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, Abstract 

The present paper deals with some problems on the variation of the eigenvalues and their application 
to study the nature of the spectrum associated with the matrix operator 

— D (AD) p1 

	

D Fr: - 	 (A) 
r is 	 D (q0D) ql) t 	dr 

with prescribed boundary conditions. By employing, among others, some of the ideas and techniques 
of E. C. Titchmarsh and those of Chakraborty and Sen Gupta, it is found that under certain condi- 
tions, satisfied by the coefficients of the system (A), the spectrum of the system is discrete. 

Key words : Spectrum (discrete), differential operator, Hilbert space, Green's matrix, absolutely 
liaircirrnlY continuous, pseudomonotonics, variation of the eigenvalues, meromorphic, Dirichlet (New 
mann) problem. 

1. Introduction 

Chakraborty and Sen Guptas employed the Titchmarsh method' involving the varia- 
tion of the eigenvalues to obtain interalia a criterion for the discreteness of the 
spectrum associated with the differential system 

	

D 	— • 	 (1.1) 
— D 2 	 dx 

In a recent paper Sen Gupta, generalises certain results of the above paper, for 
a shgb.tly more generalised system 

M1 [fj = — D 2  J+ = ftSf, 	
(1.2) 

( h 
Where P = (P q) and S = L hs  t  ) • q r 
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Our object in the present paper is to obtain certain results involving the criteria for 
the discreteness of the spectra for the general system 

MO = AFO, 

se  (--- D(p op) + Pi 
D (q 0D) q1 ) 

where 1 : a x < b (a = 0, b = oo being where (i) Po'  go 	1, Pi, 91, 	c 	(09 
allowed) and pi ,q1 , ri  are absolutely continuous over any compact subinterval of / 

F = (F41  (x)) is a symmetric 2 x 2 matrix of real valued continuous functions, 
with det F (max (Po, %J)' an L Thus, det F 1, on L 

(iii) le C, the set of all complex numbers and 

(iv) = (u) 

the set of all 

/62 

such that fr Ff, (Mr F (Ff), (Mf)s F (Mf), (Mf)r F 1  (Mf) e X, the basic Hilbert 
space L (a, b) ; 

ft = 	= 	f2), 

the transpose of f. 

It is well known' that (1.3) along with 
points gives rise to an eigenvalue problem, 
case. 

prescribed boundary conditions at the end 
both in the finite as well as in the singular 

The boundary conditions to be considered for our problem are for the finite interval: 

14  (a) = V (a) a  

	

“fie) = v (ft) =0 
	

(1.4) 

or 	le (a) = (a) = 0 
ofo 	(fi) =0 	 ( 1 . 5 ) 

where, a <a <fl<b; cI  =( u ) , a solution of (1.3). 

We thus encounter the Dirichlet or the Neumann problems for the interval (a, 
according as the boundary conditions are given by (1.4) or (1.5). 

When the interval is [0, co), the corresponding Dirichlet and the Neumann problems 
are (1.3) with u (0) = v (0) = 0 and (1.3) with u' (0) = v' (0) = 0 respectively. 



hiGENVALUE PROBLEMS 	 t3 

• The Dirichlet integral 

The Dirichlet integral associated with the system (1.3) is defined by Di  (g, h) 
ric 	(g, h, p) = 	(0, H, P) dt, 1 = (a, ti), where 

a 

p 
 = (

TI ) , G  = 	n, 	 g 

Jr, qj 	
go  ) g  = (gb 	g o,  

H  . (hi  h2  
h s') 	khP) s h s'n (hi  hat  

(0, H, P) = p ogi ' 111 ' 	g og; h 2' 	pal h, + q,g 2h 2  + r1g1 h2  + ri gchi  ; 

with corresponding &talons for Db (g, 	Do  (g), for I = to, b) and D (g, h), D (g) 
for / a [0, 00) (Sc Chakraborty and S:n Gupta'). 

If 	> 0, q1  > 0 and dcit p 0, Db (g) is always positive. 

If A = A
. 

