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ABSTRACT

The present note deals with the study of gravitational instability of an infinite
layer of finite thickness surrounded by a non-conducting material in the presence
of magnetic field directed parallel to the interfaces and rotating uniformly about
an axis perpendicular to the interfaces. The perturbations considared here are more
generalthan studied by Ognesyan in the case ofnon-rotating layerand by Chakraborty
_ In the case of rotating layer, as in these two investigations the perturbations are
taken symmetrical to the mid-plane of the conducting layer. In the absence of the
surrounding non-conducting material the system is always overstable. In the
presence of the surrounding material the system remains overstable in the presence
of the magnetic field if the surrounding material is lighter than the conducting
material but when the surrounding material is heavier than the conducting material
there exists a critical wave number k* for a given /, the wave number transverse to
the magnetic field and the axis of rotation, such that when k < k* the system is
unstable. The rotating system in the absence of magnetic field is always unstable
irrespective of the relative magnitudes of the densities of the conducting and non-
conducting materials.

INTRODUCTION

In the present note we shall study the gravitational instability of: fl
rotating fluid layer of infinite extension but of finite thickness, and Wlt'h
constant density in the presence of an external uniform magnetic field. This
ideally conducting fluid with density p is surrounded on lb(z)[h sides b_y non-
conducting fluid with density p,. Recently Ognesyaf‘n’ has studied the
gravitational instability of fluid layer of finite thickness iIn Ehe _presence of a
magnetic field and Chakraborty® has extended this investigation to'mclude
the Coriolis forces arising due to the uniform rotation of the fluid layer.
In both these investigations, the perturbations are taken to be symmetrical
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have confined their discussjop
:ddle-plane of the layer and they ; :
abt:l;t tcl;emxiiﬁ fhe surrounding non-conducting medium 18 SBECAL. In the
10 tne ¢a;

: f general perturbations and have
ave studied the problem o : ; :
present note Teoi;' the non-conducting material surrounding the conducting
:aken ai:fzuzotc that the system is overstable for all wave-lengths whenp
ayer,

0. even in the presence of rotation and magnetic field. T_hus in CQ-n}m_
g? :m;tizn to the case of symmetrical perturbations, Eltcre. IS no critical
w,:velcnglh separating the domains of stability and instability in this case,

In the presence of surrounding non*cnthlcting materia_l, our conclusions
are as follows: (i) in the absence of rotation and magnetic field the system
is overstable or unstable aecording as g, < or > p_i, (ii) in the prt?sence of
magnetic field, when rotation is absent, the system 1s overstapl.ﬁ: Or ‘unstable
according as p, < or > p and (iii) in the presence of rotation, when the

magnetic field is absent, the system is unstable.

For the sake of comparison, we have discussed the instability of the layer
under symmetrical perturbations in the presence of surroundiug non-conducting

material in 5.

2. LINEARIZED EQUATIONS AND fHEIR SOLUTION

We consider a homageneous distribution of gravitating ideally conducting
fluid mass with constant density p in the form of a plane layer of thickness
2h. The xo y plane is taken to coincide with the unperturbed middle-level
of the layer and positive z-axis in the upward direction normal to the
unperturbed fluid sutfaces. This layer is surrounded by a non-conducting
uniform matetial of density p,.

In the equilibrium state the conducting fluid is taken immersed in an
external uniform magnetic ficld H, directed in the x-direction. The entire

material is assumed to be rotating uniformly abount the z-axis with angular
velocity 2

T_he: linearized hydro-magnetic equations for the conducting layer
determining the perturbations are :

Equation of continuity ;

div v = 0, [2.1]

Equations of momentum :

-
PlRY/*1) 420 V] = = Vp 4 4 (cur h) ~Hy - pV 0, [2.2]
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Maxwell’s Equations :

divh = 0, [2. 3]
dh/3t = curl (v x Hy), [2.4]
and
Poisson’s Equation :
ViU=o, [2.5]

where p, v, h, U denote the perturbations in

L2 _ pressure, velocity, magnetic
field and gravitational potential.

