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ABSTRACT 

The present note deals with the study of gravitational instability of an infinite 
layer of finite thickness surrounded by a non-conducting material in the presence 
of magnetic field directed parallel to the interfaces and rotating uniformly about 
an axis perpendicular to the interfaces. The perturbations considered here are more 
general than studied by Ognesyan in the case ofnon -rotating la yer and by Chakraborty 
in the case of rotating layer, as in these two investigations the perturbations are 
taken symmetrical to the mid-plane of the conducting layer. In the absence of the 
surrounding non-conducting material the system is always overstable. In the 
presence of the surrounding material the system remains overstable in the presence 
of the magnetic field if the surrounding material is lighter than the conducting 
material but when the surrounding material is heavier than the conducting material 
there exists a critical wave number k* for a given 1, the wave number transverse to 
the magnetic field and the axis of rotation, such that when k < k* the system Is 
unstable. The rotating system in the absence of magnetic field is always unstable 
irrespective of the relative magnitudes of the densities of the conducting and non- 
conducting materials. 

INTRODUCTION 

In the present note we shall study the gravitational instability of a 
rotating fluid layer of infinite extension but of finite thickness, and with 
constant density in the presence of an external uniform magnetic field. This 
ideally conducting fluid with density p is surrounded on both sides by non- 
conducting fluid with density p d . 	Recently Ognesyan b 2  has studied the 
gravitational instability of fluid layer of finite thickness in the presence of a 
magnetic field and Chakraborty 3  has extended this investigation to include 
the Coriolis forces arising due to the uniform rotation of the fluid layer. 
In both these investigations, the perturbations are taken to be symmetrical 
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about the middle-plane of the layer and they have confined their discussion 
to the case when the surrounding non-conducting medium is absent. In the 

present note we have studied the problem of general perturbations and have 

taken account of the non-conducting material surrounding the conducting 
layer. We note that the system is overstable for all wave-lengths wh en  

po nt 

0, even in the presence of rotation and magnetic field. Thus in contra- 
distinction to the case of symmetrical perturbations, there is no critical 
wavelength separating the domains of stability and instability in this case. 

In the presence of surrounding nonconducting material, our conclusions 

are as follows: 	(0 in the absence of rotation and magnetic field 	the system 

is overstable or 	unstable according as 	po  < or > ps, 	(ii) in the presence of 

magnetic field, when rotation is absent, 	the system 	is 	overstable or 'unstable 

according as 	pa < or > p and 	(iii) in 	the 	presence of rotation, 	when the 
magnetic field is absent, the system is unstable. 

For the sake of comparison, we have discussed the instability of the layer 
under symmetrical perturbations in the presence of surroundiug non-conducting 
material in 5. 

2. LINEARIZED EQUATIONS AND 11-1EIR SOLU BON 

We consider a homageneous distribution of gravitating ideally conducting 
fluid mass with constant density p in the form of a plane layer of thickness 
2h. The xo y plane is taken to coincide with the unperturbed middle-level 
of the layer and positive z-axis in the upward direction normal to the 
unperturbed fluid surfaces. This layer is surrounded by a non-conducting 
uniform matetial of density p a . 

In the equilibrium state the conducting fluid is taken immersed in an 
external uniform magnetic field H o  directed in the x-direction. The entire 
material is assumed to be rotating uniformly abount the z-axis with angular 
velocity Q 

The linearized hydro-magnetic equations for the conducting layer 
determining the perturbations are : 

Equation of continuity : 

div v 0, 

Equations of momentum : 

pj(v1.>t) + 	x Vp + m (cur110 Ho — pV [2.21 
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Maxwell's Equations : 

div h a=ff 0, {2.3] 
Wm curl ev x Ho), 	 [2.4] 

and 

Poisson's Equation : 

	

17 2  U= 0, 	 [2.5} 
where p, v, h, U denote the perturbations in pnIssure, velocity, magnetic 
field and gravitational potential. 

Using the same notation as for the conducting medium the corresponding 
linearized equations for the non-conducting fluid are : 

Equation of continuity : 

	

div v 0, 	 [2.6] 

Equations of momentum : 

p i,[(v13t) + 2.6)-  x NT] 	— Vp pV U, 	 [2.7] 

Maxwell's Equations : 

	

div h = 0, 	 [2.8] 

	

curl h 0, 	 [2.9j 

Poisson's Equation : 

	

v 2  u amo. 	 [2.10] 

In order to study the stability of the system, we assume that all the 
perturbations vary as exp [i(a t + k x + ly)]. 

