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ABSTRACT

This paper deals with the elasticity problem of a spherically anisotropic elastic
medium bounded by two concenrtric spherical surfaces subjected to normal pressures.
The material of the structure is spherically anisotropic and. in addition, is conti-
nuously inhomogeneous with mechanical properties varying exponentially along
the radius. An exact solution of the problem in terms of Whittaker functions is
presented. The St. Venant’s solution in the case of homogeneous material and
Lamé’s solution in the case of homogeneous isotropic material are derived here from
the general solution. The problem of a solid sphere of the same medium under the
external pressure is also solved as a particular case of the above problem. Lastly,
the displacements and stresses of a composite sphere consisting of a solid spherical
body made of homogeneous material and a nonhomogeneous concentric spherical shell
covering the inclusion, both of them being spherically anisotropic, are obtained when
the sphere is under uniform compression,

Keywords: Radial deformation, Stresses, Spherical shell, Nonhomogeneity, Inclusion.

I. INTRODUCTION

The elastic behavior of a spherically aeolotropic material was t.ilst
studied by St. Vernant in 1865. He considered the probleq of a‘sphencal
shell under uniform internal and external pressures and 'apphed l-us results
to some piezometer experiments. A description of _hls al}alyms may ll))e
found in the treatise by Love [1] or in the book of anisotropic elasticity by
Lekhnitskii [2]. - )

Increasing use of composite materials aerospace _3pplllcffitt_;0“;:§ias
for the study of problems of nonhomogencous anisotrpic nti ;; 1111 ogeneous:
Jricf and Chou (3] have treated a dynamic o ({flh?‘ kn?"-l] have investi-
cylindrically acolotropic shell. Sengupta and Basu Mallick oo bt
gated the radical deformation of a nonhomogeneous spherically
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clastic shell unde
consider the elastic pre

rnal and external pressures. All of them
be proportional to n-th power of the radjus

An attempt has been madc here {0 find thc_*: analytica:l solution for the
radial deformation and corresponding stresses In 4 sphe'ncal shell made of
spherically acolotropic heterogencous material under .the influence of normal
pressures  On both boundaries. Thf: correqundlng resuits for hpmo-
geneous spherically aeolotropic material are derived hel:e as a particular
casc and these werc obtained by St. Venant, as quoted 1n Lekhnitskii [2},
The expressions calculated by Lame and given in Love [1] for homogeneous
isotropic bodies are found from the genr.-":ral resul_ts. T_he results for a
solid sphere of nonhomogencous spherically anisotropic medium under
the external pressure are derived from the general expressions when the
radius of the inner surface approaches Zzcro. At the end, radial displace-
ments and stresses for both the portions of nonhomogencous sphericaily
anisotropic shell having concentric homogencous spherically anisotropic
inclusion are presented here, when the outer surface is loaded with a uni-
form normal pressure. In all the cases, the nonhomogeneity of the material
is characterized by the elastic parameters Cij, vide Grief and Chou [3],

Scngupta and Basu Mallick [4] as

Cii = Aij exp (— kr), (4, j =1, 2, 3) (1)
a new variation, where A;; and k are the prescribed parameters of the
material concerned.

r uniform inte
meters to

2. FUNDAMENTAL EQUATIONS

The basic system of field equations in linear isothermal static elasti-
city theory are:

(a) the' gencralized Hooke’s law, (b) the linearized strain displace-
ment equations, and (c) the stress equations of equilibrium. Here the

centre .of a spherical shell or sphere is taken as origin and spherical polar
co-ordinates (r, 8, ¢) are used.