Using the same notation as for the conducting medium the corresponding
linearized equations for the non-conducting fluid are :

Equation of continuity :
divve=0, [2.6]

Equations of momentum :
—>
p.[(3v/>1) 4+ 20 vl]= — Vp- p, VU, [2.7]

Maxwell’s Equations :

divh =0, [2.8]

curlh=0, [2.9]
Poisson’s Equation ;

ViU =0, [2.10]

In order to study the stability of the system, we assume that all the
perturbations vary as exp [i{e ¢ + k x + Iy)].

From [2.3] and [2.4] we have
b (Hyklo)v. [2.11]

By taking the curl of the momentum equation [2.2] and substituting the
value of 4 from [2.11], we have

2
LU;_ r=m20x )
dz
Al-20k \ [2.12]
Uy = Uy 5 Ol o Ak r
oz 2 2 d ’
and i i A(k '*'_’.),._‘1 , )
m* (2R 1+ Ak) dz
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, A+ 7)
where m==—="40°
2 p
LI HE
A= -
and ! (ﬂ p a )

From [2.12], we have
0.: = (Cl em: + Cz #‘mr) ’

Al-28Qk mz -
_ - C C mz ,
O (291+Ak)( 1€™ +Cre™™)

—iA(K2+ 1) .
r-*—‘ . C H‘II_C mz "
) m(2[.?l+Ak)( 1€ 2€ )

where C; and C; are arbitrary constants, 7

From [2.5] /
U=g explk?+17)"?z] + gaexp[ - (k% + #)"22],

where g, and g, are arbitrary constants.

Then from [2.2] we get the amplitude for the pressure as

For the non-conducting material, from [2.7], we get
0, m C ™4 C" o™

(icl-2Qk)
V., = — il ' m'z N -m'-
" lick+201) (" 5L

}

and o i & a(kz_'*‘ ’2) ! m’z ‘
T Goks20]) €€ =Ce™), |
where m’"«’,,_“z(kz'*"z)

’ n .
and C', C" are arbitrary constants. *

[213]

[2.14]

[2 15]

[2.16]

[2.17]

[2.18]
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From [2.8] and [2.9] we have
h=grad ¢,
where ¢p="Lexpl(k?+7)'"z] + L' exp [ — (K2 + 1%)112 2] [2.19]
and from Poisson’s equation [2.10]
U=g exp[(k®+ )" z] + g" exp[ - (k2 4+ 2)"27], [2.20]
where L, L', g', g" are arbitrary constants.
The perturbation in pressure is given by
p="C(ipofk)licv,—20Q0v]—p,U. [2.21]

3. BOUNDARY CONDITIONS AND DISPERSION RELATION

The perturbed interfaces between the conducting and the non-conducting
fluids are given by

zy=h+(8z), expli(o s+ kx + Iy)]
and z;=—h+(82), exp[r’(ot-i—kx-i-ly)],

where (8z),, are the amplitudes of the displacements at the interfaces. We

note that this type of perturbation is more natural than the one considered
in references {1, 2].

The perturbation n, in the unit normal s, to the boundary is given by
ny (82 ik, 8gil, 0) exp [i (o1 + kx + Iy)].

The gravitational potential satisfies the following boundary conditions :

At the interfaces

(i) gravitational potential is continuous, i.e.

[V]=0 [3.1)
and

(ii) the normal component of the gradient of the gravitational potential 1s
continuons, i.e.

v v]=o. [3.2]
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The boundary conditions satisfied by the velocity and electromagnetic

fields, in reference [4] are:

u=rnyv, mn[B]=0, [3.3]. [3.4]
nx[B]=umoi* J*x B—n[p]=0. [3.5], [3.6]

In the above, 7 is the unit normal vector to the surface directed in the
conducting fluid, p and v are the pressure and velocity at an interface, the
square brackets denote the jump in the enclosed quantity upon crossing the
interface from the nonsconducting to the conducting fluid and B denotes the
airthmetic mean of the magnetic inductions on the two sides of an interface.

