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Abstract 

The three-dimensional problem of surface waves excited in a running stream of finite depth by arbi- 
trary surface disturbances under the presence of magnetic and current fields has been studied. The 
integral expression of the free surface elevation gel has been asymptotically evaluated for large distances 
by applying the method of stationary phase. The results have been illustrated for rectangular and 
elliptic areas of disturbance on the free surface. Some features of the wave motion have been discussed. 

Key words : Free surface elevation, capillary-gravity waves, running-stream, method of stationary 
phase. 

I. ratrouction 

The two-dimensional problem of waves generated by an oscillatory pressure acting at 
the surface of a running stream of finite depth has been investigated by Debrath and 
Riy;enblati. Debriath 2  has all° stud'ed the propagation of two-dimensional capillary- 
gravity waves excited by an er,cillating pressure d'stribution acting at the free surface 
of a running stream of finite, infinite and shallow depth. The theory of formation of 
waves on a running stream is also well known*. 

However, the three-dimensional problem of waves in a running stream due to any 
initial time-indePeneknt surface impulse or elevation remains to be solved. In the pre- 
tent paper, we have solved th's problem in water of finite depth in the presence of 
magn.etic and current fields. Formal solutions of the problem in the form of infinite 
Integrals are obtained by the applications of double Fourier transforms. Thr-se ink- 

rats are tlyn riymptoticalty evaluated for large distances by using the method of 
stationary phase. Next we consider a class of physically plausible models of the dis- 
turbance on areas of elliptic and rectangular shapes on the surface. Some natures oi 
the wave motion are then discussed. 109 
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2. Formulation of the problem 

We take the origin on the undisturbed h9rizontal free surface which eoincidts with th e  
xy-plane and the z-axis is drawn vertically upwards. 

Let h be the uniform depth of a running stream which is under the influence of a 

uniform h9rizontal magnetic field B = (B„, B,, 0), a uniform horizontal current field 

= (.1,, jr,,  0) and the gravity g. it may be mentioned here that the hori zonal compo- 
ncnt of magnetic field is proent in the equatorial region of the Earth. 

Tly., total b idy force consists of the vt;rtical component (.1.81 	J,B„) of the Lorentz 
-0 4 

force J X B and the gravity. The magnetic field will damp or boost up the action. of 
gravity according as 

8. 
.1.1.1,> or < B, 

The well known equatiens of motion' of the conducting 

), -0 4 4 	4 	 -0 

+ (q . \7)q=c–gk+-Jx.8–:vp, 
at 

fluid are 

es 
V • q = o, (2) 

-•• 
V .  B = o, (3) 

-). 	-4 
vy x 

-9. 	-0 
V x E = 

.3 

-4. 
a 

— 
)1 

(4) 

(5) 

-31. 
J = 

-+ 	-0, 	-4 
7 ( E + (I X 8) (6) 

where q = (is, v, w) is th.e velocity field, p 
and a the electrical conductivity of the fluid. 
throughout the region of flow. 

the 	density, p the magnetic permeability 
p, p and a are assumed to be constant 

Eluation (2) implies that the fluid considtrid here is incomprcssible. 

4 4 
We take 	Vx E=O 
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.4 
x E =0 =- —zt =0 
	 • 

so that the indnced magnetic field remains constant over time. 

Again. 
-+ 

-* 	-4 	.4 ail  
vxE=OVxE>-- n* 

A dimensional anal)sis of this condition reveals that 

E,L,BT ; Le., q8.L>B,T 

so that 
L Lq e 

T> 1 c: q- 

c being the velocity of light. 

S:nce MHD cond tions require T> Lqic 2, the system consickrcd here is a restricted 
MHD system. 

A wave motion is set up by the action of an initial surface impulse 

(Js1)),-4, 	F (x, A 	 (1) 
0 

together with an initial surface displacement 

Ong-, = f (x, 	 (8) 

We a;sume that the motions arising from disturbances created in th:. uniform stream 
hwe a velozity potential # (x, y, z;t) 

where 

(x, y, ; 	= 	# (x, y, z; 	 (9 ) 

for 

co < (x, 	< 00, h <z <I, t O. 