From [2.31 and [2.4] we have 

h (110kfc) v. 

By taking the curl of the momentum equltion [2.2] and substituting the 
value of h from [2.11], we have 

Cl 0A 
- 	m v x  

dZ 2  

A1-2S2k) 
vy = vx 	---- 2S2 1 + A k 

[2. 1 2] 

V2 -
-

2 
i A  (k 2  +12) dv, 

m (2121+ Ak) eiz 
and 
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42 (k2 /2) 

where 	 in2 	.—;---- 
A' + 4 S2` 

[2 131 

and 	

fr2 y12 

A =1 i (a — 1/2-7-12--1(1 )• 
P e 

From [2.13 we have 

ex  as (C i e' + C2 es ti , 

Al — 212 k\ 	ena c2e. 
[2.11 

tkY esx 	ciaiic 

—1/1(k2 + /2 ) 
(C1 e rn:  — C2 ea') , 

m(2.121+Ak) 

where C1  and C2 are arbitrary constants. 

From [2.5] 

U = g exp [k 2  + 12) "2  21 g2  exp [ (k2  + /2)11 	 [2 15] 

where ee l  and g2 are arbitrary constants. 

Then from [2.2] we get the amplitude for the pressure as 

p [• 	( 	 p=— 	– 	 4-pU. 	[2.16] 
(2121+Ak) 

For the non-conducting material, from [2.1, we get 

ex  aC' env:  + C" Inns' 

(  jai -•• 212k ) e  Vy 
( 	± 2 

s? 
1)

(C 	+ C e 1"
t

-) 	

[:?..17] 

and a (k 2  4- / 2 ) 
in (to k +212 0 

Vz 	 (CI 	CU  e_1 ' z) 

int2 62 0(2 + 12 ) 
[2.18] 

where 
1:24 - (a 2 – 4Q2) 

and C', Ch  are arbitrary constants. • 
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From [2.8] and [2.9] we have 

h = grad , 

where 	c ag.  L exp [(k 2  + /2) 112 	+ 	exp [ (Ic2 /2)1/2 	
[2.19] 

and from Poisson's equation [2.10] 

U 	exp Rk 2  + 12 ) 112  + g" exp [ (lc 2  + /2) 1)2  , 	[2.20] 

where L, L', g 1 , g" are arbitrary constants. 

The perturbation in pressure is given by 

	

Polk )[i v x  - 2 S2 vy] — p o  U. 	 [2.21} 

3. BOUNDARY CONDITIONS AND DISPERSION RELATION 

The perturbed interfaces between the conducting and the non-conducting 
fluids are given by 

z h + 	exp [i (a + kx + y)] 

and 	 z2 	h+ (5 	exp [i (at + kx + 1Y)] P 

where OA . , are the amplitudes of the displacements at the interfaces. We 
note that this type of perturbation is more natural than the one considered 
in references [1, 3 

„ 
The perturbation ni  in the unit normal n o  to the boundary is given by 

r;1 en (5z ik, Szil, 0) exp [i (ut kx + 1Y)]: 

The gravitational potential satisfies the following boundary conditions : 

At the interfaces 

(i) gravitational potential is continuous, i.e. 

and 

(ii) the normal component of the gradient of the gravitational potential is 

continuons, i.e. 	
74 v v ] o. 	 [3.2j 
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The boundary conditions satisfied by the velocity and electromagnetic 

fields, in reference [4] are: 

14 iw• /1•V, 
	11,[ s] 	a t 	 [33] , [3.4] 

nA 	[13} = MO j * , j* x —13 — An {p} cas O. 
	 [3.5], [3.6] 

In the above, is the unit normal vector to the surface directed in the 

conducting fluid, p and v are the pressure and velocity at an interface, the 
square brackets denote the jump in the enclosed quantity upon crossing the 
interface from the nonaconducting to the conducting fluid and 13 denotes the 
airthmetic mean of the magnetic inductions on the two sides of an interface. 

