tfness matrices always had a higher spcctral condition nunibcr and this 
was linked to the locking effect. Note that these are all heuristic arguments, reilectmg 
the symptoms of the problem (locking is seen where there is a nun-singular con- 
 trained matrix, or where rhe rank is roo high, etc.) and not really the cause of the 
problem. We shall now look lorward to a paradrgm that can trace the problem ro 
the root aud then can arguc forward to whar can be called a laisifable error estimate. 

7.2 Thr jield-con.sisinq p ~ ~ , ~ i d r p ~ r  

It is c lea~ from the torriiularion of the l~near  Timoslrenko beam clemenr usmg exact 
mregrarion (we shall call ~t rhe fieid-Enconsisrenr element) that thc compfererress and 
continuiry paradigms, which had bee11 for a long time considered to be necessary and 
sufficient conditions for descrrbing displacement interpolations, are really nor enough 
in some problems. We shall propose a rcquirernent for a consistent intarpolation of 



If we start with linear iria? rcinctions w i  K. :!ria ci. H~ ccZr, associ:.re gcr.rraglrca 
di*placemcnt conslimis v,irh s:r<h of t : ~  r~xc:r:t!::,ituw ,,, .: ,,laitnk., 

19 = q )  + (11 p,':: (ki] 

We can relaie soch consranis lo mc iicld rarr.:hk!, ol:iuinirig 112 rnr5 -!rnc!r, ;,na in 
discretibed sense; ihus, ( k s i !  -- W,I  a[ I : (J, bi! = H m d  ill!: =- n , ,  3: h -- I!. T'i:is ,(en# - 
tatron would become useful wk~cri we lry to *:xpant? ,rcr+," InL. :!,hclttl:ai::\n: ij;o;t:.s 

can alter the inhiresinial ucscrrprmn ot the pri:olcin ri alrc s:'-2.0 ~ j ~ . i i l r  .?.: ici ~ c , i -  

sisterlrly defined. 

An exact evaluation oi the srrain encrges tor an eierricrrr oi icr~gih l i  wiii riow yic!d 
the bending and shear srrain erlergy as 

U ,  = 212 (hl) (L!) j(h1//)j2 (&a)  

It is possible to sec from this thar in the consrrai~iir:g p~iysnc;al nrilir oi  a w r y  ~ h i n  
beam modelled by elements of length 21 aald deprh I, me skrear sifiilri clergy m cqn 
(8b) mclst vanish. An cxaininarron of the sondirmr~s prouucea tly rnls :i.uil:~i.!.?-:~r 
shows that the following constrams would ernage rn \ucn a lrnil 

In the new terminology, consrraint (%) is iieitl coriswrenr a> ir corrrams corrsi;inrs 
from both the coniriburing displacernenr lnrerpoiarlons relevant ro rile descnprlons c,f 
the \hear strain field. Theae consrrainrs can the11 accorimuuare rhe r r w  Kircrrhofi 
consrlainrs in a physically meaningful way, i . e . ,  in m ~r~i~rixxsi.ma! s m i e ,  ihis I\ eqml  
to the condiriorr (8-w,,) + 0 at the elemen; cenrroud. In direct cwnrtasr, consrra~nl 
(Yh) conrains only a term from the seciion n~iailon %. h corisuarnr irnjmseu ~:n inis 
will lead to an undesired restricrion on  ti. In an lnliniresimal sense, thia 1s tqu:ir to 
the condition H,, - 0 ar the elernenr cznrroid (E.e., no bellding rs ailowed :o dcvewp 
in the element region). This is the "spurious consrramt' thai iciids ro strear lockmg 
and also violent disturbances in the shear force prediction over r?ie ~.lr:!ncnr". 
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7.3. A 'falsifiable' error model for the field-consistency paradigm 

We must now determine that this field-consistency paradigm has a scientffic quality. 
To do this, we borrow an idea from the philosophy of science, the falsifiability 
theorem of Karl popper6. We know that the discretised finite element model will 
contain an error which can be recognised when digital computations made with these 
elements are compared with analytical solutions where available. The consistency re- 
quirement has been offered as the missing paradigm for the error-free formulation 
of the constrained media problems. Therefore, to establish the scientific validity of 
this coneptual scheme, it is necessary to first devise 3. procedure that will trace the 
errors due to an inconsistent representation of the constrained strain field and obtain 
precise a priori measures for these. We must then show by actual numerical experi- 
ments with the original elements that the errors are as projected by these a priori 
error models. Only such an exercise will complete the scientific validation of the 
consistency paradigm. Fortunately, a procedure we shall call the functional re- 
constirution technique makes it possible to do this verificationzs5. It is however beyond 
the scope of this lecture to go into the details of this procedure here. 