(b), and tp. (x) 	x), n = 0, 1, 2, 3, ..., be the eigenvalues and the 
eirnvectors, normalised in the sense 

w (x) Boa = S viZ Flys ch= L I  
0 

and also if 

= 	Ff dr = fb  fr Fve dt 
• 0 

0, pi  > cF11 , det(P — cF) 0 
the N.umann problems, are 
De (f, g) as obtained in § 3 of 
nt operator, 

0 (x4'), for large x, 0 <c <1, 
Po qu 

, or alt:rnatively, p ow., pot vs, qov., 	Ls  [0 1  001. Then for the singular case 

10 ' °Q)2  D  (Via,  tv.) azi 	ba, 5„,,„ the Kroneeker delta. 

We say that pi , th, rA , Fe Ja, if the following additional conditions are satisfied: 

(0 !Pi is qz 	 (x), Q 	> 

‘,41ine,1 90-Tx3' (x)  < co, 0 < 	23  , Q' (x) continuous ; 

(m) lira 	<00, j, j =t, 2. 
• I 	ratI% 1.0 	• 

(iv) t (x) gF
, 	 5(x), i,j = 1, 2, ft---A)  tends to a finite nonzero limit as x tends: 

to infinity. 

be the Faurier co..fLient of f c C (I), then if Po'  q0 > 
oa 	bj, the eig,nvalun for both the D:riehlet and 
great:r than or equal t3 c. Other results concerning 
Qukraborty and S.:n Gupta', also follow for the prese 

Let pas aft 1 	
n  

satisfy 4)- , "- = 0 (1) and ho c) = 
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(v) Q (x)/S(x) tends to infinity as x tends to infinity. 

010 I Qoyin di is divergent. 

If fT  Ff, f 'r Ff 6 L [0, co) (with f(0) = (I for the Dirichlet problem and f (0) 
for the Neumann problem), then 

D ( f, yr„) = 

and if, moreover, Ps 0, det P 0, 

D (f) (2.2) 
00 

E ARC:. 
Isms 

It may be noted that the condition f Fite L (0, oo) as required for the derivations 
of (2.1) and (2.2) may be dispensed with when p 1 ,q1 ,r1 , Fe at. 

3. Variation of the eigemalues 

As in Chakraborty and Sen Gupta, we say that a sequence of symmetric matrices 

P O 5i  {Pi}, P i  as (  Pr "  r"), 	= 1, 2 ... , 
• 41 	q 

defined over / is pseudo-monotonic over /, if and 	only if for j < k,j, k = .1,2, ..., 
po 	pa, q" 	qm, pa  > 0, det P, 	0, and det (Pi  — Pk) 	0, for all x c L 

In particular, the matrix 11. (1) r ) is pseudo-monotonic over [0, co), if for r q 

at x. c (0, co). 

We denote the class of pseudo-monotonic sequences of matrices P o  over I, by PM (I). 

Then by utilising the Minkowski inequality for two positive definite harmitian 
Matrices A, B of order n, viz., 

I A lus + I B it" 	I  A + B Ili" (see Mirskiv, p. 419) ... (A 0) 

it easily follows that 

(i) aP o  + s Q0  e PM (I), where a, /I are positive scalars and Po, Q0  € Pfrf (/). 
Also if {Pi}, {Q,} E PM (I) 

(ii) det (Pa — PkQe ) 	, j, k = 1, 2,3, ... . 

The product secpence of the two sequences [Fib 10,1, is denoted by UPI}, {Q 1}}. We  
note that the product sequences o two pseudo-monotonic sequences 
necessarily pseudo-monoton.ic. 	

(P,), (Q11, are not 
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Put 	F (1.1 x)  = ( 
	(r, x) 

 L Fit t  (r, 

and 	7 (r, 	(r, x) 
73.2 (rs 1) 

yi s  (r, x)\ 
in (r, x))* where x 

Then the following theorems hold 
theorems of this article. Further, 

that pp q1 , r1 , F e 

ft is assumed that p 0  q 0 	1 1  in all the following 
when we consider the interval [0, co), we 	assume 

Theorem 3.1 : If {Pi}e PM (1), 1: 0 	x < b, b = co allowed, then A„ ~ P% n = 0, 
1,2,3, . • ., where ,1„ and /4, are the eifpnvalins for the Dirichlet (Neumann) problems, 
with matrices PI  and Pk  respectively for P, j < k, j, k = 1, 2,3, 	. 