The boundary conditions satisfied by the perturbations are obtained
from [3.1] —[3.6] by linearizing these equations. The perturbed boundary
conditions have been satisfied at the unperturbed interfaces, z= + h, after
taking into account the contribution of the perturbations of these interfaces

to the perturbations evaluated in 2,

The condition [3.4] gives the perturbation in the magnetic field in the
outside medium to be zero. Solving for j* from [3.5] and substituting in [3.6],
we find that the x and y components of [3.6] are identically satisfied.

-

Finally [3.1], [3.2], [3.3] and the z-component of [3.6] give four boundary
conditions to be satisfied at the upper and the lower interfaces Thus we get
eight homogenous equation for the eight constants g’, g", C', C", C,. G,
g1, &2 and on climinating these constants we get the dispersion relation : |

4G (p - p,)’ 1 (o2 21112
T —— “ p. e —407) 4«Goh _
[ﬂ'(k2+ B)' Tl feoth(k? + )2 h] k23 )" - — Pd(“'u P)]

« (A2 + 4_-92)1!2(,(2 & !2)1;?
(221 + 4k)

+[—"-’-fa+29"("”.:m..k) kuH3
k| (292 I+ 4k) }‘_'*‘]

\ ©

2 2
xtanhu(’; + )% - 0.
| (424207

\

[3.7]

After evaluating the constants in terms of »,(0), the amplitude of the
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Z — component of the velocity at the mid- -plane of the laye
< r, we find
expressions for the amplitudes of the perturbations : ’ " . K iy

i [ - i = . e
= - o e o .

———
' —

— Dy i

Conducting medium ‘ Non-conducting medium
(0) im (2 .QZI + ;4&) I v, =20,(0) cosh mp ™
A(k* +1%) ;’ m' (ick + 2Q1) . ,
Bl - X T ; ?) sinh m' -
v, = 0.(0) im (A4l — 20k <) vy =2v,(0) cosh mh ™"
A(k*+17) | m (el - 20k) .
x sinh miz A 5 ————— sSinh m’ z
: 2 | I.T(k -+ !)
|
v: =0:(0) cosh mz  0-=20.(0) cos h mh e
x cosh m’ =
256 ( 3 (
17 . P~ P, i2nGlp—p, )
°:(0). o (k?41%)'2° 2 (0): o (5 )
[cosh mh exp {(k "1 12)12 4 } ~ [(cosh mh-e*? sinh mlz)ex]:; {(k2 x 1*)'72z}
—sinh mhexp{ — (k% + I?)'?z}] + (e*® cosh mh — sinh mh)

x expi — (k% + 1?)V%z}]

m(2Q1 + Ak) p (mA+2Qf) Po
= —u:0 o = —20v.(0 st §y 0
(0) A*+ 1)k g Ok io(k2+ 1% &
. ZQ(AI—Q.Qk)] - il 20(iel — 20k)
X | ioc — ~ ' x cosh mh e ie - -
(22! + Ak ) | (ick +201)
— pU | xsinhm' z—p, V
|
h=£{_‘.’_’f g s ' h=0.
b |

e . e et i oas - —

4. DiscussioN OF THE DiSPERSION RELATION

We shall discuss the following special cases:

CaseI;: Q =0, p,=0, Hy=0.
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In this case the dispersion relation [3.7] reduces to
1 2
= a coth a = a7, [4.1
4ﬂGP{l a(l + coth c:)] ]
where a = hi( K + I})"2,

i . ically increases from 0 to oo

ction all — {I/c:(l + coth a)}] menotonica |
:sh: iil:reases frcEm 0 to oo . Hence the frequency e is real for all va.lues of
the wave number k and /. Thus in the absence of rotation, magnetic field

and surrounding matter, the system is overstable for all v:*ave lengths. 1Ip
the case of symmetric perturbations studied by Ognesyan’, there exists a

critical wave number below which the system is unstable.