7.4. Numerical experiments to verify error prediction 

Our functional reconstitution procedure (note that this is an auxiliary procedure, 
distinct from the direct finite element procedure that yields the stiffness matrix) now 
provides an instrument for the critical self-examination of the consistency paradigm. 
It indicates that an exactly integrated or field-inconsistent finite element model tends 
to behave as a shear flexible beam with a much stiffened flexural rigidity I'. This 
can be related to the original rigidity I of the system by comparing the expressions 
derived from the functional reconstitution e x e r c i ~ e ~ , ~  as 

We can show through a numerical experiment that this estimate for the error, 
which has been established entirely a priori, starting from the consistency paradigm 
and introducing the functional reconstitution technique, anticipates very accurately, 
the behaviour of a field-inconsistent linearly interpolated shear flexible element in an 
actual digital ~ o m ~ u t a t i o n ~ ~ ~ .  This has shown us that the consistency paradigm can be 
scientifically verified. Traditional procedures such as counting constraint indices, or 
computing the rank or condition number of the stiffness matrices could offer only a 
heuristic picture of how and why locking sets in. 

7.5. Concluding remarks on the Timoshenko beam element 
These exercises show us why it is important to maintain consistency of the basis 
functions chosen for terms in a functional which are linked to penalty multipliers. 
The same conditions are true for the various finite element formulations where lock- 
ing, poor convergence and stress oscillations are known to appear. It is also clear 
why the imposition of the consistency condition into the formulation allows the cor- 
rect rank or singularity of the penalty-linked stiffness matrix to be maintained so that 
the system is free of locking or sub-optimal convergence. Again, it is worthwhile to 
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observe that non-singularity of the penalty-linkcd matrix occurs only whell the ap- 
proximate fields are of very low order. In higher order inconsistent tormulations, 
solutions arc ohtaincd which are sub-optimal to solutionz that are possible if the 
formulatiorr is carried out with tbe consistency condit~on imposed o prfori. Devices 
such as reduced integration permit the consistency requirement to be introduccd when 
penalty-linked matrix is conlputed so that the correct rank which ensures the impos- 
ition of the true constraints only is maintained. 11 is easy to predict all this by examin- 
ing thc constrained strain-field terms from the consistency point of view rather than 
performing a post-mortem examination of the penalty-linked stiffness matrix from 
rank or singularity considerations as is mostly advocated in the literature. 

8. Conclusions 

What I've sought to demonstlate in this lecture is that a critical rationalisation6 can 
be made of the procedures adopted in the finite element method (FEM). The PEM 
is a proecdure for solving field equations appearing in engineering analysis. It can bc 
viewed as a purely computational device to eiiminate the drudgery from the painful 
analysis and algebra otherwise required to solve such boundary and initial value prob- 
lems. However. when difficulties werc noticrd when the procedures were applied to 
certain problems (e.g., the locking phenomenon), it hecame clear that the conceptual 
framework which existed then (continui~y and conzp1etene.s~) was insufficient to ac- 
counl for this phenomena. When we sought to enlarge this conceptual framework, 
the consistency paradigm was one that emerged as a satisfactory explanatory scheme. 
In this lecture, I've briefly outlined how it was used to provide a crilical rationalisa- 
tion of the difficulties encountered. Some of the questions we asked or were asked 
as we went about this task werc: 

1. Are there laws (theories, hypotheses, paradigms) governing PEM methodology 
(or computational methodology in general) as therc are in descriptions of natural 
phenomena, space and time? 

2. Can singular statements be derived from thcse that can be falsified by numerical 
experimentation? 

3. Is error analysis (from the point of view of FEM or any other computational 
methodology) predictive? 

I end my lecture on optimistic note that my answers lo all these questions are in 
the affirmative. We could trace the evolution of paradigms in FEM practice from 
myth and superstition to the consistency paradigm as a falsifiable basis2. I hope this 
lecture has captured this spilit-that concepts like completeness, continuity, consis- 
tency and correctness (not dealt with here; see prathap2 for details) are relevant not 
only in a paradigmatic description of natural pl~enoniena but also in areas of derived 
(secondary?) knowledge like computational mechanics 
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