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Magnetohydrodynamic surface waves in a running stream
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Abstract

The three-dimensional probiem of surface waves excited in a running stream of finite depth by arbi-
trary surface disturbances under the presence of magnetic and current fields has been studied. The
" integral expression of the free surface elevation n has been asymptotically evaluated for large distances
by applying the method of stationary phase. The results have been illustrated for rectangular and
elliptic areas of disturbance on the free surface. Some features of the wave motion have been discussed.

Key words : Free surface clevation, capillary-gravity waves, running-stream, method of stationary
phase.

1. Imtrodamction

The two-dimensional problem of waves gencrated by an oscillatory pressure acting at
the surface of a running strcam of finite depth has been investigatcd by Debrath and
Ryenblat!, Dvbnath? has also studed the propagation of two-dimensional capillary-
gravity waves cxcited by an oscillating pressure d'stribution acting at the frce surface
of a running stream of finite, infinite and shallow depth. The theory of formation of
Waves on a running strcam is also well known.

However, the three-dimensional problem of waves in a running strcam due to any
initial time-independ:nt surfaze impulse or clevation remairs to be solved. In the pre-
tent paper, we have solved th's problem in water of firitc depth in the prescnce of
magnetic and current fields. Formal solutions of the problem in the form of inf.initc
integrals are obtained by the applications of double Fouricr trarsforms. Thrse inte-
gals are th'n asymntotically cvaluatcd for large distarccs by using the method Oi
stationary phase. Noxt we consider a class of physically plausible modcls of the dis-
turbance on arcas of elliptic and rectangular shapes or the surface. Somc fiatures of

the wave motion are then discussed, g * 109
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2. Farmulation of the problem

We take the origir on the undisturbed horizontal free surface which coincidcs with the
xy-plane and the z-axis is drawn vertically upwards.

Let A be the uniform depth of a running strcam which is under the influence of a

-
uniform horizontal magnetic ficld B = (B,, B,, 0), 2 uniform horizontal current ficld

-» ; *
J =(J,, J,, o)and the gravity g. [t may be mentioned here that the horizortal compy-
nent of magrctic ficld is pruscnt in the cquatorial region of the Earth.

Th: total bady force consists of the verticalcomponent (J,B, — J B,) of the Lorentz

- -
force J x B and the gravity, The magnetic ficld will damp or boost up the action of
gravity according as

B,
JIJ,> or < B -

The well known cquations of motion* of the conducting fluid are

-3

aq -b'-b-bﬂ_ -» .l.'._’ ~» i

5 Y@ Vg gk +pJ><B-;Vp, (1)
> -

Vegqg=o, (2)
> -

V:B=o, (3)
-3 e . T

V X B = ul, (4)
VxE=-2 )
j=r(§+;x3) (6)

-

where ; = (u,v, w) is the velocity ficld, p the density, x4 the magnetic permeability
and ¢ the electrical conductivity of the fluid. p, # and ¢ are assumed to be constant
throughout the region of flow.

- Equatior (2) implics that the fluid considercd here is incompressible,

]

We take %XE=0
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Now

-
{;XE=0==-§-—?=O

so that the indnced magactic field remains constant over time.

Again,

-’.
€7XE=0=:-V><E>-B-§

A dimensional analysis of this condition rcveals that

EL»BT; ic., gBL>» BT

so that

L Lqg ¢
T>__'&Tq¢!

¢ being the velocity of light,

S:nce MHD cond tions require T>» Lq/c? the system considered here is a restricted
MHD system,

A wave motion is 5¢t up by th2 action of an initial surfacc impulsc

(PPD)ree = F(x,)) (7)

together with an initial surface displacement
(M = S(x,). (8)

We a.sume that the motions arising from disturbances ercated in th: uniform stream
have a velozity potential ¢ (x, y, 2; 1)

where
O(x,y,2;t)=Ux +¢(x,),2;1) (9)

for

~o0 <(x,¥) <00, —h<z<ntzl

Here @ (x, y, z3 1) is the velocity potential duc to the cxtcrpaldisturbarces onlyand

715 the vertical displaccment,

the cquations of motionand
| motion may bec writtcn as

(10)

Assuming a small disturbance on the rurning strcam,
th: boundary conditions for the subsequent irrotatiora

Vig =0, —0 <(x,)) <00, —h <2 <15
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¢,+( +££———-—-) + Ug, =0 on z =0;
(11)

n+ Unp —¢,=0o0n 2=0; (12)

¢, =0atz=—1h (13)
Eliminating # between (11) and (12), we get

¢. + 22U, + Ud,, + l¢, =0 ; (14)
where

J.B, — J,B, ’

A = g o y ('5)

3. Soluation

To <olve (10), we introduce the double Fourier transform ¢ (k,, ky, 2; t) of the velgcity
patential ¢ (x, y, =;¢) with rcspect tc x and p, that i1s

