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*no 

ilibil wave train is normally invident on a submerged infinitely long cylinder 	with horizontal axis 
in fkil of infinite depth, it is well known that it passes over the cylinder with a change of phase 
4 without any change of amplitude and experiences no reflection. 	But when the 	depth of fluid 
idea into account it is shown here that 	the normally incident wave train does experience reflec- 
laud the reflection coefficient can bc asymptotically evaluated for large depth 6  h ' of the fluid 
liaaltebraie series in powers of a h, starting 	with (a10 2 , 'a' being the radius of the cylinder. 	For 
Kean values of the wave number and 	depth of the axis of the cylinder below the mean free 
Ida) =vial values of the reflection coefficient arc obtained for different values of hla. 

47 ids : scan • (Ting, submerged cylinder, reflection and transmission coefficients, Green's 
was frnd of finite depth. 

Iltroduction  

liost a the 	b 
afraid , . Pr° lems associated with surface wave scattering by obstacles present in 
6.2 either infinite or finite depth do not admit of an exact solution except per- 
l'oiTZenthe obstacles are in the form of fixcd vertical barriers ((f Ursell'). although 
cntelfri  1  equation formulation is always possible by an appropriate use of the 

ntegral theorem in the fluid region. For normal incidence of surface waves 
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on a fixed vertical barrier involving fluid of infinite depth the correspo
ndi n  . 

non-:401b1  

equation has an exact solution (cf. Goswami 2  and others). In general, thge  ! fit% 
equations obtained in these problems cannot be solved in closed forms 

and intetk 
solved only approximately by appropriate techniques involving some 	dime parameter. A few problems involving finite depth of fluid have been considered-

it Mei and Black", Packham and Williams', and others. Macaskill' has given a  
method which encompasses different types of vertical barriers in fluids of both ifif

irliki4  and finite depth. 

A train of surface waves normally incident on a completely submerged inf inite'

Y  

jou  
horizontal circular cylinder in fluid of infinite depth is known to experience no rellem ot  
by the cylinder (cf. Dean6, Urse11 7, Levine 8). In the present paper this problem' 
generalised to include the case of finite depth of fluid, and it is shown that the no ing: 
incident surface wave now does experience reflection by the submerged cylinder. 
an appropriate use of Green's integral theorem, the problem is reduced to the s4 
tion of an integral equation of the second kind in the scattered potential on the com 
of the cylinder. When this potential is replaced by its equivalent general Fourier series 
in the angular co-ordinate with origin at the centre of the circular cross-section.* 
linear infinite systems are obtained. The reflection coefficient (complex) is seen to Vaii 
identically when these two linear systems become identical which happens only whentit 
fluid depth is infinite. These two linear systems can be solved approximately. As 
a first approximation, all the unknown coefficients except the first ones in these otos 
are equated to zero, and then approximations are made again for large hja, 
being the radius of the cylinder and 'f ' being the depth of its axis below the ino 

free surface. -it is then seen that the reflection coefficient can be asymptotiak 
expressed as an algebraic series in powers of alh commencing with (0)=. ItT 

illustrate the method, numerical values of the reflection coefficient (real) are caknbied 
for different values of hla and fixed Ka and 	K' being the wave number. 

2. Formulation of the problem 

A rectangular cartesian co-ordinate system is used with origin at the centre ofa aikoll 

submerged circular cylinder the genentors of which are horizontal and oriente d  he  

the z-axis, the y-axis is taken vertically downwards and the x-axis • 	
w 

a' be the radius of the cylinder, 'f '  ( > a) the depth of the axis of the cylinder rs,A  

the mean free surface, and h' ( > > f) the depth of the fluid. The fluid is ass:: 

s horizontaLv  

to be ideal and under the action of gravity only, and the effect of 
viscosity iscir; 

ted. A harmonically time dependent train of surface waves is normally inciden
t 0 
ior0 

fixed cylinder from the negative x direction. The problem is two -dimeta bo 
nature and is independent of z. The motion is irrotational and can be descnol 
velocity potential. Let the incident wave field be represented ty Re {cio 	of 
where a is the angular frequency. Then within the framework of finalised tricy'l 
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• the 
 yelocitY potential can be represented by Re 	(x, 	r°') where the times 

adent conIPlex 
„ .4 valued function 4) (x, y) iatisfics the Laplace's equation  

(?!?2.3) fr lY) = 0 	in the fluid region, 	 (2.1) 
?-  

oil 

 

the boundary conditions 

+ 	= 0 an y = 	(xi< co, 	 (2 . 2) 
))7 

Aba ony=hef Ixl< co, 	 (2.3) 

