J. Indian Inst. Sci. 63 (C), Apr. 1981, Pp. 13-21 © Indian Institute of Science, Printed in India.

Isolation and separation of β -galactosidase from Aspergillus nidulans

R. SATHIAGANA SEELAN AND E. R. B. SHANMUGASUNDARAM University Biochemical Laboratories, University of Madras, Guindy Campus, Madras 600 025, India.

Received on October 29, 1980.

Abstract

Resolution of β -galactosidase of Aspergillus nidulans on DEAE-cellulose revealed two peaks of enzyme activity—designated as Enz A (the 0.2 M NaCl eluted fraction) and Enz B (the 0.3 M NaCl eluted fraction). Enz A was obtained in larger yields and possessed higher activity than Enz B. Purification achieved with Enz A was 10.73 fold while that of Enz B was 1.56 fold only. Some of the kinetic studies undertaken with Enz A have been reported here. Our evidences do not indicate that the two enzyme fractions are different molecular forms of β -galactosidase.

Key words : β -galactosidase, Aspergillus nidulans, isolation.

1. Introduction

Significant studies on the inductive response and the biochemical properties of β -galactosidase in Aspergillus nidulans have been carried out by Paszewski et al¹, Gajewski et al² and Fantes and Roberts³. Paszewski et al¹ reported the presence of only one β -galactosidase in A. nidulans; Fantes and Roberts³ later demon trated the existence of two molecular species of β -galactosidases. However, no attempt has been made to isolate and separate the enzyme from A. nidulans. In this paper, we present for the first time the results of such an attempt. The β -galactosidase-rich fraction has been partially purified.

2. Materials and methods

2.1. Chemicals

o-Nitrophenyl- β -D-galactopyranoside (ONPG) and p-nitrophenyl- β -D-galactopyranoside (PNPG) were obtained from BDH, Poole Ltd., England. o-Nitrophenol (ONP), p-nitrophenol (PNP) and Sepharose 4B-200 were purchased from Sigma Chemical Co., St. Louis, Mo., USA. DEAE-cellulose was obtained from Eastman Organic Chemicals, Rochester, USA. Sephadex G-200 was obtained from Pharmacia Ltd., Uppsala, Sweden; bovine serum albumin (BSA) was obtained from Fluka Chemicals, and marker proteins for molecular weight determination (in the form of a Protein Calibration Kit) from Bochringer Mannheim, W. Germany. All other chemicals were of analytical reagent grade.

2.2. Organism

A wild strain of Aspergillus nidulans which grows with green conidia, belonging to the Glasgow stock of strain, was used.

2.3. Preparation of lactose cultures

Lactose media (about $3 \cdot 1$) were prepared according to the method of Pontecorvo *et al*⁴ using lactose (1%) as the sole carbon source. The media were distributed in three 4-litre Haffkine flasks. The flasks were sterilized in an autoclave at 15 p.s.i. for 10 min and then inoculated with a heavy conidial suspension of *A. nidulans* prepared in sterile saline. The flasks were incubated for 4 days at 37° C for maximal enzyme induction.

2.4. Assay of B-galactosidase activity

The enzyme was assayed by the method described by Fantes and Roberts³ with slight modifications. Except where indicated ONPG was used as the substrate for all experiments. The assay mixture contained the following: sodium phosphate buffer (pH 7.6, 0.05 M), 2.5 ml; MgCl₂ soln. (0.01 M), 0.3 ml; ONPG soln. (0.01 M), 0.3 ml; enzyme extract, 0.5 ml and water (to a total volume of 4.0 ml). The reaction was terminated by the addition of 1.0 ml of K_2CO_3 after incubation at 37° C for 20 min. Readings were taken in an ERMA photoelectric colorimeter at 420 nm using *o*-nitrophenol as standard. For PNPG, *p*-nitrophenol was used as the standard. Enzyme activity was expressed as nano moles of the respective nitrophenol liberated/min/mg protein. One unit of enzyme activity was defined as the amount of enzyme that liberates 1 nano mole of the respective nitrophenol/min.