é (ky, kg = El_ ff ¢ (x, p, z; 1) e' ®*rhan) dxdy, (16)
By (16), (10) becomes

$. — k¢ =0 (17
where |

k* = k* + k2, (18)
The solution cf (17) 1s

é = R (k,, k,, t) cosh k(z + h). (19)
Teav.formed forms of (14), (LL), (13), (7), (8) are

$u —2Uikd, —Ukid + 24, =0 on = =0, (20)

5+ ¢ ~ Uikd =0 on z = (21)

é, =0 on 2= — I (22)

(P8).m0 = Fky, k), (23)

f=0

(Mo =1 (ky, ko). 1 (24)
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From (19) and (20), we get

Ry = 2UikiR, — (Utk? — Jktanh kYR =0 (25)

S,lution of this cquation is

R = "% [A,cos pt + Aysin pi] (26)

where
p* = Aktanh ki,

Uiing (19). (23), (34), (76), we have

= &ufﬂ) A, =

A — éj.(kh kl)
'™ pcoch kh’

peoshhn’

Then,

$ = eVb! Ecos pt — f;{ sin pt] cosh{k (z + h)} scch kA,
faverting this cxpression for ¢ by the Fourier double inversion thcorcm, we have
finally
o0 - - 5
® =Q2r)! [f [p? Fky, ki)cos pt — p~t Af (K, k;)sin pt]
-00 , '
x cosh {k (z + )} scch kh e'Vh* x e~y e dk,. : (27)

By using (21) and (27), the expression for 7 is deduced and then it is inverted by
Fourier double inversicn thcorem to get

n ={2ni)"! I? eVt [pFp~isin pt + ff cos pt] x e~t®2: 3 dk, dk,. (28)
-00

Expressions ¢27) and (28) give the formal solutions of the problem in terms of inﬁni;e
integrals, - :

4. Asymptotic valae of 4 . ug # ol

We can write (28) as
29
n=1n + 7, ( )

where

v 8

= St f f p! F petWh'-ke-23) 5in pt dk,dk, | (30)
2nA
-0

I11.S¢c.—3
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and

o0
l T —-K 2-K, ~ I
= 5= f f fefURS-kt-kv) ¢ o5 pt dkdks. (31)
- 00

Here the subscripts ‘i” and ‘e’ refer to ‘impulse * and “clevation * componcnts .
pectively of 2.
|

Let
k, = kcosy, ks = ksiny,x =pcos 0, y = 7sin0,
_ gl e o . {.()'h)l“
R—h,y-—kh,h ht v 2y : (32)
%‘:v, w = (utanh u)'’?* S
Then
v . = ~—
n, = (Irh?)™! Imp cos QRwr) du § f (whcos y, phsiny) e#P4 ) dy (33)
® L]
where
A(y) =vcosy —cos (v —0). (34)

W.: now evaluate the w-integral and the u-integral correct to the first term of the
asymptotic expansions by the method of stationary phase under the conditions R> 1 |
while = remains fixed so that = does not tend to zcro as R = oco.

Writing
A(y) =vcosy —cos(y — 0),
A(y) = -vsiny +sin(y — 0), (35)
A"(y) = —vcosy +cos(y — 0).
The stationary point ¢ = q i5 given by 4 (y) =0
i.e., sin (@ — 0) = vsin .
which gives on simplification
0 atd 8 0 36)
a—-2+t3]’l l_vtanzl). (
Also
A" (a,) <0
when
v > €08 (e = 0) - (37)

COt a
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L5
Eor cach valuc of u with uR> | the mcthod of stationary phasc?® gives
(= « I e —
n, =~ (Axh*)! | { uf (pheos a, phsin a)
/ 1/2 ‘
RP,
“\ ~iRA (ﬂ) X {eRA 1K) - etRPU} gy (33)
where
T
= Y — 2
P,()=201 + 4 (a) 4R " (39)
7
p(u) =201 — uA(a) + 4R * . (40)
Thcrtfurc
_ tanh;t 1/¢ ( /2 "
P () r[( -——--—) t‘aiﬂhy) scch ]—-l
and

, 1/
P’ (1) = f[(th ﬂ) “{eosech 24 — (%))

g \V?2 4 it ]
& (tanhy) sech®u {(2u) coth2u — tanh 4}

For P"(u) holds P"(u) <0 for 0 <pu < 0.
Herce

P (u)—>27r — A(a) as g = 0',
P'(u)— — A(a) as ju — -+ oo.