?4)  = 0 on r = 	 (2.4) 
?is 

x  r sin 0, y= r cos 0 (— n 	K = isr 2M, 

git to gravity. (2.2) s the Jinearised boundary condition 

.2mand (2.4) are the conditions of zero normal velocity on 

'dace of the cylinder respectively. If R and T denote 
*non and transmission coefficients corresponding to the 

g being the acceleration 
on the mean free surface, 
the fluid bottom and the 
respectively the complex 

acident wave field 

cosh ko 	— 	ea., 	 (2.5) 
(x' = 	cosh koh 

if  being the positive real root of the transcendental equation 

k tanh kh = K 	 (2.6) 

Sal the far field behaviour of the velocity potential 	(x, y) is given by 

inc).0 T 00 (x,y) as x--* cc 	 (2.7) 

tad 

(x, 	00  (x, y) + R$ 0 (— x, y) as x-0 — cc 	 (2.8) 

Vt choose Ii to be sufficiently large so as to assume the difference between k. and K 
lobe exponentially small. 

3• Redaction to two infinitely linear systems 
kanaPpropriate 

use of Green's integral theorem, at any fluid point (, n) the scattered 
ittatial defined 

by # (1 	= 	77) 	0.(e. ri) can be obtained as 

f (0) a G Cr
" 

Y 	\ " 
-r 

f G (a sin 0, a cos0, e, 57.11 	, 

	

y 	do 	(3.1) 

-r 



k cosh ky )(K sinh 
K) k smh kh K cosh kh) 
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where 0 (9) is the unknown scattered potential function on the contour of th e evii iida.  
G (x, y ; e, In is the Green's function satisfying (2. 1) except at 

( t /1) where it 167 
logarithmic singularity, with boundary conditions (2.2) and (2.3) and th e addi7 1  
condition that it behaves as adiverging wave at infinity, and the angular bra cket  /ark 

the values at r = a. Following Thorne ° G Cr, Y ; , q) can be obtained as illt' 

cc  
ans  Sin 

4 	

L 
P 	#.% 

J
eh kyle  sinh k ph  

G (x, y ; (f,q) = log - - 	 COS k (X 
ft 	 k cosh kh 	 - 0 dk 

0 

oc 

- 2 	 Nk 
i cosh  k (h  - y 1) cosh k Ur - no 

(k-sinh kh - K cosh kh) cosh kii cos k (x - 

0 

(3'4 

where 

=3' +f 	n +1, p = RA' k43 2  + - 0 2}111,  ?= UvY  - 

	

(y 	/11) 2} 11 2 , 

and the contour of integration in the last integral is indented below the simple 
k = k 0  so as to take into account the diverging type behaviour of 0, y;,11)1 

I x 	1 -> cc. If G c, denotes the Green's function for infinite depth of fluid, Su 

can be shown that 

	

G (x, y ; 	= Gcc (x, Y ; 47 	G D 	; 	11) 
where 

(x, y ; (;, g) = log - 1)  -2 

07 

f k (x - ID A 
k - K

cos 
	 . 

0 

and 

G D y ; 
cc 

2  f rk h  (K sinh ky 
k (k 

0 

• cos k - dk, 

cin 	colt:1  
By an use of Green's integral theorem 	 O' to (x, y) and G, Y'  

i 	
a  ; a he olv 

n the fluid region with a small indentation at the point (a sin a, a coS via 

the contour 	of integration 	in 	(3. 3) being 	indented 	below 
that in (3.44) below the poles at k = K and k = K. 

the pole at k 
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T 
a 
 0(0 of (3.1) can be shout to satisfy an integral equation of the second kind 

g (a) + jr 4
, (0) ‹a G (r sin 0, r cos 0 ; a sin a, a cos a)> d 0 r 

-r 

f (a o (xY) > G(0 ; a)dO ir <a< ir  

—7r 
(3.5) 

ohne  GO; a) E G (a sin O. a cos 0 ; a 

000 (3.5) the Fourier series expansion of 
sin a, a cos a). To solve the integral cqua- 