The boundary conditions 	satisfied 	by 	the perturbations 	are 	obtained 

from 	[3.1} — [3.61 	by linearizing 	these equations. 	The perturbed 	boundary 
conditions have 	been 	satisfied 	at 	the 	unperturbed 	interfaces, z =7-- ± 17, after 
taking into account the contribution of the perturbations 	of these 	interfaces 
to the perturbations evaluated in 2. 

The condition [3.1 gives the perturbation in the magnetic field in the 
outside medium to be zero. Solving for j* from [3.5] and substituting in [3.6], 
we find that the x and y components of [3.6} are identically satisfied. 

Finally [3.1], [3.2], [3.3] and the z-component of [3.6] give four boundary 
conditions to be satisfied at the upper and the lower interfaces 	Thus we get 
eight homogenous equation for the eight constants g', g", C', C", C I . C2, 
gi , g2  and on eliminating these constants we get the dispersion relation : 

4-77 G (I)  p o)2 	1    p  (0 2  —  4 122) 112 	4 Tr  Gp h 	— 
[ (k 2  12) 1 ' 2  [1 - ÷ cot h (k 2  + 12)" h] r 	(k 2  12) 1/2 	 a 

(A 2 
 , 4 ..(22)112 (k2 	12)1:2 

" 

(212I+Ak) 

fo. + 2S21(41-2S2k)i  
k 	(212 1+ Ak) 

(A (k 2  ±  I2 ) "2  hi.  co. 	 [3.7] 
, x tan h t Tic 

4 	
12 

,Q2) 1  

x 

After evaluating the constants in terms of v,(0), the amplitude of the 
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z -- component of the velocity at the mid-plane of the layer, we find the following 
expressions for the amplitudes of the perturbations : 

Conducting medium Non-conducting medium 

v, = vz (0)  im (2 S2 I + Ak)  
A(k 2  + 12) 

V A: c 207  (0) cosh mh em °11  

x sinh mz 
tn' (icrk  + 20) f  X  	sinh m 

(k 2  ± 1 11) 

Vr 	
in/ 	— 212k ) 

ti z (0) 	 
11(k 2  ± 12 ) 

x sinh in: 

v, = v,(0) cosh tn.: 

0, 7  2 v, (0) cosh mil et" 

in 1  Hu 1  — 2S2k ) x 	 r 
1 	 h m - cr(k  2 + 12) 	Sin 	L  

; 

V.--.  as 2 v, (0) cos h rnh enn  

)< cosh in' : 

vA0) 	p p - a 
(k 2  ± 12)1 : 2 e  

[cosh mh exp 	2  ± py /2 z 

— sinh mh exp{— (k2+ /2)112z}} 

vz (0)  i2-7-; G( p 	p. ) ) e
_ a  

(k 2  

/ Rcosh mh-e 2 a sinh mh)exp {(k2 x 

(e2a cosh mh sinh mh) 
)( expf 	2 4.  /2)1'241 

m(2121 + Ak) p 
p = v 

A (k 2  ± /2) 	k 

. 	2S2 (A 1 -12S2101 
X { ICY — - 

(20/ Ak 

— pU 

Oak p= 2 v, (0) 	 
+ 	Po  (k  2 + 12) 	k  

x cosh mh e rr' i 	-

1D( la 1 — 2pk)l 

(iffk +2120 

x sinh z p u  V 

Hn k h • 
= O. 

• 

4. DISCUSSION OF THE DISPERSION RELATION 

We shall discuss the following special cases : 

Case I : S2 a 0, p 0  0, 	= 0. 
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In this case the dispersion relation [3.7] reduces to 

411rGpiI 	
1 	 a coth a ow d 2 , 	 [4.1] 

- 

+ coth a )1 

where 
	 a IMM 

h k2 1 2  ) 1 ' 2  

The function 41 	i/a(1 + coth (x) 
as a increases from 0 to 00 . Hence 
the wave number k and 1. Thus in t 
and surrounding matter, the system 
the case of symmetric perturbations 
critical wave number below which the 

monotonically increases from 0 to 0. 
the frequency 41 is real for all values of 

he absence of rotation, magnetic field 
is overstable for all wave lengths. In 
studied by Ognesyan i , there exists a 

system is unstable. 

Case II: p o t-- 0, S2 0, no  0 O. 