Case II: p,=0, =0, Hy0.

Here the dispersion relation reduces to

4nGpa cotha|l — ~ . + kzqu=o-2 [42]
o a(1 +coth a) p ' ;

We note that the presence of the magnetic field introduces anisotropy and the
wave number in the direction of the external magnetic field appears separately
in addition to the combination (k% + /*)""2, In this case also ¢ is real for all
wave numbers k and /, so that the system is again overstable for all the
wave numbers as in case 1. Hence the magnetic field does not affect the
stability of the system and unlike the case discussed in reference [2] there is
no critical wave number for the system to be stable or uustable.

Case IIl: pg=0, 20, Hy= 0.

Here the dispersion relation reduces to

X
F(a) % tana X, [4.3]
G
where F(a) = fbff [l _ L |
a (1 + coth )
(492-—02)“2
SO that 2 s X?
= ag =4'Q — ey @ [4'4]

1 4. X4
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F(a) is a monotronically increasing, positive function for all positive values
of a.

: ¢
We shall now determine the total number of roots of the dispersion

relation in a circle | X| = R,, in the complex X-plane where R, lies between the
consecutive zeros of sinaX and cosaX, say when (nm/a) < R, < (n+ 1) (n/a).

Let f(X)=F(u)cosaX(l+X2)
and g(X)= - Xsina X.

For large R, [cosa X] and |sin a X | are of the same order of magnitude.

Hence Lt f(X)l-—’—* oo
Rn>= | g(X )|

and by Rouche’s Theorem, the dispersion relation [4.3] has the same number
(2 4 2) of roots within the circle | X| = R, as the equation

F(a) (1 + X*) cosa X =0. [4.5]
Writing the dispersion relation as
X
F cota X = - , 4.6
(@) cota ¥ = —_ 4.6}

we draw the graphs of the right-hand side and the left-hand side of [4.6] for
real positive values of X. [X/(1 + X?)] starts from origin, has the maximum at
X =1, and tends to zero as X—> oo. F(a) cotaX will have n vertical
asymptotes corresponding to the roots of sinaX¥ = 0 within the circle | X| = R,.
Hence there are n number of intersections between the curves representing the
two sides of [4 6], thus giving » roots of this equation. Similarly, for X real
and negative we get n roots. Thus equation [4.6] admits 2n real roots within
the circle | X| = R,.

To determine the number of imaginary roots of [4.6], we set X = iY,
where Y is real, so that it reduces to

F(a)(Y?=1)=Ytanha Y. [4.7]

Again drawing the graphs of the right-hand side and the left-h::md side of
[4.7], we note that the graph of left-hand side is a parabola with vertex a}t
[0, — F(a)] and latus-rectum 1/F(a) cutting the Y-axis at ( 4 ]: 0), Y tanh :;:Ih

is positive and even function of Y for all real values of ¥. It is zero at le
origin and tends to + co asymptotically as | ¥|. These two curves mtersec}:}t only
at two points for which Y*>1. Hence [4.7] has two real roots having
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Thus out of the (2n+2) roots of [4.3] Wflhin
imagi . From the relation [44]
- real and otlier two pure imaginary. €l 4],
Lﬁlﬁnf :I;aztnfz:'call of these (2n + 2) roots for X, o* is always positive, showing

thereby that for all wave rumbers k and /, the system is overstable,

modulii greater than unity.

_CG.S'EIV: puﬂ--o, Hg?fo, .Q;a‘ﬁof

Here the dispersion relation reduces to :

X kK2 V? tanaX
F(a)[F(a) cota X — 1 +X2} "7 11X [4.8]
HE
VZ - M 0
where o
) o o=k
an "(49101—0‘4+2crzk2V2-k4V‘)m -

0,2 kz VZ X2 X4 k2 Vz XZ i)
g =gk 4 : 4.9
ol T2 1A T |0+ XF T Q7 T+ 1 14.9]

Let f(x)=F*(a) (1 +X?) cos’a X
kZVQ
and g(X)=~ [492 sinqu+F(a)XsinaXcosc:X]-
As in the previous case Lt. .-I—F (X )_'—-a»m !
e g (X))
where L P R, < (n +_21_).1. .
a Q

Hence [4.8] will have the same number of roots within the circle | X| =R, as
the equation

F¥a) (1 + X?) cos?aX =0.

