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dbract

Wio 2 wave traim s pormally incident on a submerged infinitcly long cylinder with horizontal axis
in2 find of mipite depth, it 1s well known that it passes over the ¢ylinder with a change of phase
b wthout anvy change of amplitude and cxperiences no reflection. But when the depth of fluid
sake mio account it 5 shown here that the normally incident wave train docs experience reflec-
m. 1d the reflection coefficient can bc asymptotically evaluated for large depth /' of the fluid
’*I_f&lsl‘bnitsuies i powers of a ki, starting with (¢//1)°, ‘a’ being the radius of the cylinder. For
Mikr values of the wave number and depth of the axis of the cylinder below the mean frec
wixr, sumenical values of the reflection coefficient arc obtained for different values of Ala.

E”.M”_ s““ﬂ_iﬂs, submerged cylinder, rcflection and transmission coeflicients, Green's
e, fid of fipite depth,

L Itrodaction

Mot of |

i g Qflhe- prol?lem. associated with surface wave scattering by obstacles present In
::hu:“ Infinite or finite depth do not admit of an cxact solution except per-

0 fnlepra) Obsfades are in the form of fixced vertical barriers (¢f. Ursell’). although

Gty imefquanon formulation is always possible by an appropriate use of the

B2l theorem in the fluid region. For normal incidence of surface waves
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on a fixed vertical barrier involving fluid of infinite depth the corr -
equation has an exact solution (¢f. Goswami? and others). [n . ;spondmg iy,
equations obtained 1n these problems cannot be solved in closed F:'-l, the ey,
solved only approximately by appropriate techniques involving some ;ms g g
param:ter. A few problems involving finite depth of fluid haye bec On'd",n‘:"ﬂﬂui
Mei and Black®, Packham and Williams*, and others. Macaski][’ ™ g::; :Onsldcrb;]b’

mcthod which encompasses different types of vertical barriers in fiyigs Dfﬂban g
and firite depth. Oth infiy,

A train of surface waves normally incident on a completely submergeq infinite
horizontal circular cylinder in fluld of infinite depth is known to experience g, fe oy
by the cylinder (¢f. Dean®, Ursell?, Levine8). Tn the present paper ihis problep ;

; . . : b l§
generalised to include the case of finitc depth of fluid, and it is shown that the N0k
incident surface wave now does experience reflection by the submerged cylings;, §
an appropriate use of Green’s integral theorem, the problem is reduced to l}m*m];
tion of an integral equation of the second kind in the scattered potential on the oMoy
of the cylinder. When this potential i1s replaced by its equivalent general Fourier wrs
in the angular co-ordinate with origin at the centre of the circular cross-section, tw
linear infinite systems are obtained. The reflection coefficicnt (complex) is seen to vensy
identically when these two linear systems become identical which happens only whent
flutd depth is infinite. These two linear systems can be solved approximately. &
a first approximation, all the unknown coefficients except the first ones in these sy
are equated to zero, and then approximations are made again for large hfa, hf'C
being the radius of the cylinder and °f” being the depth of its axis below the x4
free surface. It is then seen that the reflection coefficient can be asympiotial
expressed as an algebraic series in powers of a/h commencing with (a#’ L
illustrate the method, numerical values of the reflection coefficient (real) are caabt

for different values of h/a and fixed Ka and a/f, * K’ being the wave number.

2. Formulation of the problem

rr:i:}filf”“7d

A rectangular cartesian co-ordinate system is used with origin at the cent 4§ i
nt

submerged circular cylinder the gencrators of which are horizontal and or I
the z-axis, the y-axis is taken vertically downwards ard the x-axis IS hﬂnm{aﬁoi
‘a’ be the radius of the cylinder, ‘ f* ( > a) the depth of the axis of the ":yhflderssmd
the mean free surface, and ‘ /1’ ( > > f) the depth of the fluid. The fluid 1 ® gkt
to be idcal and under the action of gravity only, and the effect of visc_"S‘.ty lsl

ted. A harmonically time dependent train of surface waves is normally incide™ © o
fixed cylinder from the negative x direction. The problem Is l“fo'd!m{ﬁed iy
naturc and is indeperdent of z. The motion is irrotational and can be descrl' y 4
velocity potential. Let the incident wave ficld be represented by Re {90 (",Eoﬂ’d

