sattering of surface waves by a submerged circular cylinder in a find of finite depth
arEADRA TATH MANDAL
Dequtrocs of Applied Mathematics. University College of Science, 92, Acharya Prafulla Chandra unain Catarta 00000 , India

1D
RITHIDRA NATH CHAKRABARTI
Rutidenge Fied Stool, 50 , Kavi Sukanta Sarani, Calcutla 700085 , India.
lacied on atchar 50, 1982: Revised on April 28, 1983.

Illarixt

Wen mave train is normally incident on a submerged infinitely long cylinder with horizontal axis in and of infinte depth, it is well known that it passes over the cylinder with a change of phase mithout any change of amplitude and experiences no reflection. But when the depth of fluid inten int account it is shown here that the normally incident wave train docs experience reflectim and the reflection coefficient can be asymptotically evaluated for large depth ' h ' of the fluid $\$ \mathrm{~m}$ a dyetraic series in powers of $a h$, starting with $(a ; h)^{2}$, ' a ' being the radius of the cylinder. For minebr tatues of the wave number and depth of the axis of the cylinder below the mean free siber, mumerial talues of the reflection coefficient are obtained for different values of h / a.

If rats: Scatering, submerged cylinder, reflection and transmissiun coefficients, Green's ario, fruid of finite depth.

1. Introdection

Host of the problems associated with surface wave scattering by obstacles present in Ifid of either infinite or finite depth do not admit of an exact solution except per${ }^{6} \mathrm{x}$ when the obstacles are in the form of fixed vertical barriers (f. Ursell') , although ${ }^{i}$ integral equation formulation is always fossible by an appropriate use of the
on a fixed vertical barrier involving fluid of infinite depth the corresponding inferi paramster. A few problems involving finite depth of fluid have been considerate by Mei and Black ${ }^{3}$, Packham and Williams ${ }^{4}$, and others. Macaskill ${ }^{5}$ has given a numariay method which encompasses different types of vertical barriers in fluids of both infoim and finite depth.

A train of surface waves normally incident on a completely submerged infinitely hen horizontal circular cylinder in fluid of infinite depth is known to experience no refection by the cylinder ($c f$. Dean ${ }^{6}$, Ursell ${ }^{7}$, Levine ${ }^{8}$). In the present paper this probkn is generalised to include the case of finite depth of fluid, and it is shown that the nomah incident surface wave now does experience reflection by the submerged cylinder if an appropriate use of Green's integral theorem, the problem is reduced to the stre tion of an integral equation of the second kind in the scattered potential on the conam of the cylinder. When this potential is replaced by its equivalent general Fourier stio in the angular co-ordinate with origin at the centre of the circular cross-section, tom linear infinite systems are obtained. The reflection coefficic nt (complex) is seen to zawi identically when these two linear systems become identical which happens only mhentir fluid depth is infinite. These two linear systems can be solved approximately, \& a first approximation, all the unknown coefficients except the first ones in these splere are equated to zero, and then approximations are made again for large h / a, hj. $' i$ being the radius of the cylinder and ' f ' being the depth of its axis below the man free surface. It is then seen that the reflection coefficient can be asympotiuxt expressed as an algebraic series in powers of a/h commencing with (aik): To illustrate the method, numerical values of the reflection coefficient (real) are calkled for different values of h / a and fixed $K a$ and a / f, ' K ' being the wave number.

2. Formulation of the problem

A rectangular cartesian co-ordinate system is used with origin at the centre of a firad submerged circular cylinder the generators of which are horizontal and oriented das the z-axis, the y-axis is taken vertically downwards ard the x-axis is horizontal. lat ' a ' be the radius of the cylinder, ' f ' $(>a)$ the depth of the axis of the cylinder bedor the mean free surface, and ' h ' $(\gg f)$ the depth of the fluid. The fluid is assumbly to be idcal and under the action of gravity only, and the effect of viscosity is nefcr: ted. A harmonically time dependent train of surface waves is normally incident on the fixed cylinder from the negative x direction. The problem is two-dimension ${ }^{3}$ is nature and is indeperdent of z. The motion is irrotational and can be described ${ }^{\text {b }}$? velocity potential. Let the incident wave field be represented ty $\operatorname{Re}\left\{\phi_{0}(x, y),\right\}_{i}$ where σ is the angular frequency. Then within the framework of linearised theor of
id the velocity potential can be representcd by $\operatorname{Rc}\left\{\Phi(x, j) e^{-t o t}\right\}$ where the timedrendent complex valued function $\Phi(x, y)$ satisfics the Laplace's equation