He.re (x, y, z; 0 is the velocity potential duc to the external disturbances only and 
11 is the vertical displacement. 

Assuming a small disturbance on the running str(am, the equations of motion and 
thz boundary conditions for the subsequent irrotatioral motion may be written as 
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• 
f J — JR\ 

+ 	+ 	) 71 + 	=z 0 on z = 0; 
(11) 

— 
00 = on z = ; 	 (12) 

0, = 0 at z = — h. 	 (13) 

Eliminating I between (11) and (12), we get 

0„ 4- 2 Uti,, + 	sin  + A 0, = 0 	 (14) 

A 	g   • 	 ( 1 5) 

3. Solution 

101Ve (10), we introduce the double Foul ler transform (k 1 , k,, z; t) of the velocity 
pitential # (x, )" z; t) with rcspe.ct tc x and y, that is 

(Ict , ks, 7.; t) = (16) f f# (x,y, LP; 0 e (klatk2. )  day. 

By (16), (10) becomes 

jag 	ktti; =0 (17) 

where 

kt = kt + k:. (E S) 

The solution cf (1 7) is 

R (kat , kr  ) coe,h k (z + h). ( 1 9) 

Trat•formr:d form -. of (14), (11.), (13), (7), (8) arc 

— 21/eke/a.), — U 2  kt + S. as 0 on z =0, 

+ sit on z = 0 LlikA • = 0 

itte, =0 (22) 

(p3):-0  
t-0 

(23) 

Mgeo =Mit k2). 
(24) 
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From (19) and (20), we get 
Ro  2 thki-Rt (EPk — Ak tanh /ch)R 0 

blution of this equation is 

R = e duCt [A i  c os pt 	Atsin pt] 

Ui 

(25) 

(26) 

where 
p2  = Ak tanh kh. 

Usint. (19), (23), (24), 00, ‘se have 

	

T(ki , ks) 	, 	Aj(k i ,  

	

141  p—cof7h-kit 	p cosh Ah • 

Ttrn, 

eluisi biz  cos pl 	sin pti — 	cosh {k (z + h)} %cell kh. 

Inverting th;s expression for 3 by the Fourier double inversion theorem, we have 
finally 

00 
C) = (270-1 f 	ka)cos pt p - ' Af Oct , kdsin ptj 

-00 

• 

x c o5h k (z + 1)} sec h kh etas' x tri(Isziko) dkidkg. 	 (27) 

By using (21) and (27), the expresFion for ri is deduced and then it is inverted by 

Fourier double inversicn theorem to get 
co 

I at (2 -1  f f 	[pr 0 :p-- ' 	pt + fAcora pt] x e-4014  :Is" )  dk1 dk2 . 	(28) 
sco 

Expressions 01) and (2 8) give the formal solutions of the problem in terms of infinite 
integrals. 

4. Asymptotic value of 

We can write (28) as 

= th ± 

where 
00 

= 	f f p•l pegukstarkiso sin pi dkidk, 
27ril, 

-co 

(30) 

I.I.Sc.-3 
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and 

f-  I 	c°  
f s yteftuYe kisako )  cos pt - Tit 	 (31) 
-00 

Here the subscripts `i ' and e ' refer to 'impulse and • elevation ' components res- 
pectively of /. 
Let 

= k cos w, kl  = k sin x 7 cos 0, y as 7 sin 0, 
t (m)t/  2 

R a
' 
 p = kh, in h - ' , 

h 	 27 (32) 

7 
Ut 

	 5. 
— = v, sz: (p tank pr i s 

Then 

(bat' .r p co r, (2/icor) dp 2111/.1 0iii .COS Vi t  pirsin w) e4i" (0)  dw 	(33) 
• 	 • 

where 

A (yr) 	v cos yr -- cos (1,v - 0). 	 (34) 