: i . aeiced 1
where ¢ is the angular frequency. Then within the framework of lineartse
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potential can be representcd by Re {@(x, )) ¢***} wherc the time-

fod- ‘hjﬂ r:elisgplcx valued function @ (x, y) satisfics the Laplace’s equation
" (% +;;) ¢ (x,)) =0 1n the fluid region, (2.1)
i the boundary conditions
W kp=0 ony=-—f|lx]|<oo, (2.2)
Y
W_o ony=h—f |x]|<oo, (2.3)
Y
%f,._o onr=4d (2.4)
r

c=rsind, y=rcos 8§ (—2<0<n), K=0%g g being the acceleration
m: 'gfavity. (2.2) I1s the linearised boundary condition on the mean free surface,
i}nand (2.4) are the conditi0n§ of zero normal velocity on the ﬂui:d bottom and the
;ﬂacc of the cylinder respectively. If R ard T denote respectively the complex
goion and transmission coefficients correspording to the incident wave field

cosh ko (h — y) o

b ) = —Cosh kol )
, being the positive real root of the transcendental equation

k tanh kh = K (2.6)
b the far field behaviour of the velocity potential @ (x, y) is given by

O(x,) = Tdy(x,)) as x > o (2.7y
o

3= G (x, ) + RPo(— x,y) as x = — oC (2.8)

Ve thoose J o fig sufficiently large so as to assume the difference between k, and K
IBbﬂ:'&xltvonemially small.

! : P
Reduction to two Infinitely linear systems

Waaapprons |
g‘.ﬂpﬁﬁate use of Green's integral theorem, at any fluid point (&, #) the scattered
“d by ¢ (& n) = @ (&, n) — ¢, (E. n) can be obtained as

.2,[ m
Mf.,q):-. f¢(9)<a%(}(xﬁy,f§ﬂi)> 0

~— f G (a sin B, d COS 9, 6, f])<ﬂ§}-.¢“ (_‘\"Jr)> d6 (3])
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where ¢ (0) is the unknown scattereg poteqtia[function on the contoyy yf the ¢y

Gy 3 &) is the Greep’s function satlsfyl_ng (2.1) except at (&, 1) whﬁ[e(i:zhmq'
logarithmic singularity, with bf:)und_ary condmgns '(2.2) and (2.3) anq addih'“l
condition that it behaves as a diverging wave at mﬁmty, and the angular be liggg

j dckat
the values at r = a. Following Thorne® G (x, 9 ; & 1) can be obtaingg asc deng,

i ; . L

, p c** sinh ky; sinh k ~

G (J‘g ¥ : &y j’) = IL‘}g—p—, it 2 .J‘ kCOS]‘t k]‘,l ICOSk(x—-E)dk
0

3 cosh k(I — ¥,) cosh k (h —n,)
e f (k sinh kh — K cosh kh) cosh kh cos kix - )k
0

b
where
=y +fim=n+fip ==+ -mPH =0
+ (¥ +m?e,

and the contour of integration in the last integral s indented below the stmplc_pokﬂ
k = k, so as lo take into account the diverging type behaviour of G{x, yi& 8
|x - &> o, If G denotes the Green's function for infinite depth of fiud, thad
can be shown that

Gy &M =G (35 &N +Gp (%15 61

wherc
YRR . 53
o e x B e o £ e ~k_\;—-")dk
GE ("\?J s Gs ]]) = |0g E, 2 .J‘ oy K COd ( s
0
and
GD (‘x?y ; éa ’])
~ : _ J cosh k)
— — f e¥ (K sinh ky, — k cosh kp) (Ksmh}]l_L,rl‘,c-m/
k (k — K) (k sinh kit — K cosh kh)
0 (].ﬂ
-QOS’((JC—@{”{, Kld
. t y =
the contour of integration in (3.3) being indented below the pole &
that in (3.4) below the poles at k = K and k = k. r
Cm "
’ * . in 1 L ‘
By an use of Green's integral theorem to ¢ (x, y) and G(X, ) ,0::) Onmcaﬁ*