F9r a spherically anisotropic body, the generalized Hooke’s law may
be written as, vide Lekhnitskii 2]

O = o 5 =
r cll eTT + 012 eﬁg T (312 €¢¢

o = 7 = 7] -
] c12 €rr 1 Coo egg T Co3 €¢¢

Og = Cra€ry 1 Cypy €gg + Cpy Eyy
oo =T (Cop — Cyp) P
Trg = C44 €7y

Tre = Cufrg (2)
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where Cij are functions of the elastic moduli, Poison’s ratios, and (for a non

homogencous material) also functions of the spatial position. For the
present problem Cij are already mentioned in equation (1),

Now for a_pu_rely radial deformation of the body, the displacement
components (4, T, W) must be of the type &t =1i(r), ® =0 and

w =0,

(3)
Due to this assumption the strain components, in terms of displace-
ments, are '

Y
Trr — d’_' 8 Eﬂa — '} e ¢
éﬂfﬁ = e-fa — €-r¢, = U. (4)

The non-zero stress components in equations (2), in terms of displacement
and Aij, may now be wiitten as

Op = exp (— kr) [Au %L; + 2 1‘:.]
Og = G4 = exp (— kr) [312%, + (Ass + As) g] . - (5)

In the absence of body forces, two equations of equilibrium are identi-
cally satisfied and the non-trivial equation of equilibrium becomes

d .. 2 A
2;.(0'1') T ';,(Ur — G,) = 0.
This equation of equilibrium, with the help of equations [5], stands as

d? i dii Aes + A +F(kr—=DAal o _ 0 (6
re dr‘; | (Z—kr)rar——2{—-’2 e }“ 0. ®

3. METHOD OF SOLUTION

We use transformations

(7)
¥ X=kr and E=Vexpg
In the equation (6) and rewrite it accordingly,
dv dv — 2 (A5 + A3 :...’\13.)
2> ¥ Nl iy S N
X dx? 4 2xdx +{ ;
(8)

+(l-—-2)i": x—'—?}V=O-

11Sc.2
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Agﬂin for
y = X'_l U, (9)
the cquation (8) reduces 1O - .
2 (A + Aaa — A ( ) P =
xd;rgf+{ 2 (Age - 1 )‘11) 4}U-_O
(10)

Following Whittaker and Watson [5] one can write down the solution of

the equation (10) in the form
U= AM;, (x) + BM;, -5 (%) an

where M. ., (x) are Whiitaker functions in which

i )
. 2p='{l —I— 181—1 (A22 + A23 — A12); > 0, (nonlntegcr) (12)
and
120 (13)
Ay

A and B are arbitrary constants.

If 2p be an integer or zeto, the solution of the equation (10) may be
written as |

U= AW;, (x) + BW.; ,(— x) (14)
where
szﬂ(x)“"[lé;(i:_ll}l) Mkﬂ(x)'i'rg-lv(d)C) Mk p( ) (15)

in which C=14+2p, d=1% — k 4+ pand I'(r) is 2 gamma function of .

.Fina'"jf the r?dial displacement @ (r) satisfying the equilibrium cquaton
(6) is obtained with the help of equations (7), (9) and (11) as

i =P gy k) + BM:_, (k1] (16)

Substituting this expression for  in cquations (5), the nonvanishing Stresses
may now be obtzined in general form

_exp (—r- kr[2) [dap () + Ba p ()] 0

. — k |
X k112) 4. () + BBy ()
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where
k!' I 2 2}\ ]
00 =[50 0+ 20] 0t ) 4 ar, (k)
kr — 2 Ary + A
Bip (r) = [ hr Muet kr 23] M, (kr) 4 2, M'; ., (kr)
(18)

4. THE PROBLEM OF A NON-HOMOGENEOUS SPHERICAL SHELL

We consider here a spherical shell ¢ < r < b. The structure js made of
nonhomogeneous spherically anisotropic material. The shell is under

the influence of uniformly distributed internal and external pressures. The
boundary conditions are as follows :

(19)

0y = — p,, on the surface r = a}
;

Oy = — p,, Oil the surface r = b

On application of thuse boundary conditions in the first equation of (17),
we get

Aap (@) + Ba_; (a) - pya exp (ka/2) =0
Aap (8) + Ba_p (b) + p, b exp (kb/2) = 0.