(0) given by 

cc 

+ E (a, cos di + 
nal 

sin n0), —7v <0c 7v  
(3  . 

nbstitutcd in (3.5) thcn multiplying both sides of (3.5) by cos sea, sin sa respectively it  
Lad integatirg with respect to a from — 7Z to 7I the following two infinite linear systems 
ne obtained 

cc 	cc 
a2  + E asP2J  + E 	b n 1)432 = 1 1:11, 	0 1  I, 2, 

net 	flat 
cc 	cc 

it' + E anigi + Eg  b„P „T. = 1 j 2), s = I, 2, 
ors0 	Mail .  

(3. 7) 

(3.8) 

1r 	7 
P1s1  = f f 

—1r 
(— G Aft, y: a sin a, a cos a)\, cos nO cos sa dO da 

?r 	 7 
(3  . 9) 

Pti's (j = 2. 3, 4) are 
&note the combinations 

integrar.ds ; and 

double integrals similar to (3.9) where the subscripts 2. 
cos nO sin sa, sin nO cos set, sin nO sin set respectively 

3,4 
Iii 

r 
V:1114"  = 	f r /a  Nfro (x, y)\,\  G  (0 	cos sa do  d 	 (3.10) a  

'or 	' 	sin set 

II  mane noted that ao  does not affect the function (fr 	70 in (3 . 1 ) since 

G (x, y • 0> de = O. r 
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4. Approximate expressions for Pr1)  j = 1, 2, 3,4 and Vpi t , 2  

Assuming Ka and Kf to be moderate, and following a tech 

GD (0, a) and ( a Tr  Go (X, y a sin a, a cos a)) can be 

algebraic series in powers of alh, and it is seen that both 
Substituting these series in the double integrals (3.9) and 
it can be shown that for large h (i.e., large Kh, 	hlf) 

nique similar to Goswank 

asymptotically expanded 4  
the series start with talf  
(3.10) and following 

Ls  2  (/  -1- s — 1) 1 ( a ra 	2 2 	(Ka)" \  P2)  = (— 1 111- 	(II  a_ 1)  s 	 — 	1 Vra7141) 

1 	ir 2  
2 (n 1) s !

Gay"  S(1 ) (Ka, I h\ 
a ' 	 (4.1 

= PL) = 0 

Is the same expression as Pg.' with SA!, replaced by .9:124, 
where 

S (1)  5") = #14 it 	nts 

Xr-- 0 

, 	oo 
1 	(aA r  sc)--N 

(Ka?' \ 70 L 
2" ((V' (q\s 
,t ! \ a ) Lk) 

(l 
	It") 

2 a 
x (au+s+x+istabx+i 	as+s-Fx+A+1,x+i, 	Ka -h ( 1  (- IT 

(Ka) 2  
ia 

X an +snifil x_ ± 	+ 	(a....fricitx., 

alos+A la  +1)] 

the upper and lower sign being for S„":, and Sgi!, respectively, and 

oc 
= 14'3 (1 — tank 11) dii, n, in 	1, 

0 
cc 

111)  Th=21-1( 	{(Kr — 	
(Kar (n +  s 1) 1 ( a V} 

n — 1) 1 n 1 WV 
n-L 

oc 
4. 21 	(-- 	dIS  8  

n 	1 ) vairc F (z) 
net 	 1-2K1 

(Ka  
cc 	

0 ( aVI .n(Kon  (co 	, a h ..1  

0.1) 
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co is a s imilar expression as in (4.4) multiplied throughout by i and S' 
and 	, 	 H 

	

The function 	z) i
S(2)

(4.2) and (4.4) is given by 	
y24-8 

gored by 114 

cc r  e (; 
F(:)— ---' 	I 	 (4.5) 

0 

here 
the contour is h.:dented above the simple pole at 	= I. Noting that p'  (1, ),= 0 

14  
and putting 

A. 	a. 
+.-. - 	 (4.6) B. —  -- ib. 	n ! 

the two linear systems (3.7) and (3.8) reduce to 

sA, +AnK,,,=_- 2esici 	 (Kay. 	s = 1, 2, 	 (4.7) (s — 1)  
wet 

I) 	! sr, +2 B. L.. -,-,rxr 	
( re, 

(.5c 	vita) 8, - 	s = 1, 2,  (4.8) 
taxi  

%here  

K„ = Ka.= 	
1 

	

— I) (s 	![( 	1 ) n i s  (n +s— 1) !l a  
\2 .1 .  

d" 	
2 C "I) 

	

—2 (Ka)" L 	(z) 	 "+11 	
(4.9) 

dz" 	)z.va 

and L
,, is the same expression as in (4.9) with S 9  replaced by SA!,. 