We now evaluate the p-integral and the p-integral correct to the first term of the 
asymptotic expansions by the method of stationary phase under the conditions R> 1 
white T remains fixed so that does not tend to zero as R -0 oo 

Writing 

A(yr) =vcoy - cos(v - 0), 
A' (w) = 	v sin yr + sir. (v/ - 0), 

1 A'' (w) = 	y cos yr cos(çv- 0). 

(35) 

The stationary point y/ = a  is given by A' (v/) 3111  0 

i.e., 	sin (a - 0) = v sin a. 

which gives on simplification 

0 	 v 
ta 	+ an-1(1 + — 	tan tan-i. 

2 	1 v 	2 
(36) 

Also 
<0 

when 

>
cos (a 0) 	 (37) v  

co! a 



MAGNETOHYDRODYNAMIC SURFACE WAVES 	 115 

For each value of p with yR > I the method of stationary phasc 3  gives 

(4 x10)-4  EIG  s  pf (1:17 cos a, prAin a) 0 

p.  sal g  

L pRA" (a,) 
x {e"3 	+ edRP (m)) (3 g) 

where 

(p)= 2(17 + p A (a) — 
4R 
	 (39) 

p(p) a 207 — pA (a) + 4nR  . 	 (40) 

Therefore 

p 	= T[CaLiyit 

) 

\1/2 	)itz 
sech2 p] — 1 

and 

r(  nhp\ 1/ 2 

P° (p)n  TLC 	
{cosy-A 2p — (7p) -1-} 

" )1/2 

tanhp 
seehlis f(2p) -1  — eoth 2p — tanhpd 

For r(p) !olds 	(p) < 0 for 0 <p < c o . 

Hera 

P' (p) -4 27 — A (a) as p --, 0 , 

as p -+ +00. 

The equation P' (p) gc 0 has a real pasitivc root #= /1 (say) when r> A (a) where 

(41) (-Ranh  avit 	a) 1 / 2 . t  2 	= A a). ft 	%bat TR—C 	tank ft' 

The stationary phase method applied again to (3g) leads to 

cti (20 R)--1 	 Re Ejr(figicos a, /Alin 	a) 
(A" (a) P (a) 

X esiR (27 (g task f3)1/ 2-PA tai 	 (42) 

for 	Ail> R> and T> 44 (a), 	
I• 
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1  
11 ?-1 	

fl tanh fl  NI/2 
I ph' R N/Ah (A .  (a) PP go ) 	nt Oh Cos a, 	a) 

x  rontriptinopon_p, ("1. 

Finally, bisattse =q + the, we obtain 

ft 	yi 2 

(2Rh 2) 1 (A. 	e (a) 	[Re {7 (jficoS a, fill sin a) 

+ 2 (tanh fly's  )  
x e-4R(2T igtuipois. isA 00)  

p 

x /m(F(geoS a, Pi-sin a ) e- in (,7 (pion 0 1 /2- flA (E))] .  

5. Illustrative cases 

5.1. Initial impulse or eleration on a rectangular area 

(a) Let 

F(x,y)= 4---a ,j a, yKb 

za0,Ixl> a, lyl> b 

f(x, y) 0, 

where 1 represents the total impuke over the surface. 

Then 

l
ab 

sin ki  a fr.(k„ k2) = sin k2b 
ka 

th 	
I 	,( 	tank 

2°- 27rabpkVia \As(a) P"(fl)) 
112  sir. (alificon a)sin (bit-ftSin a) 

IP cos asin a 

x sin (R {2-r (ft tanh 	I  se 114 (a)n 

for 

R>1, 11>i, a (0, 27r) • 



MAGNETOHYDRODYNAMIC SURFACE WAVES 	 117 

When 	a els 
I 	( tants II \ 1 / 2. . 

2naRh A/h1.11\A* (a) P* (M) sin (flab) 

x sin R {27 (ft tanh j3)" 2   

for 	R> Rfl> 1. 