$$
\begin{equation*}
\left(\frac{z^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \Phi(x, y)=0 \quad \text { in the fluid region, } \tag{2.1}
\end{equation*}
$$

i, it the boundary conditions

$$
\begin{align*}
& \frac{\partial \phi}{\partial y}+K \Phi=0 \quad \text { on } y=-f,|x|<\infty, \tag{2.2}\\
& \frac{\partial \Phi}{\partial y}=0 \quad \text { on } y=h-f,|x|<\infty, \tag{2.3}\\
& \frac{\partial \phi}{\partial r}=0 \quad \text { on } r=a \tag{2.4}
\end{align*}
$$

wate $x=r \sin \theta, y=r \cos \theta(-\pi \leq \theta \leq \pi), K=\sigma^{2} / g, g$ being the acceleration tarlo gravity. (2.2) is the linearised boundary condition on the mean free surface, 6.) and (2.4) are the conditions of zero normal velocity on the fluid bottom and the surfac of the cylinder respectively. If R ard T denote respectively the complex adkion and transmission coefficients correspording to the incident wave field

$$
\begin{equation*}
\phi_{0}(x, y)=\frac{\cosh k_{0}(h-y)}{\cosh k_{0} h} e^{\alpha_{0} a_{0}} \tag{2.5}
\end{equation*}
$$

4 being the positive real root of the transcendental equation

$$
\begin{equation*}
k \tanh k h=K \tag{2.6}
\end{equation*}
$$

the far field behaviour of the velocity potential $\Phi(x, y)$ is given by

$$
\begin{equation*}
\Phi(x, y) \rightarrow T \phi_{0}(x, y) \text { as } x \rightarrow \propto \tag{2.7}
\end{equation*}
$$

1

$$
\begin{equation*}
\phi(x, y) \rightarrow \phi_{0}(x, y)+R \phi_{0}(-x, y) \text { as } x \rightarrow-\propto \tag{2.8}
\end{equation*}
$$

liectoose h to be sufficiently large so as to assume the difference between k_{0} and K bbe exponentially small.

3. Redection to two infinitely linear systems

Mappropriate use of Green's integral theorem, at any fluid point (ξ, η) the scattered Pential defined by $\phi(\xi, \eta)=\Phi(\xi, \eta)-\phi_{0}(\xi . \eta)$ can be obtained as

$$
\begin{align*}
2 \pi \phi(\xi, \eta)= & -\int_{-\pi}^{\pi} \phi(\theta)\left\langle a \frac{\partial}{\partial r} G(x, y, \xi, \eta)\right\rangle d \theta \\
& -\int_{-\pi}^{\pi} G(a \sin \theta, a \cos \theta, \xi, \eta)\left\langle a \frac{\partial}{\partial r} \phi_{v}(x, y)\right\rangle d \theta \tag{3.1}
\end{align*}
$$

where $\phi(\theta)$ is the unknown scattered potential function on the contour of the cylind $G(x, y ; \xi, \eta)$ is the Green's function satisfying (2.1) except at (ξ, η) where it logarithmic singularity, with boundary conditions (2.2) and (2.3) and the addivane condition that it behaves as a diverging wave at infinity, and the angular bracker drame, the values at $r=a$. Following Thorne ${ }^{9} G(x, y ; \xi, \eta)$ can be obtained as

$$
\begin{align*}
G(x, y ; \xi, \eta)= & \log \frac{\rho}{\rho^{\prime}} \\
& -2 \int_{0}^{\infty} \frac{e^{-k \cdot h} \sinh k y_{1} \sinh k \eta_{1}}{k \cosh k h} \cos k(x-\bar{\xi}) d k \tag{法}\\
& -2 \int_{0}^{\infty} \frac{\cosh k\left(h-y_{1}\right) \cosh k\left(h-\eta_{2}\right)}{(k \sinh k h-K \cosh k h) \cosh k h} \cos k(x-\bar{\sigma}) d k
\end{align*}
$$

where

$$
\begin{aligned}
y_{1}= & y+f, \eta_{1}=\eta+f, \rho=\left\{(x-\zeta)^{2}+(y-\eta)^{2}\right\}^{1 / 2}, \rho^{\prime}=\left\{(x-\zeta)^{\prime}\right. \\
& \left.+\left(y+\eta_{1}\right)^{2}\right\}^{1 / 2},
\end{aligned}
$$

