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I. INTRODUCTION 

For large deflection of plates usually a non-linear equation is involved 
which cannot be exactly solved. But Berger [I] has shown that if in driving 
the differential equation from strain energy, the energy due to the secand 
stra;n invariant in the middle plane of the plate is neglected, a simple fourth 
order differential equation coupled with a non-linear second orthr equation 
is obtained. He has also solved such equations for the problem of 
circular plates under various boundary conditioas subjected to normal 
uniform load throughout the plate. Since then numerous problems have 
been solved with remarkable ease and accuracy by different authors. Iwinski 
z.nd Nowinski [2] generalised the procedure of Berger to orthotropic plates 
and examined the deflections of circular and rectangular plates under uni- 
form load and different bounclin conditions. 

In this note the author has attempted to solve the problem of the large 
deflections of orthotropic circular plates under symmetrical load. The 
hecorresponding problem on isotropic plate is due to Banerjee, B. [3]. 

NOTATIONS 

I (r) = symmetrical load function at a distance from the centre, 

U 	.= radial displacement: 

w 	= deflection normal to the middle plane of the plate, 

a 	= radius of the plate, 

It 	= thickness of the plzte, 

Dr  = average flexual rigidity of the plate, 
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As r —0 the central deflection Iv o  is obtained as 	' 
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Fm. 1. Centre deflection of a clamped orthotrophic circular plates 
under symmetrical load. K 
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respectively, and these are the results obtained by Banerjee, B. Pi • in his 
corresponding isotropic plate problem. 

NUMERICAL RESULTS 

A graph has been plotted showing the central deflection against th e  
load function. In calculating the deflection one has to start from equation 
(18) with an rssumed value and then using equations (18) first and then 
using (15) will yield the results. 
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