Solving the above cquations for 4 and B and inserting their values in equa-
tions (16) and (17), onc obtains the complete solution for radial displace-
ment and stresses as

‘= ex%/;m [{P1ba_p (a) exp (kb/2)~ poac_p (b) exp (ka/2)} M»,p (k7)

+ {posap (b) exp (kaj2) — pibap (a) exp (kbj2)} My, —p (kr)],

Op = cxXp (A_{rkr/z) [{p, ba_..p (a) exp (kb/2) — Pola_p (b)

X exp (kaf2)} ap (r) + {poaap (b) exp (ka2) — p,bay (@)
X €xp (kb/2)} ap (r),

% =65 = “PLZ K1) (1) ba_y, (a) exp (kBJ2) — potop (8

X exp (ka/2)} By (r) + {poacp (b) exp (kaf2) — pibop ()
X exp (kb/2)} B_p (r)],

LiSc —3
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where
M = ap (@) a_p () — a-p @ op (b). (20)

4.1 Dilation of the Cavity
vity of the shell changes under the action of

f the ca :
The volume o the relative change of this volume Vo say

internal and external pressurcs,
is found to be

o= TV (30) =3I ((pibay @ exp (kb2)

F
— poaa_p (b) exp (ka/2)} M, p (ka) + {Poacp (b) exp (ka/2) |
— piba_y (a) exp (kb[2)} M=, -p (ka).] - (@2D)

4.2 Stress Concentration in the Neig}rbourlzood of the Cavity

It is of interest to find the stress distribution in the vicinity of a spheri.
cal cavity. Generally the stress reaches its maximum valuc in the area
which passes through the radius vector near the inner surfacc. Thercfore

we have on the surface of the cavity r = a

ol = (gl = P K2 114 40 (a) exp (kE12)

— Poaa_p () exp (ka/2)} Bp (a) + {poaap (b) exp (ka/2)
— D1bap (a) exp (kb/2)} B_p (a)]. | - @)

4.3 Stresses in a Compressed Shell Due to Internal Pressure

~ If the spherical shell undergoes compression due to thc action of
Internal pressure only, the external surface being stress-frce, the stresses
of such a compressed shell are obtained from the equations (20) to be

- k (a —
op = E_Q_a_e_]ﬂ)__[_ﬁd(gh_r_)/g_] [ap (b) a_y, (r) — a_p (b) ap (J" )],

3y = B == Pod €Xp []J‘C{E‘a — f_)/Z] [ﬂ-p (b) B—p (r) — a_p (b) ﬁp (r)] (23)

4.4 St. Venant’s Solution

" A spherical shell (a S r <)), made of homogencous spherically aniso-
Opic material, is considered under the same boundary conditions (19)-
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Stresses of: such & shell may be found from the second and third equa
uations

of (20) on making k>0 and they are

ypP-38/2

or = 1t (67) = p1b¥? . p0a3’2)

k=0 (g)ﬁ_ (g_)p[ aP o
P

Similarly,

O EA Lt
% 2 (Ays 23)+(2p— 1))\13

4Ap, 'I‘ (2p — l) Ayy ,.zp (15’4;)"53'3 bP — pbd 2 ap)

4"12 - (2p + D) Ay

(24)
respectively.

It i1s to be noted that the following limits are used to compute the
stresses in (24)

Lt fihae OB (), 1 ML B0 (8, o)

(24 a)

Same 'sign of p is to be retained for the above limits,

The expressions of stresses in equations (24) for the above shell problem
are the same found by St. Venant and given in Lekhnltskll [2]. |

4.5 Isotropic Body and Love’s Results

The elastic property of a spherically anisotropic material is describes
by five elastic parameters and they reduce to two independent parameter
for isotropic material, It is treated asa special case of spherical anisotropy.