Protein content was determined by the method of Lowry et al⁵ using BSA as standard.

2.5. Molecular weight determination

Molecular weights were determined by the method of Andrews⁶ using Sephadex G-200. The gel was packed to a column height of 1.5×23.0 cm and equilibrated with 0.05 M sodium phosphate buffer (pH 7.6). The elution volume (V_0) of the enzymes were compared with those of marker proteins—cytochrome c, chymotrypsinogen, albumin H, albumin R, aldolase and ferritin. Void volume (V_0) was determined using Blue Dextran 2000. By plotting log Mol. Wt. against V_0/V_0 , the molecular weights of the enzymes were determined.

3. Results

3.1. Purification

Isolation and partial purification of β -galactosidase from A. nidulans were carried out at 0-4° C.

Step I: Preparation of cell-free extracts

Wet mycelia (about 30 g) were washed well with 0.05 M sodium phosphate buffer (pH 7.0) containing 1.0 mM magnesium chloride in a cold room at 0.4° C. The mycelia were then mixed with glass powder and homogenized in a chilled mortar and pestle with the same buffer. The extract (about 100-150 ml) was then centrifuged at 15,000 x g for 15 min at 0° C in an MSE superspeed refrigerated centrifuge. The supernatant was collected and used for ammonium sulfate fractionation.

Step II : Ammonium sulfate fractionation

The bulk of the enzyme (88%) was found to precipitate between 30% and 60% $(NH_4)_2SO_4$ saturations. The supernatant from Step I (about 100 m!) was first brought to 30% $(NH_4)_2SO_4$ saturation—the amount added was calculated using the formula devised by Kunitz⁷. Addition of $(NH_4)_2SO_4$ was made with constant stirring for 30 min. The suspension was then centrifuged at 6,000 × g for 15 min. The precipitate was discarded and the supernatant was brought to 60% $(NH_4)_2SO_4$ saturation and was again stirred and centrifuged. The precipitate was collected and dissolved in about 10.0 ml of 0.05 M sodium phosphate buffer (pH 7.6)—Buffer A. The solution was then dialysed overnight against 2 litres of Buffer A containing 1.0 mM magnesium chloride.

This step was accompanied by a 1.5 fold increase in specific activity. Overnight dialysis in a cold room at 0.4° C against Buffer A containing 1.0 mM magnesium chloride resulted in no significant loss of activity as observed by Fantes and Roberts³.

Step III : DEAE-cellulose chromatography

The dialysed enzyme solution was then loaded on to a DEAE-cellulose column $(2.0 \times 12.5 \text{ cm})$ washed according to Peterson and Sober⁸. The column was first developed with 200 ml of Buffer A and subjected to step-wise elution using 0.1 M, 0.2 M and 0.3 M NaCl solutions prepared in the same buffer. Eight ml fractions were collected at a flow rate of 1.0 ml/min. Two peaks of β -galactosidase activity (Fig. 1) were observed—one in the 0.2 M NaCl eluted fraction (designated as Enzyme A) and the other in the 0.3 M NaCl eluted fraction (designated as Enzyme A) formed the major fraction and possessed high β -galactosidase activity. The tubes containing maximum Enzyme A activities were pooled together and subjected to further purification.

Enzyme A and Enzyme B constituted 84% and 6%, respectively of the total eluted activities. The yield of Enzyme A was 47% while that of Enzyme B was 8.6%.

16 R. SATHIAGANA SEELAN AND E. R. B. SHANMUGASUNDARAM

Step IV: Chromatography on Sepharose 4B-200

Enzyme A was layered on to a Sepharose 4B-200 column $(1.5 \times 22.0 \text{ cm})$ equilibrated with Buffer A. The column was eluted with this buffer at a flow rate of 20 ml/h and 3.0 ml fractions were collected. Fractions with high Enzyme A activity (Fig. 2) were pooled together and used for kinetic studies.