This equation has (47 +2) roots. Thus the dispersion relation admits (4n + 2)
roots for X,

We firaw the graphs of the right-hand side and the left-hand side of
[4.81 against the positive values of X. [F(q) cotaX — X/(1 + X*)] has n
ve::ttcal asymptotes corresponding to n roots of sin aX, and it vanishes at the
?Oml? X, ’;UhIZCh azre the roots of the dispersion relation in case III. The
unction (k* V2[4 Q%) tana X/(1 + X?) bas n vertical asymptotes corresponding
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to the roots of cosaX. Hence there are 25 number of intérsections between
the curves representing the two sides of [4.8] within | X| = R,. Similarly for

negative values of X these curves Have 27 interse vi
) ctions givin dn r
the equation [4.8]. glving eal roots for

Let X =iY, where Y is real, then [4.8] reduces to
2 2 k* 2 2
Fla)(Y*-1) = [?Q’ tanh®aY + F(a) ¥ tanha YJ - [4.10]

The function F*(a) (Y? - 1) represents a parabola with vertex at [0, - F?(qa)}
and latus-rectum 1/F?(a). It cuts the Y-axis at (+1,0). The f‘u;wtion on
the right-hand side is even and positive and attains zero value at the origin
and = oo as |Y| —> <o, Hence, for all « and %, there are two intersections
between the curves representing the right-hand side and the left-hand side of
[4.10], which give two real roots such that ¥2= 1.

Thus the equation [4.8] has 4n real roots and two purely imaginary roots.
Corresponding to these (47 + 2) roots, o2 given by [4.9] IS positive. Thus the
system in the presence of both magnetic field and rotation is overstable.

Case V: p,#0, Hy=0, Q =0,

The dispersion relation reduces to

41-.'Gpr1(l--&’)[l— ]_P“/P_]=az(£—“+tanha)- [4.11]

p a (1 + cotha) p

When p,/p < 1, a? is positive for all positiva values of . Hence the systemt -
is overstable. When p,/p > 1, 6% < 0 and the system 1s unstable.

Case VI: p =0, Hy=0, Q=0.

The dispersion relation is given by
2
47Gpa (1 —L2)[1- "Pﬂ-f“?f] +k? L0 g
p a(1l + cotha) P

=0,2(_£_ﬂ+tanhq). [412]
p

Here again, when p,/p < 1, ¢* is always positive and hence the system is
overstable even in the presence of magnetic field. When p, > p, thedispersion
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relation [4.12] reduces to
12 2
. - 1 [k #H1_4ﬂcp(_f.a_1)cm;m (a+_Po/f—l ‘
(Pu/P cotha +1) P P 1 4+ coth «

and negative values of o® i.e. regions of overstability and

Here the positive
ue and the equation

instability are separated by its zero val

kz,u.H% P/P""l
s = 41G(p,—p)cotha |a+- S
p nG (p P) [ I + cotha [4']3]

determines the critical value k* of the wave number k in the direction of the
external magnetic field for a given set of values of p, p,, Ho and I, the wave
number in direction perpendicular to the magnetic field and the axis of

rotation.

Case VIII: p,0, Hy=0, Q0.

Here the dispersion relation reduces to

4 (a) (X>-1) = X[tanh a X + p,/p], [4.14)
where f(a) == IP( _ﬁ)a [l_rl_Poj_P
2 p a(l+cotha)l’
d - =
iR X (0_2_4_('22)“2
. 50 that azn4QIX,2.
X = (4.15)
Let F(X) =4 (a) (X2 =1) coshaX

g(X)=~Xx[(p,/p) coshaX +sinh aX]

so that Lt. |/ CX)' — n
R,.-)-..Ig(x)l oy Where..(.l_ <R, < (n+i)f_
=

Hence by Rouche’s Th
: eorem, the dispersi :
number of roots within the circle | x| = E;i’u ;:I:h;e:::tlig?io[“‘lﬂ S -
n

¥ {a) (X*=1) coshaX =0.