For thepresent nonhomogeneous problem the relations are
Cll o ng — (Ao + 2’.1.0) CXp ('- k?‘), C]_a — C]ﬂ — AO CXp (— kr)

25
Cei = 2o €Xp (— k1) (25)
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where A and po are
tion (25) the above r¢

Ny = dgg = Ao F 200 A=A = Au=p (26)
The results obtained in equations (20)-(23) for spherically aniSOtl'OPic by
ho:logeneous bodies can also be used as the results for isotropic —

homogeneous bodies If we replaf:e there: Ai_i. by A, and Ho as given in equatiopg
(26). We further not€ that the application of relations (26) in equatiop

(12) follows

As a test case we make use of equations (26) and (27) in the lagt two
equations of (20) and take the limit as &—0 (tor homogeneous materia|)

and arrive at the following results:

poa® — pb® m 1 (po—po) a*b?
3

[amé constants. Following equation (1) ang -
lations in terms of Ay are

Or = 758 _ 48 r b —a® °
3—pb® 1 1 (p,— po)a®b?
w=o="HE— —1 s B—a (28

These are the stresses in a spherical shell (@ < r < b) of homogeneous iso-
tropic elastic material, subjected to internal and external pressures on the
boundaries as in equations (19). These expressions were calculated by

Lameé and are presented in Love [1].

4.6 Solid Spherical Body

A solid spherical body (0 <r <b) of nonhomogeneous spherically
acolotropic material undergoes compression by an uniformly distributed
external pressure p;,. The stresses of such a sphere are obtained from the

last two equations of (20) when the cavity of 1adius ‘a*® diminishes to
Zero, le., as a—0:

or = — pr(bfr)2 exp [k (b — 1)/2)

X Wkr — 2) 4y + 405} M; o (kr) + 2kr A;y M2, (k1)
(kb —2) Ay + 40a M, (kD) + 2kb Ao M, (KDY

% =8y = — p, (b/r)2exp [k (b — r)/2)
x WAL — 2) Ny + 2 (g + M)} My, (kr) + 2kr Ay M2, (KD

* e -

2, + 4 M; . (kb) + 2kbA, M, (kb) g
2
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since

M, (2) zM’;
Lt e = O, t S _kt!E) -
0 Mg _, (2) - My (2~

and

IMis, (2) _ ) ' |
:I:>[:- M;_:-_, (z) £ p- (29 a)

5. THE PROBLEM OF A COMPOSITE SPHERE

We now consider a homogeneous solid sphere (0 < r < a) of spheri-
cally anisotropic matrial surrounded by a nonhomogeneous concentric
spherical shell (@ <r < b) of spherically anisotropic medium and the
whole body is acted upon by a uniform radial pressure on the external
bounding surface r = b, At the surface of separation r = a the materials
are sufficiently rough to ensure the continuity of radial stresses and displace-
ments. The relevant boundary conditions are then

6r = — p, on the surface r =5

and
u=1u, o= 6&,o0nthesurface r =aq (30)

In the case of a homogeneous solid sphere (0 < r < a) Cij = XN for
k=0 in equation (I) and the stress equation of equilibrium correspond-

Ing to the equation (6) turns out to be

o d(aduy _ 2(CetCu—Ch), _,
s dr (r2 3!:) | Cu ‘

The general solution of the above equation may be put as

u = Crm-ue Dym-12

where
m={} 4+ 2 (Cyy + Cyg — C1.)/Cus}"'* (31)

To ensure the finiteness of the stress at every point of the S;).lld] spheere;
including the neighbourhood of the origin, we are to take the displacemen

and stresses as (supposing m > 3/2)
U = Crim-1ye
Qp = Camr{m—auz

& Uﬂ —— 0’¢ —. Cbmr‘m"’”
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where
bm = (Cga + Ca3) + Cia (m — 1/2).

(33)

al shell (@ <r < b) the displacements and stresses are

And for the spheric %
given in equations (16) and (17). Boundary conditions (30) are applieq
to squations (16), (17) and (32) to get

Aap (b) + Ba_p (b) + p1b €Xp (kbf2) =0

adm = 2C s + C].l (”I - ljz)’

exp }_Ekﬂ_!/z) (AM: , (ka) + BM,_, (ka)] = Ca‘™=1/®
. .

exp_(—- kﬂ/Z) [Aﬂp (a) .Bﬂ-—p (ﬂ)] == Cama(m-ﬂﬂl_ (34)
a

ns for 4, B and C and inserting their values in

Solving the above equatio
equations (32) and in equations (16), (17) we get the following sets of results :