( tank  /I \ in sin 
Obi; 2RbRh NMAAtei's  (a) P" (M) 

x sin R{27 (fl tanh /IW 2  IIA (a)), 

for 	R> 1, Rn> 1, 

(b) Let. 

TV 
xfig. y) = 	I hc. a. y 1‘. b, 4ab' 

=0, I x I> a, 13, 1> b. 
Rx, y) = 0, 

while IV is the total volume of elevated fluid. 

Thrn 

7(ki, 
W 

1c2 ' 	2nab 
sin kia sin k2b 

k3  

and we find 

W    V' sin (fill acosae a.)sip (filib sin u) 
tit 4nabR Utt (a ) P* (16 ) 	IP Sin a cis a 

X cos R (2r (ft tanh. Min — //A (alj 

for 

R?sk 1, Rfl> 1 1  a 36  (0, .2 • 

• 
When 	a = Op 	 ;* 	41 

— n. 4n aRh (A' (a) P* (17) • prin sin (fliia) 

	

x Cos 	t2 T (ft tanh 11) ,/ 3 	flA (a)).. 
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When 
_ 7r 

a. 2 

414 Rh-  
kil n  (a) P" (j1) fl) - ' 12  sin (flizb) 

-11  

X cot; R(27 (ft tanh fl)!/ 2  — SA (a)). 

4.2. Impulse or elevation over elliptic regions 

(a) 	t 

( 	X t  Vy 1 	2 	2 y (x, y) = 	1 	- 	' 	 lc 1, irab 	at 	b' 	' 	at 	bz 

= 0 
x 2 	y2 

I  OU t*Ji de + 	a  
a 2 	b 2  

J y) = 0, 

where I again denotes the total impulse on the surface. 

Wc have 

k1) 	27-111 1  (7)  x  .17 [10, az + k; b 2p/ 2  
k;b 2 11112  

(see Erdelyi, 1, 1.3 (8) and 1.3 (50)). 

For 7 = 2, w.: have 

4/ 	tanh  ft )1/2 -12{Ni (a 2  cor. 2  a 4- 	rain (7)" 2 }  
Ph 	npRil hi.fl As (a ) P' (fl) 	 a 2  cos t  a ÷ Yi sin 2  a 

x sin R (2 .7. (ft tanh M ut  — flA (a)) 

for 	RJI>LR> L.  

(b) Lit 

( 	x 	 x -  2 	y2)7-1 	 2 y  f (x, 	= irs
ab 	

c-72
2 	' = 1 a 	bz 

=0 
II . , 	x- , 	, 

outraotc  a2  b 2  

F(x, y) = 0 

whcre 19 again is the total volume of ch.vated 
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Then for y = 

2W 	J{fel (cgeos 2  a. ±  bIsin 201/2} 
11 1 :as  IrRI3 It be (a) r (PP M' 	&cos? a, + b 2 sinTa. 

X cos R {27 (11 tanh Mili — PA (a)) 

for 
R I, P11>1. 

5. Discussion 

We  fin d from (53) that the motion consists of two different modes, one of which is 
due to the impalse only without any initial surface elevation and the other is caused by 
the initial elevat;on of the surface without any impulse. 

The pharx function is 

R (2 (f1 tanh Min — 	(a)} = t (AA tank fi)' n  — 0177 A (a). 

Thc motion, therefore, represents a progressive wave of length 

2.7r 
flit Mar 

period 

27r  
(ifth Girth 11)" 

and phase vclocity 
• 

1.(2/1 tanh lly" 
c :at  A (a) \ 

Further, eqn. (50) implies that the results we find for tj apply to waves that we observe 
whi:n we rave with the group velocity 

v  c tanh fl 4fl scch! JT  
2 	tanh 	• 

The quantity A. accounts for the effects of magnetic and currcnt fields as well as gra- 
vItY. As a result, the wavelength, period, phase velocity and the group velocity are 
all Influenced by the presence of magnetic and current fields. We further note that 

the amplitude of the waves decays like re'. 
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