This equation has (24 + 2) roots.
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We draw the graphs forzthe two sides of [4.]4] for all positive values of
X. When p, <p, ¢(a) (X*~1) represents a parabola with vertex at
[0, — % (a)] and latus-rectum 1/ (a), and it cuts the ¥-axis at (£1,0).

Consider y=Xp/p+XtanhaX =y, +

The_lstraight line y, -=Xp.,/;_:o passes through the origin and has slope
tan™"'(p,/p). ¥2-=Xtanh aX 1s a positive even function of ¥ atlaining zero
value at the origin and tending t0 oo as |X| =+ co. The straight line y = y,

cuts the parabola y = i (u) (X2 - 1) at two points having the abscisse

¢ (a)
LN . . S
ST P iy

whatever be the relative magnitude of ¢ (a) and p,/p one of the abscissz of

the points of intersection is always positive and greater than one. The abscissa
of the other point of intersection is negative and greater than « 1,

At X = -1
W+ Y= —pu/p + tanh «,

If tanha > p,/[p =tanha* ie., if a > a*, y;+y,> 0.

Therefore the curve y =y, + y, will cut the parabola, which passes through
X= —1, at a point whose abscissa is <—1 ie. |X|>1 If a <a*,
Vi +y2< 0 and the curve ye=yp,+y, cuts the parabola at a point
whose abscissa is > —1, ie. |X|<1. Thus from [4.15],e?> or <0

according as a > or <a*, giving us real or pure imaginary roots for o.

Taking X=iY, where Y is real, the dispersion relation reduces to
J(a)(1+7?) = ——tiﬂ/p+ Ytana'.

Thus the dispersion relation cannot admit pure imaginary roots for X and
hence the equation [4.14] admits 2n complex roots for X. Corresponding to
these 2n complex roots, o is complex for all values of a. Thus the system is

unstable for all wave-lengths.

When po> p, ¢ (@) is negative. One of the roots of [4.14] is now
positive and less than unity. The other root is less than —% as Now y; +y; =
— po/p +tanha <0 at X= —1, For the former root, ¢° <0 and for the
latter root o2 > 0. Once again the other 2n roots are complex. Therefore

‘the system is unstable.
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5.  SYMMETRICAL PERTURBATIONS
ing dispersion relation when th
borty’ has deduced the following dis | .
displairslt;at mr t);re x and y directions are symmetrical about the mid-plane :
4 G (p — po)’ | pﬂ(a —49*)!2+4ﬂ(}phgpn_p_)]
[ (K + 7)) TZ [} +tanh h (K2 + )" 2i&] (k7 -+ P)'* 2
231 2 2 2y12 291 /”--Z,Qk k >
X(A2+4.Q) (k_‘_l__)___)_*_ s & (Q[ 2 )}__ “HE]
(2 Q! + Ak) ko 2RI+ kA) o
(A (k2 +1%)%h
A CO[h ' F(A:+ 4 QZ)lfz_F - 0' [5.]]

He has discussed only the particular cases of [5.1] taking p,=0. We shall
discuss these particular cases in the presence of the surrounding non-
conducting material for sake of comparison with the conclusions arrived in

the last section.

Case I: pog= V. Hy=0, 2=0.

In this case the dispersion relation reduces to:

4=Gpa (1l - p,fp)l[l - (ll :f&;"ﬁi;—)] - (pﬂ/p + cotha) o2 [5.2]

2

When pg < p, 0¢° is positive or negative according as a > a* or <a¥
where a* is the critical wave number given by

a* (1 +tanha®*) = (1 - o./p).