'n the fluid region with a small indentation at the point (asin @ 8¢
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@) of (3.1) can be shown to satisfy an integral cquation of the second kind

L

ﬂ"fnb}'
: - ; | |
,;qb(a)-l' f ¢(0)< S?G(;-slnﬂ, rcosé ; asma,,acgga)>dg
~x

x
A i .
- j< ﬁ¢u(.1,))>6(3,a)dﬂ,—-:r <a<Th (3.5)
-7
G(0; o) =G (asin 0. a cos f; a sin o, a cosa). To solve the integral cqua-
::?a. 5) the Fourier series exparnsion of ¢ (6) given by

o) = a + E‘c(a,,cosr.ﬂ + b,sinnb), —n<0 <nx (3.6)

n=]

bstituted in (3.5) then multiplying both sides of (3.5) by cos sa, sin sa respectively
piinegratirg with respect to efrom — zton the following two infinite linear systems

i obtamed
o+ 5 o PY+ 5 bPR=125=0 1,2, 3.7
ne=) fiw]
2h 4+ 5 0D + Sy b PR =1 ® s=1, 2, (3.8)
w=0 n=1

L T

m - ol o - 3
P J' f\aBrG(.r, y_.asma..acosa.)>cos nf cos sa df da (3.9

RIS (j=2.3,4)are double integrals similar to (3.9) where the subscripts 2, 3, 4
hﬂ_lt the combinations cos n@ sin sa, sin nf cos sa, sin nf sin sa respectively in
& integrands : and |

e - [ ; /2, (x,Y) .4 COs sa
f f N —>G(9 ’ a)sinmd()da (3. 10)

llma-
¥ be noted (hat a4, does not affect the function ¢ (&, 7) in (3.1) since

' 0
J< YAACA E.,r;)>da = 0.
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4. Approximate expressions for P“’5 J=1,2,3,4 and Vi ; =1, 2

Assuming Kgand Kf to be moderate, and following a technique Similar -
0

3

05Wa
Go (0.0) and (a5, Gp (5,3 @ sina, @ cos @) can be asympioticgy o

“Xpa
algebraic series in POWCTS of af/h, and itis seen that both the series Start »
Substituting these series in the double intcgrals (3.9) and (3.10) ang Wilh (g

fi
it can be shown that for large /i (i.e., large Kh, hja, h/f) Olovin "8 Lovg.
1) — (— |8+ 2 4§ — ) '(_ﬂ e A9 (Ka)* * %,
P ( 1) (4 ( — 1)15! 2f 2n (”__41)!3!(—_:;_-_,}-"@).
Ly
s fh
(1) A
2 (n — 1) | ¢! (h 3 (Ka ’ ) (i
PH = P =)
P\ Is the same expression as P® with S, replaced by S2.,
where
o0 00 2
N2 “ (a
S4. S8 = 2 [ ) | 4+ (= ly=s)
+ + Kaj ’f/ 24 ‘ kh ( (
A=0 =0
X (ﬂ-u+ T 4. fl-+:ih+£*+1,);+})_ _2. E(] ..(-1)""]
3 M#=1, A+l (Ka)g KG h

[ fay
X Gptstres, \i1 T (=D +(— 1Y) { ay sra-1,111 "'[(E(ﬁ)

{43
Mptg+)i1, A+1)] )

the upper and lower sign being for Sf¥, and S, respectively, and

i | 1ty
e = | 1" (] —tarh® ) du.n,.m > 1,
0

2 -Kr = . -nt!(a
vo == {kay - KEEEET ()}
| oC (_- I)H(Ka)ﬂl‘" ln s
P ntn-—1)" (ff*"  F(2) s=2KI

1y (=D (K" fa\*'* a]
* 3 n'(n-l)'(h) Sws K“'"h)



SURFACE WAYVYE SCATTERING 195

o ic a similar expreasnon as in (4.4) multiplicd throughout by ; and Sr
" V;;i ]ti.r s The function F(z) n (4.2) and (4.4) is given by
rgp]ﬂff
¢* c,