The equatior P’ (u) =0 has a rcal pasitive root u = ﬁ(say) when 7> 4 4 (o) Where

[ tanh g\/2 (mnhﬂ .4:*(:11z ]::A(a). (41)

The stationary phasc¢ method applicd again to (38) leads to

1/2 = AT e -

w e=$R{2T (Ftomh g1/ 2-ga (@)}]

(42)

for RB>» 1, R» 1 and 7> 1 A (a),
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Similarly,

N L B tanh g \'/?
M= kR 2k \ A7 (@) P"(B)

% e—‘r{2T (B temaB)1/2-FA (a))],

Im[F(Bhcos a, fhsir a)

Finally, bccause 7 = n, + 7., we obtair

n= (ZR’"”’(A' (a)ﬁf(a))

x e IR(T (Bren )1/ 2. 54 (a)) + ’2’(

1/ 3

[Rc (7 (ATcos o BT sin a)

anh f\1/2
hi,

x Im {F(Bicos a, BTSN g) & ROT@lemF1/ 2 f-n}] .

r

8. Tllustrative cases

5.1, Initial impulse or elevation on a rectangular area
(a) Let
I
F(x,}') =4_a'51 lxlsar '_}’lﬁb

=0, |x|>a|y|>5b
f(x,y) =0,

where [ represents the total impulse over the surface,

Then
| = I  sink,a _ sinkpb
F(ku kz) =2?‘Eﬂb kl k’ s . ‘ -
- § _ftanh B \V2 sin (aﬁ'ﬁcoﬁ a)sin {bfx?sinf_)
N o abp RAIANA" () P'(B)) ~  Plcos asina
xsin [R{27(Btanh §)/* - BA(a))]
for

R>1,Rp>1,aae(o. ’2‘)
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Wh!','n a = 0:
. I tanh f /2 -
™= 2naRh \/R}B\ A" (a) P’ (E)) sin (Bah)

x sin R {27 (B tanh §)V/* — B4 (a)},
for  R>L RB>L.

When

7
a =3
! (- tanh g\ !/
nbRh \/hAB\ A" (a) P" (B}
x sin R{2r (B tanh B)/2 — BA (1)}, |
for R> L, Rf> L,

™ =

’h—;,

sin (fbh

(b) Let,
W
i NI QSR i ’
f(x«,‘) 4ﬂb,‘x'€a‘|}|$b’
=0, |x]|> a |y]|> b
F(x,y) =0,

whre W is the total volume of elevated fluid.

Thvn
= W sinka _sin kb
Sk k) =onab "k, ks
and we find | ;o . .
4 ( B 172 5in (Bh acos o)sip (Bhbsin o)
Te = 42abR \ A" (2) P’ (ﬂ)) BTsin acos a
x ¢os R {27 (Btanh B)V/3 — fA(a))
for
o
R»1, RE> L, a’i"—‘(O, 5).-
When a =0, ‘  ='_ .
< W ” » . 1/35' [?a
Mo = g—m (A" (@ P"(B) - A1 in (Bha)

x ¢os R{2+(Btanh @)% — fA(a)}.

117
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When

I
to N

e = 41tth (A" @) P"(B) ﬁ)"’”sm (Bhb)
x cos R{27 (B tanh B)'/2 - BA (a)}.

4.2. Impulse or elevation over elliptic regions

(a) Lct
I - ol Y : 2
F(x,y) = Egb (1 = g B I‘S‘d"i + ;z = |,
Z
=0 ,out*ldn. +ﬁ, L,
f(x.)) =0,

where 7 again derotes the total impulse on the surface.

We have

= 27V I (?)  Jy[K? a® + k2 b2/
F(.kn kl) - - X _‘{k[{i':_:ki ;2)7:!!’2

(scc Erdelyi, 1, 1:3 (8) and -3 (50)).
For 7 =2, w. have

tarh 1/ 2 J {ﬁh(a2 0°%a + b%sindq)V}
= npRB \/h)ﬂ A" () P"(P) a*cos®q + b*sinq

xsin R{2r(Btanh §)'/2 —~ B4 (a)}
for RE> 1, R>»1.

(b) Lct
2 Y1 x?
f(t’y) ‘Rab 1 _E—:__b}; , inside = +£=l
=0 , outiide — +ﬁ, = 1
F(‘x‘! )’) = 0 »

wh.rc W again is the total volume of cluvated fluid,
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Then for 7 =2,

= J3{Bh (a®cos? -
, o e — . + b25in?4)1/2
’] RRB \/3 [A (G) P (ﬂ’]l!t al cos? aa_*:btﬁisl:l:t;a) }

x cos R{27(ftanh §)V2 — BA (a)}

for
R>1Ll, RE> 1,

5. Discassion

We find from (53) that the motion consists of two different modes, one of which is
due to the impulse only without any initial surface clevation ard the other is causcd by
the initial clevation of the surface without any impulse.

The phasc function is
R{2r(ftanh B)V/? — BA(a)} =t (Afhtanh §)/2 — Bhy A(a).
The motioa, therefore, represents a progressive wave of length

2n
pr A(a)’
period

2=
(~Bhtanh B)!/?

and phasc velocity

Al(a) (M taﬂnh ﬂ)m'

Further, cqn. (50) implics that the results we find for 7 apply to waves that we obscrve
when we move with the group velocity

L =

tanh § + Bscch®fl
tanh f '

Vs £
2

urrcnt fields as well as gra-
and the group velocity are
We further note that

T_h" quantity 4 accounts for the cficcts of magnetic and ¢
Vity, As a rcsult, the wavelength, period, phase velocity
all influenced by the presence of magnetic and current fields.
the amplitude of the waves dccays like r=.
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