Thus the system is stable or unstable according as the wave number a is
greater or less than o*

When p, > p the dispersion relation can be written as

-—4--Gpu( l)[l— P'/B_"l nlf P
p a(l+tanha) |~ 7\, ToOtha)s

2 s .
and ¢° is negative for all values of q. Hence the system is unstable
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Case 11 : P #0, Hy= 0, Q =0,

Here the dispersion relation redu.es to

0 1—p,/ k% H?2
4nGpa tanha( | — 2 -fl— Lol £ 1 RTTo 62 (] 4 Loy :
Gp ( p)l T+ e (14 Pranh)- 53

When pg < p there exists a critical wave number k* separating the regions of
stability and instability determined by the equation :

— %2 2
4G (p — p,) a*tanha* |1 -- L= po/p 4 k* u Ho =0,
a*(1 +tanh a*) P

where a* =h (k¥ + 17)'7?,

for given values of the wave number /, /1, p and p,.

Z
_"2“”0_47:6@ tanha (Lo —1)|14 PP =1 =a2(1+-£i’tanha)-[5-4]
p a(l + tanh a) p

The right-hand side of [5.4] when equated to zero will determine the critical
wave number k*, which separates the region of stability and instability.

Case IIl: p,% 0, Hy=0, Q = 0.

The dispersion relation reduces to :

X H
gb(a)n—Xz_l(cothX—-f), [5.5]

where ¢(a)_ﬂcpa( _.&)[1_ 1=z ]

p a (1 +tanha)

a
and X“(62#492)”2 »
2 v2
that 0% - 4827 X" [5.6]
§O (X 1)

As in case VII of 4 equation [5.5] will have (2n+2) roots within the
circle | X! = R,. When p, < p, ¢ (a) is either negative or positive, but it is
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For both the cases wa can show as in case Vjj
From [5.6] o? is complex, correspong.
stable for all wave lengths,

always negative for p, > p-
of 4, that 2n roots of [5.5] are complex.
ing to these roots. Hence the system 15 Ul

6. CONCLUSION

In all the special cases that we have considered we note that, if the cop.
ducting medium is surrounded by vacuum, the system is overstable for all the
considered asymmetric disturbances, Wl:lﬂn rotation and magnetic ﬁ_eld are
individually or collectively present. This result may bec c'omparcd with that
obtained in references [1, 2] and [3], that when the perturbations are symmetrical
about the mid-plane of the undisturbed conducting medmm,f t‘he system is stable
or unstable when the wave number is greater or less than a critical wave number.

In the presence of surrounding material wifh p, < p the non-rotating
system is overstable and remains in this state even 1n the presence of magnetic
field. But, when rotation is taken 1into consideration the system becomes
unstable for all the wave numbers. Thus we note that, in the presence of
lighter surrounding non-conducting material, the presence of magnetic field
does not alter the stability criterion. When p,> p, as is obvious from the
physical situation, the non-rotating system in the absence of magnetic field is
unstable, in the presence of the magnetic field the regions of overstability and
instability are separated by a critical wave number which depends on the
strength of magnetic field ; when rotation is taken into account it is unstable

for all wave numbers.

It appears that under the symmetrical perturbations, the system in the
perturbed state is unable to regain its original form as in the sausage type of
instability. However, the possibility of occurrence of such symmetrical
perturbations 1s rare in nature. From this point of view, the present investi-
gation is more general and physically plausible than considered in references
[1,2] and [3]. The cause of overstability in part can be understood in view of
the fact that the velocity component, v, is even function of z, so that the upper
and lower interfaces are so deformed that the crestsand troughs in one correspond
to _the crests and troughs in the other, as if the whole layer is deformed as a
rigid sheet. This sort of perturbation of the layer explains why there is no

critical wave length for instability to set in as in the case of sausage-type: of
deformation.

. W{:: _havtf seen in 5 that the presence of the surrounding non-conducting
lna en:. lslcrmcal to some of: the conclusions arrived in references [1. 2] and [31.
particular we record that if the non-conducting material is heavier than the
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