Here the dispersion relation reduces to 

_ 1 	1(2  ,u, H (i 	2  

	

471-G pa coth a 11     — a . 	[4.2] 
a(l+coth a) 

We note that the presence of the magnetic field introduces anisotropy and the 
wave number in the direction of the external magnetic field appears separately 
in addition to the combination (k 2  + 12) 1(2 . In this case also a is real for all 
wave numbers k and 1, so that the system is again overstable for all the 
wave numbers as in case I. Hence the magnetic field does not affect the 
stability of the system and unlike the case discussed in reference [2] there is 
no critical wave number for the system to be stable or unstable. 

Case III: p o  = 0, 12 0, H0 0. 

Here the dispersion relation reduces to : 

F(a) i--Lx-2+ 	tan a X, 	 [4.3] 

e Gr where 	 F(u) ' 1_" ' 
2 1 — f2  

Ct ( I 	coth si-001 

and 	 Xs 	a . 
(7 2)1f2 

so that 	 cr 2 i=  4422_ x2 

Crif2+ 	 [4.4] 
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F (a) is a monotronically increasing, positive function for all positive 
of a. values 

We shall now determine thie total number of roots of the dispersion 
relation in a circle IX' =c R„, in the complex X-plane where R, lies between the 
consecutive zeros of sin a X and cos a X, say when (nTrict) < R <(rx + (Tria). 

Let 
	

f(X) = F(a) cosa X(1 + X 2) 

and 	 g (X) — X sin a X. 

For large R„, I cos a Xi and sin a XI are of the same order of magnitude. 

Hence 	 Lt Ii(X) I 
Rn÷  

and by Rouche's Theorem, the dispersion relation [4.3] has the same number 
(2n +2) of roots within the circle I XI = R„ as the equation 

F (a) (1 + X2 ) cos a X = 0. 	 [4.5] 

Writing the dispersion relation as 

F (a) cot a x,  X  

	

I + X2 	
[4.6] 

we draw the graphs of the right-hand side and the left-hand side of [4.6] for 
real positive values of X. [4(1 X2)] starts from origin, has the maximum at 
X IC47  1, and tends to zero as X—*- 00. F(a) cot aX will have n vertical 
asymptotes corresponding to the roots of sin aX — 0 within the circle 'XI= R„. 
Hence there are n number of intersections between the curves representing the 
two sides of [4 61, thus giving n roots of this equation. Similarly, for X real 
and negative we get n roots. Thus equation [4.6] admits 2n real roots within 
the circle !XI R„. 

To determine the number of imaginary roots of [4.6], we set X— iY, 
where Y is real, so that it reduces to 

F(a)(Y 2 — 1) •=2 Ytanh a Y. 	 [4.7] 

Again drawing the graphs of the right-hand side and the left-hand side of 
[4.1, we note that the graph of left-hand side is a parabola with vertex at 
[0, — nan and latus-rectum 1/F(a) cutting the Y-axis at ( ± 1, 0), Y tanh a Y 

is positive and even function of Y fur all real values of Y. It is zero at the 
origin and tends to + 00 asymptotically as I Yi. These two curves intersect only 
at two points for which Y 2  > 1. 	Hence [4.7] has two real roots having 
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modulii greater than unity. Thus out of the (2n +2) roots of [4.31 w i thi n  

t If tsiR,,, 2n are real and other two pure imaginary. From the relation 

we find that for all of these (2n +2) roots for X, a 2  is always positive, sh ow i ng' 

thereby that for all wave numbers k and 1, the system is overstable. 

Case IV: po = 0, Ho  0, S2 O. 

I4ere the dispersion relation reduces to : 

	1 k2  V2  
na)ina) cot a X —

1 + x2 j Q 2  

c=  
 

tan aX 

1 ± X2  
[4.8] 

where
112 v2 a  M 0  

(a - k 2  V2 ) 
and 	 X— 	• Q2 0.2 a 4 	2  2 k2 v2 k4 v4)1 2 

	

C 2 	k2 v2 	x2 	{ 	x4 	k2 v2 	x2 	1 f2 

so that 

	

20 	2S? 	1 + X2 
± 

(1 + X 2)2 	(22  1 + X2 i 

• 

[4.9] 

Let 	AX) es F2  (a) (1 + X2) cos2  a X 

and 	g(X)= —
ik2

40 
v2 

sin
2
aX+(a )X sin a X cos aX • 

2  

As in the previous case Lt. 
IF(X)1  

00 5  
co jg(X)1 

where n Tr 1 	arr < Rn < ( li T1 — • 
a 

Hence [4.8] will have the same number of roots within the circle I XIa R,, as 
the equation 

F 2(a) (I + X2) cos2  a X 0. 