and the contour of integration in the last integral is indented below the simple potl $k=k_{0}$ so as to take into account the diverging type behaviour of $G(x, y ; \xi, \xi)=$ $|x-\xi| \rightarrow \propto$. If G_{α} denotes the Green's function for infinite depth of fuid, banit can be shown that

$$
G(x, y ; \xi, \eta)=G_{\alpha}(x, y ; \xi, \eta)+G_{D}(x, y ; \xi, \eta)
$$

wherc

$$
G_{\alpha}(x ; y ; \xi, \eta)=\log \frac{\rho}{p^{\prime}}-2 \int_{0}^{\infty} \frac{c^{k\left(\nu_{1} ; \eta_{1}\right)}}{k-K} \cos k(x-\xi) d k
$$

and

$$
\begin{aligned}
& G_{D}(x, y ; \xi, \eta) \\
&=- 2 \int_{0}^{\infty} \frac{e^{-k h}\left(K \sinh k y_{1}-k \cosh k y_{h}\right)\left(K \sinh k \eta_{1}-k \cosh k n_{n}\right)}{k(k-K)(k \sinh k h-K \cosh k h)} \\
& \cdot \cos k(x-\xi) d k,
\end{aligned}
$$

the contour of integration in (3.3) being indented below the pole at $k=R$. that in (3.4) below the poles at $k=K$ and $k=k_{0}$.

By an use of Green's integral theorem to $\phi(x, y)$ and $G(x, y ; a \sin a .0$ and in the fluid region with a small indentation at the point $(a \sin a, a \cos a)$ on the
${ }_{1}=0, \phi(\theta)$ of (3.1) can be shown to satisfy an integral equation of the second kind nime b:

$$
\begin{gather*}
\pi \phi(a)+\int_{-\pi}^{\pi} \phi(\theta)\left\langle a \frac{\partial}{a r} G(r \sin \theta, r \cos \theta ; a \sin a, a \cos a)\right\rangle d \theta \\
=-\int_{-\pi}^{\pi}\left\langle a \frac{\lambda}{\partial r} \phi_{v}(x, y)\right\rangle G(\theta ; \alpha) d \theta,-\pi<\alpha<\pi \tag{3.5}
\end{gather*}
$$

ukire $G(\theta ; a) \equiv G(a \sin \theta, a \cos \theta ; a \sin a, a \cos a)$. To solve the integral equawnf (1.5) the Fourier series exparsion of $\phi(\theta)$ given by

$$
\begin{equation*}
\phi(\theta)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos 1 . \theta+b_{n} \sin n \theta\right),-\pi<\theta<\pi \tag{3.6}
\end{equation*}
$$

bisbbsiluted in (3.5) then multiplying both sides of (3.5) by $\cos s a$, sin $s a$ respectively manderatitrg with respect to a from $-\pi$ to π the following two infinite linear systems ur obained

$$
\begin{align*}
& \pi^{3} a_{i}+\sum_{n=0}^{\infty} a_{n} P_{n s}^{(n)}+\sum_{n=1}^{\infty} b_{n} P_{n s}^{(3)}=l_{s}^{(2)}, s=0,1,2, \tag{3.7}\\
& n^{3} b_{i}+\sum_{n=0}^{\infty} a_{n} F_{n=2}^{(2)}+\sum_{n=1}^{\infty} b_{n} P_{n s}^{(4)}=l^{(2)}, s=1,2, \tag{3.8}
\end{align*}
$$

$$
\begin{equation*}
P_{n}^{\prime \prime \prime}=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi}\left\langle a \frac{\partial}{\partial r} G(x, y ; a \sin a, a \cos a)\right\rangle \cos n \theta \cos s a d \theta d a \tag{3.9}
\end{equation*}
$$

adip $\mathrm{m}_{\mathrm{n}} \mathrm{s}(j=2,3,4)$ are double integrals similar to (3.9) where the subscripts $2.3,4$ dante the combinations $\cos n \theta \sin s a, \sin n \theta \cos s a, \sin n \theta \sin s a$ respectively in timegrands; and

$$
\begin{equation*}
V_{9}^{(a),(a)}=-\int_{-\pi}^{\pi} \int_{-\pi}^{\pi}\left\langle a \frac{\partial \phi_{n}(x, y)}{\partial r}\right\rangle G(\theta ; a) \frac{\cos s a}{\sin s a} d \theta d a \tag{3.10}
\end{equation*}
$$