II pry be noted that for infinite depth of fluid. K., and L., coincide by making 
0-03 in (4.9), so that the two linear systems (4.7) and (4.8) reduce to one which 

exactb the same as that obtained by Levine 8 . 

Ille Iwo infinite linear systems (4.7) ard (4.8) are of the same type given by 
cc 

x1+ 	x, 	= 	= 1, 2, .... 

The conditions sufficient 
sYsteni (ef. Urse11 7) are 

for the exister.ce Ltd uric iteness of soluticn of this linear 

hen < St g •n 
cc and det (5,„ 117) 

• 
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oc 
If E ¶ 4,1 is convergent, 

sin 
that these conditions are 

oc 
then I 

assi 

satisfied in 

xi  is also 

our case. 

convergent. It is not difficult to gym  

5. Reflection and transmission coefficients 

By making 	T- cc in (3. 1) and noting the far field 
G (x, y ; 4, /), the transmission and reflection coefficients 

behaviours of 4, k, aild  
can be obtained as 

cc 

T= 	Rie-K1 	(— 
(77-_-0-1.‘Kar (11,, + 

ot 
C-1 

R = 	
on 

Z.. (n — 
	,(Ka 

n = 

after neglecting exponentially small terms for large Ii. 	For infinite depth of kid 
since A„ and B„ coincide, R vanishes identically. This result has been establisibi 
earlier by Dean°, Ursell 7  and Levine 8 . 

Approximate solution of the linear systems (4.7) and (4.8) can be obtained by tilt 
cation. 	As an illustration, we truncate up 	to only one term so that we assume Ar  

.81 0 0, A2 = A3 = . . . B2 = B3 = . . = 0. 

Then R =-=.- R (1 ) = nie-KI (A l  — B1 ), T=— T (1)  = 1 — mie -Kf (A l  + B1 ) 

where now 

= — 2e-Ki Kat(1 + K 11 ), 111 = 	2e-  ict Kaj(l + L a) 

Let us write 

Ku = 	k It , Len = IP + 111  = it + 

where 

K;:): = \1 _2f)— 2 (Ka) 2  (±L  il(z)) 
d 22 	Z = 2 Kf, 

1 a) ku = 	2  Su) (Ka" f la hla) 2 h 	2   

41 	l'
(a

)
2 

= 
	
Sr) (Ka, Ea, hla). 

410 

(5.1) 

(SI 
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Then 	= 
	2rIci 	+ Ki;IV so that fic,12 = 0, 

To: 1 + 4 : e.- JCL ( 1  + Krci )  

f terms only UP to (0) 1  
k1  /11 	— a11  (1 + 

are retained, then 
1)(alh) 2  

0that eirrie4R1  an (KO' (a)" n  ((a 3  
Ro) = 	4.-----77---cp2 	\h.) 

eleav(Kar f 	(a\2  an 	(a\3\ 
\.h) 1 ± K C)C  

	

1 	 ti 
ad hence  To) — TV= 	Ro ). 

Th is  illustrates the conclusion that the reflection coefficient and the depth correction to 

the transmission coefficient for large h can be approximated as algebraic series in 

viers of ajh starting with (0110 2 . 

Discussion 

hniv be noted that the approximate results 	for the complex 	reflection and 	trans- 
Sion coefficients obtained here are valid under the assumption that Ka, Kf < <Kb. 
liking Ka =0.5, fla = 2.0, numerical values of R 	are calculated 	for hla = 10, 20, 

I V. 40. 50, 60, 70, 80, 90 and 100 correct up 	to 	five 	decimal places and plotted in 
54, I It is noticed from the graph that as hla becomes large, 	R becomes small as 
should be expected. 

t") 	 40 	60 	80 	100 
hha 

••■• 
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