This equation has (4n 4- 2) roots. Thus the dispersion relation admits (4n + 
roots for 

We draw the graphs of the right-hand side and the left-hand side of 
[4.8] against the positive values of 	[F(a) cot aX— A1(1 4- x 2)] has n 
vertical asymptotes corresponding to n roots of sin ax, and it vanishes at the 
points A', which are the roots of the dispersion relation in case HI. The function (k2  V214/22) tan aXI(I X2) has n vertical asymptotes corresponding 

• 
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to the roots of cos aX. Hence there are 2n number of intdrsections between 
the curves representing the two sides of [4.81 within [XI R. Similarly for negative valubs of X these curves have 2, intersections giving 4n real roots for the equation [4.8}. 

Let X= iY, where Y is real, then [4.8] reduces to 

F2  (a) (Y2  — 1) r k-2 172  tanh 2  a Y + F(a) Y tanha Yi • [ 
4 02 	 [4.101 

The function F 2 (a) (Y2  — I) represents a parabola with vertex at [0,— F 2 (a)] and latus-rectum I/F 2 (a). It cuts the Y-axis at (± 1,0). The function on 
the right-hand side is eVen and positive and attains zero value at the origin 
and 	Co as I Yi —*co . Hence, for all a and k, there are two intersections 
between the curves representing the right-hand side and the left-hand side of 
[4.10], which give two real roots such that Y 2 > I. 

Thus the equation [4.8} has 4n real roots and two purely imaginary roots. 
Corresponding to these (4n + 2) roots, a 2  given by [4.9} is positive. Thus the 
system in the presence of both magnetic field and rotation is overstable. 

Casey: 	0, 110  = 0, Q =O. 

The dispersion relation reduces to 

4 TrGpa (I — - /r )) [1 	1  = 	 a2 (—po + tanh a)• 	[4.1I] 
(1 + cotha) 

When p oip < 1, a 2  is positive for all positive values of a. Hence the system • 
is overstable. When p oi p > I, a 2  < 0 and the system is unstable. 

Case VI: p„ 0, Ho  0, D=O. 

The dispersion relation is given by 

	

4 TrGpa (I — fiL)) 	- PIP 	+ k 2  

	

P 1 	a(1 +coal a) 
m fig  tanh a 

Cr 2 (- fi11  + tanh a ). 
	[4.12j 

Here again, 	when p ulp < 1, cr 2  is always 	positive and hence 	the system is 
overstable even in the presence of magnetic field. 	When p o > p, the dispersion 
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relation [4.12] reduces to 

(72 	 { /c21 
P 	 P 	

1) cot h a (a + 	I  )1 

ci  (PIP coth a + I) 	
1 + coth tt 

Here the positive and negative values of 0 2  i.e. regions of overstability and 

instability are separated by its zero value and the equation 

k2 fru fig 4-riG (p„ p) coth a[a + 
pjp- i 

 
1 + coth a 	

[4.13} 

determines the critical value k* of the wave number k in the 

external magnetic field for a given set of values of p, p o , Ho  
number in direction perpendicular to the magnetic field 

rotation. 

direction of the 
and I, the wave 
and the axis of 

Case VIII: p o  0, 110 0, S2 O. 

Here the dispersion relation reduces to 

çb (a) (X2 - 1) X[tanh aX + p 0 1 p}, 
	

[4.14] 

where 	(a) - 	G  P(1 - P u) a  11 	1  	1 
(22 a (1 + coth 	9  

a 
and 	 X cm 	 (17 2 4 Q2)t(2 

2 4 Q2 x2 
• so that 	a s=3 	 

X2 -1 (4. 1 5) 

Let 	f (X) a rft (a) (X 2  - 1) cosh a X 

g(x)m - X [( p oi p) co sh a X + sinh a X] 

so that Lt. 1,---1(x)1
-4- 00, where —tin < R„ < (n + ) 2-T - • Rn--->- col g (X )1 	 a 	- 

Hence by Rouche's Theorem, the dispersion relation [4.14] has the same 
number of roots within the circle !Xi = R„ as the equation 

(a) (X 2 - 1) cosh CI X la 0. 