4 may be noted that a_{0} does not affect the function $\phi(\xi, \eta)$ in (3.1) since

$$
\int_{-T}^{\pi}\left\langle a \frac{\partial}{\partial r} G(x, y ; \xi, \eta)\right\rangle d \theta=0 .
$$

4. Approximate expressions for $P_{n s}^{(j)} j=1,2,3,4$ and $V_{s}^{(j)} j=1,2$

Assuming $K a$ and $K f$ to be moderate, and following a technique similar to $\mathrm{G}_{\mathrm{os} \text { mania }}$ $G_{D}(\theta, a)$ and $\left\langle a \frac{\partial}{\partial r} G_{D}(x, y ; a \sin a, a \cos a)\right\rangle$ can be asymptotically expanded ${ }_{5}$ algebraic series in powers of a / h, and it is seen that both the series start with (alk Substituting these series in the double integrals (3.9) and (3.10) and following Limit. it can be shown that for large $h($ i.e., large $K h, h / a, h / f)$

$$
\begin{align*}
& P_{n s}^{(1)}=(-1)^{n+8} \pi^{2} \frac{(n+s-1)!}{(n-1)!s!}\left(\frac{a}{2 f}\right)^{n+8}-2 \pi^{2} \frac{(K a)^{n}}{(n-1)!s!}\left(\frac{d^{n+1}}{d^{n+1}} F_{(:)}\right)_{n_{n+1}} \\
&-\frac{1}{2} \frac{\pi^{2}}{(n-1)!s!}\left(\frac{a}{h}\right)^{n+s} S^{(1)}\left(K a, \frac{f}{a}, \frac{h}{a}\right) \\
& P_{n s}^{(2)}=P_{n s}^{(z)}=0
\end{align*}
$$

$P_{n s}^{(4)}$ is the same expression as $P_{n s}^{(1)}$ with $S_{n+s}^{(1)}$ replaced by $S_{n+s}^{(2)}$, where

$$
\begin{align*}
& S_{n+s}^{(1)} S_{n+s}^{(2)}=\sum_{\lambda=0}^{\infty} \frac{1}{(K a)^{\lambda}}\left(\frac{a}{h}\right)^{\lambda}\left[\sum_{\mu=0}^{\infty} \frac{2^{\mu}}{\mu!}\left(\frac{f}{a}\right)^{\mu}\left(\frac{a}{h}\right)^{\mu}\left(1+(-1)^{x++\beta}\right)\right. \\
& \times\left(\alpha_{u+\varepsilon+\lambda+\mu-1, \lambda+1}+\frac{a_{n+s+\lambda+\mu+1, \lambda+1}}{(K a)^{2}}\right)-\frac{2}{K} a \frac{a}{h}\left(1-(-1)^{\prime \prime \eta}\right) \\
& \times a_{n+s+\lambda+\mu, \lambda+1} \pm\left((-1)^{n}+(-1)^{2}\right)\left(a_{n \cdot 2+\lambda-1, \lambda+1}+\frac{1}{K a}\left(\frac{a}{b}\right)^{0}\right. \\
& \left.\left.a_{n+s+\lambda+1}, \lambda+1\right)\right], \tag{4.}
\end{align*}
$$

the upper and lower sign being for $S_{n+s}^{(1)}$ and $S_{n+s}^{(2)}$ respectively, and

$$
\begin{align*}
& a_{m n}=\int_{0}^{\infty} u^{n}\left(1-\operatorname{tarh}^{(n} u\right) d u, n, m \geq 1, \tag{㰪}\\
& V^{(1)}=\frac{\pi^{2} \imath^{-K t}}{s!}\left[(-1)^{d}\left\{(K a)^{2}-\sum_{n=1}^{\infty} \frac{(K a)^{n}(n+s-1)!}{(n-1)!n!}\left(\frac{a}{2 f}\right)^{n \cdot t}\right\}\right. \\
& +2!\sum_{n=1}^{\infty} \frac{(-1)^{n}(K a)^{2 n,}}{n!(n-1)!}\left(\frac{d^{n},}{d z^{n}} F(z)\right)_{a=2 K t} \\
& \left.+\frac{1}{2}!\sum_{n=1}^{\infty} \frac{(-1)^{n}(K a)^{n}}{n!(n-1)!}\left(\frac{a}{h}\right)^{n, 2} S_{n+s}^{(1)}\left(K a \cdot \frac{f}{a}, \frac{a}{h}\right)^{-}\right]
\end{align*}
$$