The yield of Enzyme A was 19.5% and exhibited a 10.7 fold increase in activity.

The complete purification data are presented in Table I.

3.2. Molecular weight determination

Enzyme A and Enzyme B had molecular weights of 450,000 and 320,000, respectively.

The enzyme solution, after $(NH_4)_2SO_4$ treatment, was dialysed and loaded on to a DEAE-cellulose column $(2 \cdot 0 \times 12 \cdot 5 \text{ cm})$ previously equilibrated with $0 \cdot 05 \text{ M}$ sodium phosphate buffer (pH 7.6). The column was subjected to step-wise elution using $0 \cdot 1 \text{ M}$, $0 \cdot 2 \text{ M}$ and $0 \cdot 3 \text{ M}$ NaCl solutions. Eight ml fractions at a flow rate of $1 \cdot 0 \text{ ml/min}$ were collected.

β-GALACTOSIDASE OF Aspergillus nidulans

3.3. pH and temperature dependence of the enzymes

Both enzymes exhibited maximum activity in the pH range $7 \cdot 6 - 7 \cdot 8$ and at temperatures between 37° C-40° C.

3.4. Kinetic properties

The apparent Km values of the enzyme (Enzyme A) for the substrates—ONPG and PNPG—were determined by using the Lineweaver-Burk plots (Figs. 3 and 4). The Km values of Enzyme A for ONPG and PNPG were 1.82×10^{-3} M and 3.33×10^{-3} M, respectively; in the presence of 1.0 mM lactose, the Km values with the two substrates were 2.22×10^{-3} M and 4.00×10^{-3} M, respectively; with 10.0 mM lactose, they were 2.86×10^{-3} M and 5.00×10^{-3} M, respectively. It is clear that the enzyme has greater affinity for ONPG than for PNPG.

812

FIG. 2. Sepharose 4B-200 elution profile of Enzyme A obtained from DEAE-cellulose. Enzyme A from the DEAE-cellulose step was layered on to a Sepharose 4B-200 column (1.5×22.0 cm) equilibrated with 0.05 M sodium phosphate buffer (pH 7.6). The column was eluted with this buffer at a flow rate of 20 ml/hr and 3.0 ml fractions were collected.

Kinetic data on Enzyme B have not been presented because of the low fold of purification.

I.I.Sc.-2

Table I

Summary of the purification of β -galactosidase from A. nidulans

Step	Purification	Vol. (ml)	Total units	Total protein (mg)	Specific activity	% Yield	Fold purifica- tion
1	Crude extract	100	2953-2	184.00	16.05	100.00	
Π	(30%-60%) (NH ₄) ₂ SO ₄ fractionation	10	2594 • 4	107.70	24.08	87.85	1.50
ш	DEAE-cellulose chromatography (i) 0.2 M NaCl-Enz A	32	1397.8	15.67	89·20	47.33	5.56
	(ii) 0.3 M NaCl-Enz B	24	254.3	10.16	25.03	8.61	1.56
IV	Sepharose 4B-200 chromatography of Enz A	9	576.9	3.35	172 · 20	19.53	10.73

Specific activity—n moles of ONP liberated/min/mg protein; 1 unit is defined as the amount of enzyme that liberates 1 n mole of ONP/min under incubation conditions.

4. Discussion

Resolution of β -galactosidase of A. nidulans on DEAE-cellulose revealed two peaks of enzyme activity—designated as Enyzme A (Enz A) and Enzyme B (Enz B). Enzyme A was the major fraction possessing maximum β -galactosidase activity. The molecular weight of Enzyme A (450,000) coincided with one of the enzymes isolated by Fantes and Roberts³ but was different from that detected by Paszewski *et al*¹ since the only enzyme detected by them had a molecular weight of 150,000. A study of the Michaelis constants indicated that Enzyme A had a two-fold greater affinity for ONPG relative to PNPG. Lactose was found to be a competitive inhibitor of the hydrolysis of ONPG and PNPG possibly because of its apparent structural similarity to both these substrates. Studies with Enzyme B were, however, precluded because of the low fold of purification. The apparent Km values of Enzyme A for ONPG and PNPG were found to be $1 \cdot 82 \times 10^{-8}$ M and $3 \cdot 33 \times 10^{-8}$ M, respectively. The Michaelis constants of the β -galactosidase of A. nidulans for either of these substrates (or of any other) have not been reported so far.