This equation has (2n + 2) roots. 
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We draw the graphs for the two sides of [4.14] for all positive values of 
X. When p o  < p, çb (a) (X 2  - 1) represents a parabola with vertex at 
[0, — 0 (a)] and latus-rectum 	), and it cuts the X-axis at ( ± 1, 0). 

Consider 	 y i=t X p o i p + X tanh aX 

The straight line y i  20:1 A' pl p passes through the origin and has slope 
tan -  l (p oip). y2  at X tanh aX is a positive kJ 

	
function of X attaining zero 

value at the origin and tending to co as !XI .4- co. The straight line y y i  cuts the parabola y tft (a) (X2 — I) at two points having the abscissie 

x1  1172 ± 	( a  )  

(a) — p o tp 9 

whatever be the relative magnitude of çb (a) and p o l p one of the abscissx of 
the points of intersection is always positive and greater than one. The abscissa 
of the other point of intersection is negative and greater than 

'11-  1 

, 	At X= — I 

Yi + Y2 	p + tanh a. 

If tanh a > pjp tanh a* i.e., if a > a*, J,  + y2 > 0. 

Therefore the curve y =mg Yi  + y2  will cut the parabola, 

X se —1, 	at a 	point whose 

yi + y2 < 0 and 	the 	curve 

whose 	abscissa 	is > — 1, 

according as a > or <a*, 

Taking X i Y, where Y is real, the dispersion relation reduces to 

zft (a) (1 + Y 2 ) 	Y p a l p + Y tan a Y. 

Thus the dispersion relation cannot admit pure imaginary roots for X and 
hence the equation [4.14] admits 2n complex roots for A'. Corresponding to 
these 2n complex roots, a 2  is complex for all values of a. Thus the system is 
unstable for all wave-lengths. 

When p o > p, çb (a) is negative. One of the roots of [4.141 is now 
positive and less than unity. The other root is less than —1 as now y i  +Y2 no 

pol p + tanh a <0 at X - - is For the former root, a 2  < 0 and for the 

latter root e 2  > 0. Once again the other 2n roots are complex. Therefore 
the system is unstable. 

abscissa is 

Y Y I + Y 2 

Le- 1 XI < 

< - 1 i.e. 

cuts the parabola at a point 

Thus from [4.15], (7 2  > or < 0 

which passes through 

1X1 > I. 	If a 

giving us real or pure imaginary roots for a. 
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5. SYMMETRICAL PERTURIIATIONS 

Chakraborty 3  has deduced the following dispersion relation when the 
displacement in the x and y directions are symmetrical about the mid-plane : 

14 -17G  (p – pol2 	
1 	+ po  ( cf 2 4122)1 . 2 + 4 -riG ph t (p n – p) 

[ cr (k 2  12 ) 1 	[1 + tanh (k 2  /2)" 	(k 2  /2) 112 	 a 

(A2 + 4 s22)I 2 0( 2 i2)I 	[ p 	
2 S2 i (Al  – 2 Si k) 	k H02 1 x 	 ÷ 

121 + Ak) 	 k 	(2.121+kA) 	a 

x coth 
(A (k2  	/2 ) 1 2  h 

= 0. 	[5.1] 
(A-  -4- 4 S2 2 ) 1/2  

He has discussed only the particular cases of [5.1] taking p o et= 0. We shall 
discuss these particular cases in the presence of the surrounding non- 
conducting material for sake of comparison with the conclusions arrived in 
the last section. 

Case I : po  O. Ho  a 0, 12=0. 

In this case the dispersion relation reduces to : 

Po/ P_ 	( 	th 	2  4.11.G pa (1 – 	p)11 	 p— 	 p CO a a 
• 	[ 	a (1+ tanh a) 

When po  < p, a 2  is positive or negative according as a > a* 
where a* is the critical wave number given by 

a * 	tanh *) (1 – pi] p)• 

or 

(5.21 

< a , 

Thus the system is stable or unstable according as the wave number a is 
greater or less than a*. 