Displacement and stresses in the sphere (0 <r < a)

. pbexp (k@4 DR are | (ka) — a_p (a) My, (ka))

B Nka““ﬂ"ﬂ’

m-—1
x r( 1211

Oy = P]_b ex}%k[la(ﬂ(lil;lz_ b)/Z] [aﬂ (ﬂ) M k, —p (ka) T dop (a) M kP (kd)]

b
g = 0 = DO A DV 10 (0 My, (k) ap (@) Mz, (KO

- X by rm-32 . (35)

Displacement and stresses in the spherical shell (@ < r < b)

- pbexplk (b 4+ r)2 - “
. Nkr e [{q__e_zrcg_&_(__ka-) M, (ka) = -5 @]

X Mg (k1) == {a_m 63;1‘3: (ka) M; , (ka) — oy (a)} M; _,(kr)]

&o=

5 —Pbexp k(b — " | ’
. Nr . [{a g - &9) pt3, -, (k) = o9 )

X Bp(r) — {am e;;g (ka) Mg , (ka) — ap (a)} B_p (r)] ;
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5. — P10 explkb— 1211 (am exp (ka) ,
, N | { e L0, ) ~ ey @) ap

- {am e;g ) M., (ka) — op (a)} ap (’)] :
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where

N=ap® {"™F2ED s ha) — oy (@) }
—ap @) " TLD pr Gy @}. (36)

6. NUMERICAL RESULTS

All the results are for structures with finite outer radius b that is twice
the inner radius a. It should be noted that the resylts previously derived
are quite general. The problem investigated involve inhomogeneous
materials with properties varying ¢xponemtially with the radius according
to the equation (1).

We choose the elastic constants A, = 26-92, A = 13:46, Ay, = 8-47,
Ay = 312, A,y = 6-53 in terms of a unit 10" dynes per square centimeter
and k = 2/a (numerically) for Material 1. The present analysis may be
useful in studying the stresscs for layered media having exponentially increasing
or decreasing stiffness. We make use of the values of Ajj In equations

(12) and (13) to obtain p = 1/3 and k = 0 and from equations (18) we get.
rla o, ()T (43) a, (r)T (230 B, (NIT(43) B, (1) T(2/3)
X 5403 24-89 29-96 12-87
2 161-40 64-33 89:03 35-30

- For the first problem the internal surface of the shell f;uucture is
dlways under a uniform normal pressure p,, whereas its surface: 1S _SUPPOS"-'d
to be stress-free for system I and is subjected to a pressure.wh_:ch IS half‘ of
the internal pressure for the system II. Our main intcrest lies 1n computing
the stress concentration near the vicinity of the caivity. The above obtained
Values for Material I are applicd to the last equation of (20) and it yields
M = —540-9 (2/3) I'(4/3). Ultimately the cquation (22) shows [Ua]me:-
= (= .2776 p,) and (— .5297 p,) for the leading systems I and Il res;;nd
Uvely. Also the third equation of (20) leads to [?a] = (-0105 po)

(~ .2748 Po) for the loading systems I and 1 respectively.
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[n the second problem with inclusion W& choose Cy = 6-17, ¢, &

_5.97, Cps = 262 Cy = [-64 (with the.same unit mentiopeq
iously) for Material 11 for the homogeneous portion 0 < r < q. Using
of Cij in equations (31) and (33) the values of m, ap, by, are
oy e 1052 A= 10-67, bm = 10-82. The other PoTtion
,<r<b is filled up with Material' I. We calculate the value of

— . N of equation (36) for Material 1 and find N = — 2054 I 23
f equations (35) and (36) may now be had from the

constant N
I (4/3). Stresses 0
table below TABLE 1

o ol

Homogeneous

Nonhomogellﬁous

rla — &, (P2 "._&ﬂ/pl —,/Py —ay/p,

1-0 1-635 +960 1-635 1-657
; | -4 1-435 - 793

1-6 1-252 -693

1-8 1-113 615

7.0 1 +554

’_—_—___——’———_—___—_
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