Data available from our work did not indicate that Enzymes. A and B were two distinct molecular forms of β -galactosidase. On the other hand, Enzyme B could very well be an artifact of the major enzyme, Enzyme A, for the following reasons:

- (i) Step-wise elution, as the one adopted by us, is known to result in artifacts of enzyme simulating enzyme activity in discrete fractions⁹.
- (ii) A study of the Km values of Enzymes A and B, after DEAE-cellulose chromatography, revealed no significant variations (data not presented).

FIG. 3. Lineweaver-Burk plot of Enzyme A using ONPG as substrate ($\bullet - \bullet$ ONPG as substrate; $\blacktriangle - \blacktriangle$ ONPG + 1.0 mM lactose; $\blacksquare - \blacksquare$ ONPG + 10.0 mM lactose).

- (iii) Both enzymes exhibited similar pH and temperature optima.
 - (iv) The molecular weight difference between Enzymes A and B (450,000 and 320,000, respectively) appeared insignificant when their elution volumes on Sephadex G-200 (17 ml and 19 ml, respectively) were considered.

FIG. 4. Lineweaver-Burk plot of Enzyme A using PNPG as substrate (● - ● PNPG as substrate; ▲—▲ PNPG + 1.0 mM lactose; ■ -■ PNPG + 10.0 mM lactose).

This appears to be the first and only report on the isolation and separation of β -galactosidase from A. nidulans. Attempts in increasing further the purity and yield of the enzyme by other purification techniques are in progress.

Acknowledgement

RSS thanks the University Grants Commission, New Delhi, for the award of a Junior Research Fellowship. β-GALACTOSIDASE OF Aspergillus nidulans

References

1

- 1. PASZEWSKI, A., Chojnacki, T., Litwinska, J. and Gajewski, W.
- 2. GAJEWSKI, W., LITWINSKA, J., PASZEWSKI, A. AND CHOJNACKI, T.

.

- 3. FANTES, P. A. AND ROBERTS, C. F.
- 4. PONTECORVO, G., ROPER, J. A., HEMMONS, L. M., MACUCONALD, K. D. AND BUFTON, A. W. J.
- 5. LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L. AND RANDALL, R. J.
- 6. ANDREWS, P.

7. KUNITZ, M.

8. PETERSON, E. A. AND

Regulation of lactose utilization in Aspergillus nidulans, Acta Biochim. Pol., 1970, 17, 385-391.

Isolation and characterization of lactose non-utilizing mutants of Aspergillus nidulans, Mol. Gen. Genet., 1972, 116, 99-106.

β-galactosidase activity and lactose utilization in Aspergillus nidulans, J. Gen. Microbiol., 1973, 77, 471-486.

The genetics of Aspergillus nidulans, Adv. Genet., 1953, 5, 141.

Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265-275.

The gel-filtration behaviour of proteins related to their molecular weights over a wide range, Biochem. J., 1965, 96, 595-606.

Crystalline inorganic pyrophosphatase isolated from baker's yeast, J. Gen. Physiol., 1952, 35, 423-450.

Column chromatography of proteins : substituted celluloses,

- SOBER, H. A.
- 9. ALM, R. S., WILLIAMS, R. J. P. AND TISELIUS, A.
- Methods in enzymology, Vol. 5, Eds.: Colowick, S. P. and Kaplan, N. O., Academic Press, Inc., New York, 1962, pp. 3-27.
- Gradient elution analysis. I. A general treatment, Acta Chem. Scand., 1952, 6, 826-836.