${ }_{\text {nnd }}{ }^{(s)}$ is is a similar expression as in (4.4) multiplicd throughout by i and $S_{n+\text { a }}^{(1)}$ mplaced by $S_{n+c}^{(2)}$. The function $F(z)$ in (4.2) and (4.4) is given by

$$
\begin{equation*}
F(=)=\int_{0}^{\infty} \frac{e^{\xi} \xi}{\zeta-1} d \zeta \tag{4.5}
\end{equation*}
$$

where the contour is indented above the simple pole at $\zeta=1$. Noting that $P_{o, 2}^{(j)}=0$ and putting

$$
\begin{gather*}
A_{n}=-\begin{array}{c}
a_{n} \\
B_{n} \\
-i b_{n}
\end{array}+\frac{(-1)^{n}(K a)^{n} e^{-K f}}{n!} \tag{4.6}
\end{gather*}
$$

the two linear systems (3.7) and (3.8) reduce to

$$
\begin{align*}
& s A_{s}+\sum_{n=1}^{\infty} A_{n} K_{n s}=2 e^{-K \prime} \frac{(-1)^{s}}{(s-1)!}(K a)^{s}, \quad s=1,2, \tag{4.7}\\
& s F_{s}+\sum_{n=1}^{\infty} B_{n} L_{n s}=2 e^{-K \prime} \frac{(-1)^{s}}{(s-1)!}(K a)^{s} ; \quad s=1,2, \tag{4.8}
\end{align*}
$$

vere

$$
\begin{align*}
& K_{n \prime}=K_{e n}=\frac{1}{(n-1)!(s-1)!}\left[(-1)^{n_{1} s}(n+s-1)!\binom{a}{2 f^{\prime}}^{n, s}\right. \tag{4.9}
\end{align*}
$$

and L_{n} is the same expression as in (4.9) with $S_{n+e}^{(1)}$ replaced by $S_{n+s}^{(2)}$
It mey be noted that for infinite depth of fluid, $K_{n g}$ and L_{n}, coincide by making $0 . h \rightarrow 0$ in (4.9), so that the two linear systems (4.7) and (4.8) reduce to one which is erectly the same as that obtained by Levine ${ }^{8}$.

The two infinite linear systems (4.7) ard (4.8) are of the same type given by

$$
x_{1}+\sum_{n=1}^{\infty} x_{2} \frac{k_{n s}}{s}=I_{n} . s=1,2, \ldots .
$$

The conditions suffcient for the existerce ard uriquieness of solution of this lircar Wyem (cf. Urscll?) are

$$
\sum_{i=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{s}!k_{n s}!<\alpha \text { and } \operatorname{det}\left(\delta_{, n}+\frac{k_{n s}}{s}\right) \neq 0
$$

If $\sum_{s=1}^{\infty}\left|I_{s}\right|$ is convergent, then $\sum_{i=1}^{\infty} x_{0}$ is also convergent. It is not difficult to shen that these conditions are satisfied in our case.

5. Reflection and transmission coefficients

By making $\xi \rightarrow \mp \propto$ in (3.1) and noting the far field behaviours of $\phi(\zeta, \eta)$ a $a d$ $G(x, y ; \xi, \eta)$, the transmission and reflection coefficients can be obtained as

$$
\begin{align*}
& T=1+\pi i e^{-K I} \sum_{n=1}^{\infty} \frac{(-1)^{*}}{(n-1)!}(K a)^{n}\left(A_{n}+B_{n}\right) \tag{5.}\\
& R=\pi i e^{-K \prime} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n-1)!}(K a)^{n}\left(A_{n}-B_{n}\right) \tag{5.7}
\end{align*}
$$

after neglecting exponentially smell terms for large h. For infinite deph of mid since A_{n} and B_{n} coincide, R vanishes identically. This result has been stablisat carlier by Dean ${ }^{6}$, Ursell ${ }^{7}$ and Levint ${ }^{8}$.