When p.> p the dispersion relation can be written as 

—4TrGpa (1.1 ! I ) 1 1 __a 	P 	1 	} 	2 1 P 
a (1 +tanha) 

eQ + coth a , 

and a 2  is negative for all values of a. Hence the system is unstable. 
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Case II: p,, 0 0, 1
-10  0 0, .12 =0. 

Here the dispersion relation redthes to 

k 2 H 2 

	

4-rrGpa tanh a ( 1 — ±.1 !) .1 	POIP  

L 	 act 2 (I ± -L°  tanha)• [5.3] 

	

p 1 	a(1 tanh a)) 

When Po  < p there exists a critical wave number k* separating the regions of 
stability and instability determined by the equation : 

 

4 -rrG 	p o) a* tanh n* 1 	P" I P  
a*(1 tanh a*) 

k* 2  H2  
=0, 

P •  

where 

 

Ii (k2  + 1 2) 112 1  

 

for given values of the wave number I, 	p and p„. 

When p,, > p, 

k2 HI)  47zGpa tanh a (P ° — I) {1 + 	1 	tr 2  (1 + -L-)° tanh a) • [5.4] 
a(l ±tanha) 

The right-hand side of [5.41 when equated to zero will determine the critical 
wave number k*, which separates the region of stability and instability. 

Case!!!: 	0, 110 =0, S2 O. 

The dispersion relation reduces to : 

4) (a) 	2
X  ( 

cothX--p0
), 

X— I 
[5.5] 

where 	 (a) MCP  -rrGpa (1 a-41 	1  —  	1 
Pd 	a (1±tanha)j 

and 
a 

X c• 	 
(q 2  4Q2) 12  

• 

so that a 2 
a 

4 .Q2  x2  
(x2 - 1 ) 

• [5.6] 

As in case VII of 4 equation [5.51 will have (2n + 2) roots within the 

circle I fid R. When p, < m sh (a) is either negative or positive, but it is 
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always negative for p a > p. For both the cases we can show as in case VII 

of 4, that 2n roots of [5.1 are complex. From [5.61 a 2  is complex, correspond- 

ing to these roots. Hence the system is unstable for all wave lengths. 

6. CONCLUSION 

In all the special cases that we have considered we note that, if the con- 
ducting medium is surrounded by vacuum, the system is overstable for all the 
considered asymmetric disturbances, when rotation and magnetic field are 
individually or collectively present. This result may be compared with that 

obtained in references 11, 2 .1 and [3], that when the perturbations are symmetrical 
about the mid-plane of the undisturbed conducting medium, the system is stable 
or unstable when the wave number is greater or less than a critical wave number. 

In the presence of surrounding material with p a  < p the non-rotating 
system is overstable and remains in this state even in the presence of magnetic 
field. But, when rotation is taken into consideration the system becomes 
unstable for all the wave numbers. Thus we note that, in the presence of 
lighter surrounding non-conducting material, the presence of magnetic field 
does not alter the stability criterion. When p a > p, as is obvious from the 
physical situation, the non-rotating system in the absence of magnetic field is 
unstable, in the presence of the magnetic field the regions of overstability and 
instability are separated by a critical wave number which depends on the 
strength of magnetic field when rotation is taken into account it is unstable 
for all wave numbers. 

It appears that under the symmetrical perturbations, the system in the 
perturbed state is unable to regain its original form as in the sausage type of 
instability. However, the possibility of occurrence of such symmetrical 
perturbations is rare in nature. From this point of view, the present investi- 
gation is more general and physically plausible than considered in references 
[I, 21 and [3]. The cause of overstability in part can be understood in view of 
the fact that the velocity component, v z  is even function of z, so that the upper 
and lower interfaces are so deformed that the crests and troughs in one correspond 
to the crests and troughs in the other, as if the whole layer is deformed as a 
rigid sheet. This sort of perturbation of the layer explains why there is no 
critical wave length for instability to set in as in the case of sausage-type • of 
deformation. 

We have seen in 5 that the presence of the surrounding non-conducting 
material is critical to some of the conclusions arrived in references [l, 2] and [3]. 
In particular we record that if the non-conducting material is heavier than the 
conducting material the system behaves alike under symmetric and asymmetric 
perturbations. 
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