Fi) = f =1 % (4.5)
here the contour 15 irdented above the simple pole at C=1. Noting that P =0
]
gd putting

a, (=1"(Ka)*
;'=—fb T T a | (4.6)

e two linear systems (3.7) and (3.8) reduce to

o

(-1 .,
A + z w= 20K e (KaY, s=1,2, (4.7)
ll
s, +2 B L, =2e™ (. = 1))  (Kay,  s=1,2, ‘ (4.8)
=1

where

Ku= Ka= G=TE=T) '[(" s = 02 (57)
< a%* \ | {a\"" eus
(koG F@) |~ ﬁ) 5,,,,,], @)

ind L, is the same expression as in (4-9) with S¥}, replaced by S,3.

Ilmy be noted that for infinite depth of fluid, K, and L, coincide by mak!'ng
th-01in (4.9), so that the two linear systems (4.7) and (4.8) reducc to onc which
sexeclly the same as that obtained by Levines.

The two infinite linear systems (4.7) ard (4.8) are of the same type given by

=

Xy + z .,’(',Am = f,. 8=
§

fiam]

The congiy .

0 1 b . . . ]
Sistem "ditions sufficient for the existerce «rd uriqueness of soluticn of this Iircar
T {df Urscll”) are

ZZ*TJ\M’«:ocanddct(é 4+ 210

"~ By
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I, | is convergent, then Z’ X, s also convergent. Tt i .
If El | 1, | 2 X g 'S Ot iffgyy

that these conditions are satisfied 1In our case.

5. Reflection and transmission coefficients

By making ¢ - F o in (3.1) and noting the far field behaviours of o
G (x, v ;& n), the transmission and reflection coefficients can be obtaineg as

oC

_ - (_ ]). n
T =1 +mnie™ Z — ‘(Ka) (A, + B,) M

yremy

— ik Z (("' 1)",(Ka)" (4, — B)) 52

n=1

after ncglecting exponentially small terms for large /. For infinite depth of fui

since A, and B, coincide, R vanishes identically. This result has been establii
carlier by Dean®, Ursell? and Leving®.

Approximate solution of the linear systems (4.7) and (4.8) can be obtained by tut

cation. As an illustration, we truncate up to only one term so that we assum 4
BI#O, A2=A3= ...Bg =.Bg — = (.

Then R= RW =rnie® (4, — B), T=TM =1 — nie ¥ (4, + B;)

where now

A, = — 2% Ka/(1 + K,)). B, = — 2¢¥" Ka/(1 + Ly)

Let us write
Ky =K% +ky, Liy=L5, +h, =K +/n

where

(27) - 2(Ka)2( .f’(z)) .

] 2
ka==5(3) S (Ka, f/a, hja)

- "(h) S? (Ka, fla, hla).
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hef PR 2¢-%! Ka/(l + KT5) so that R = ¢
}L- _ | +4riec (1 + KT)
1 (a/h)? are retained, then

kyge e | (11 (afh}*

ol — dnie*® oy (Ka)? (E 2 + 0 <(£ 3
Rill = — (1 T K::;:)-.t 1 h

4rie2E (Ka)? { (0)2 a1 } a\ 3
_ - e (% a
Tﬂ] =] + I 4 K:r h ] + Kf: + O ((h) )

Tg_f = — R,

o hence TO) =
- s lstrates the conclusion that the reflection coefficient and the depth correction to
je transmission coefficient for large / can be approximated as algebraic series in

ones of afh starting with (alh)>.

{ Discassion

tmay be noted that the approximate results for the complex reflection and trans-
sidon coefficients obtained here ars valid under the assumption that Ka, Kf < <Kh.
Ntng Ka =05, fla = 2°0, numerical values of R are calculated for Afa = 10, 20,
| 1.4, 50, 60, 70, 80, 90 and 100 correct up to five decimal places and plotted in
). It is noticed from the graph that as h/a becomes large, R becomes small as
dould be expected.

S

10" - o =~ e

Ka=03 $sm:20

|
= 40 60 80 100

FJG' ]1
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