Approximate solution of the linear systems (4.7) and (4.8) can be obtained by urur cation. As an illustration, we truncate up to only one term so that we assume A_{p} $B_{1} \neq 0, A_{2}=A_{3}=\ldots B_{2}=B_{3}=\ldots=0$.
Then $R \equiv R^{(1)}=\pi i e^{-K \prime}\left(A_{1}-B_{1}\right), T \equiv T^{(1)}=1-\pi i e^{-K f}\left(A_{1}+B_{1}\right)$
where now

$$
A_{1}=-2 e^{-K t} K a /\left(1+K_{11}\right), B_{1}=-2 e^{-K t} K a /\left(1+L_{11}\right)
$$

Let us write

$$
K_{11}=K_{11}^{\infty}+k_{11}, L_{11}=L_{11}^{\infty}+l_{11}=K_{11}^{\infty}+l_{11}
$$

where

$$
\begin{aligned}
& K_{11}^{\infty}=\left(\frac{a}{2 f}\right)^{2}-2(K a)^{2}\left(\frac{d^{2} i}{d z^{2}} F(z)\right) z=2 K f, \\
& k_{11}=-\frac{1}{2}\left(\frac{a}{h}\right)^{2} S_{2}^{(1)}(K a, f / a, h / a) \\
& l_{11}=-\frac{1}{2}\left(\frac{a}{h}\right)^{2} S_{2}^{(2)}(K a, f / a, h / a) .
\end{aligned}
$$

" \mathbb{F} umb only up to $(a / h)^{2}$ are retained, then

$$
k_{11} l_{11}=-a_{11}(1 \pm 1)(a / h)^{2}
$$

so that

$$
\begin{aligned}
& R^{(1)}=\frac{-4 \pi i i^{-2 K \prime} a_{11}(K a)^{2}}{\left(1+K_{11}^{\alpha}\right)^{2}}\left(\frac{a}{h}\right)^{2}+O\left(\left(\frac{a}{h}\right)^{3}\right) \\
& T^{(1)}=1+\frac{4 \pi i e^{-2 K \prime}(K a)^{2}}{1+K_{11}^{\infty}}\left\{1+\binom{a}{h}^{2} \frac{a_{11}}{1+K_{11}^{\alpha}}\right\}+O\left(\left(\frac{a}{h}\right)^{3}\right)
\end{aligned}
$$

md hence $T^{(1)}-T_{c}^{(1)}=-R^{(1)}$.
Tisillustrates the conclusion that the reflection coefficient and the depth correction to ie tansmission coefficient for large h can be approximated as algebraic series in pumers of a / h starting with $(a / h)^{2}$.

a Discassion

umy be noted that the approximate results for the complex reflection and transdision coefficients obtained here are valid under the assumption that $K a, K f \ll K h$. raing $K a=0.5, f / a=2 \cdot 0$, numerical values of R are calculated for $h / a=10,20$, Y. 40, 50, 60, 70, 80, 90 and 100 correct up to five decimal places and plotted in (1. It is noticed from the graph that as h / a becomes large, R becomes small as sould be expected.

Fig. 1.

Acknowledgement

The authors take this opportunity of thanking one of the referees and the editor

References

1. Ursell, F.
2. Goswami, S. K.
3. Mei, C. C. and Black, J. L.
4. Packham, B. A. and Williams, W. E.
5. Macaskill, C.
6. Dean, W. R.
7. Ursell, F.
8. Levine, H .
9. Thorne, R. C.
10. Goswami, S. K.
11. Goswami, S. K.

The effect of a fixed vertical barrier on surface waves in
water, Proc. Camb. Phil. Soc., 1947, 43, $374-382$. A note on the problem of scattering of surface mantions submerged fixed vertical barrier, Z. Angew. Math. Phys, it, 62, 637-639.
Scattering of surface waves by rectangular obstacks in we of finite depth, J. Fluid Mech., 1969, 38, 499-511.
A note on the transmission of water waves through ad apertures, J. Inst. Math. Applics., 1972, 10, 176-184.
Reflexion of water waves by a rermeable barrier, J. Fudiduk 1979, 95, 141-157.
On the reflection of surface waves by a submerged ghat Proc. Camb. Phil. Soc., 1948, 44, 483-491.

Surface waves on deep water in the presence of sumaxid circular cylinder 1 and H, Proc. Camb. Phil. Soc. 190,4 141-155.
Scattering of surface waves by a submerged cylinder,, . Wi Phys., 1965, 6, 1231-1243.
Multipole expansions in the theory of surface maichac Camb. Phil. Soc., 1953, 49, 707-716.
Diffraction of water waves by a submerged fixed verimal lexitis in water of finite depth, Bull. Calcutta Math. Soc, $198 \mathrm{~g}_{\mathrm{I}}$ it 75-86.
Scattering of surface waves by a fixed vertical plate in of finite depth, J. Indian Inst. Sci., 1983, 64 (B). 79-88.