Theorem 3.2: Let pi  > 0, det P 0, {F (r, x)} e PM (I), where I : 0 x < b, b = co 
allowed. Then #1,4  Zp s, n = 0, 1, 2, 3, 	, when A„ and A are respectively the eigen- 
valun for the D,richlet (Neumann) problems, with F(x) = F(r, x) and F(s, x) 
respectively, with r < s, r, s = 1,2, ... . 

Let 11  c1:0Sx< b, b = oo allowed and let 

P 

 

ri  = 0 on /1  
qLj 

= 7 (x) F(x) on I — 

where 7 (x)  = 	his) 
7n 72 

is a real valu -4, positive thligite, symmetric and absolutely continuous matrix defined 
/ /1 , 7 7  0 c 0. Then 

Theorem 3.3 : If p.,, z k, where k is a positive constant and the product sequence 

({F(r, x)}, {ICE — 7 (r, x)}] e PM — /0, then A, au„ 	k, it = 0, 1, 2, ... , where 

.1p. are the einvalues for the Dirichlet (Neumann) problems, with 

F (x) = F (r, x), P(x) = 7 F s 7 (r, x) F (r, x) 	and 

F(x) = F(r, x), P (x) = 7 (3, x) F (s, x), r <s, r, s =1, 2, 3, 	... 

respectively; E is the 2 x 2 unit matrix. 

Let the intstrvals (0, b] and [0, 3], n> b be represented respectively by f t, and /a  and 

let 4 be an interval, included in 4. Then we have 

Theorem 3.4 : If pi  > 0, and det p z 0, and if A., y„ denote the nth eigenvalues for 

the Dirichlet (Neumann) problem of the intervals 4 and /a  respectively, then A„, 



1.,”t p., q.€ 	(1), 1: a < x < b, satisfy additional conditions 

pe'l (x) — 4 p i  (x) Po w  (x) = Ap o  (x)1 
q 0' 2  (x) - 4 q. (x) go°  (x) = Bq0 (4f (4.1) 

4 Discreteness of the spectra • , 

• 

• 

D (p 0D) -41 0 

D (q. — 1) 

• 

. 

I 

I 
I 

• 
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Finally, we have 

Theorem 3.5 : If 	k, where k is a positive constant and the product sequerce 

ERE 7 0; Mb IF (r, 91] e 	(11, 	then 10 	k, n =0, I., 2, . , where 
A. and u. are the eigimvalues for the problem of the intervals 4, with 

F (x) = F (r, x), P (x) =2 7 (r, x) F (r, x) and 43  with F(x) = F (s, x), 

P (x) =--- 7 (s, x) F (s, x), r < s, r, s = 1,2,3, ... , B > b. 

E, F. 7, 4, Is  having the same meanings as before. 

The result follows by choosing 

I (x) = w0 (x), 0 Ca; x < b 

bxSB, 

so that D t,(f, P (r, x)) 	Ds(f, P (s, x)) 

= f fr { 7 	x) F(r, x) — 7 (s, x) F (s, x)} dx, 
111-41 

and thm ad)pting the familiar Titchmarfh analysis? (pp. 89-90). 

wit:re A, B O. 

Let 0 < a < x < X, and 

ui  (x)= (x — a) 2S4  

1 (x) = Vi  (x — a) 	-Ec  (q 0  (a)}514  {q 0  (x)} 	sin {b, (w (x) 	(a))), 

(x) = 	q 0 (z)-1/ 2  dz, and 1i1 , a positive constant, which depends on B. 0 

Then it easily follows that U1  {u1 , vil satisfies the system M 0 U1  = 0, where 



E1GENVALUE PROBLEMS 
	

137 

with initial conditions 

u, (a) = v i  (a) =0 

IQ (a) = 0, v i ° (a) = (g o  Writ 

Let fr (x y) be the matrix, 

(Ha (x, 	1121 (xt .0\ 
(x, 	= 1/44 14 1  (x, .Y) 	.0) 

p CO q c / 2 ( th 	y) 

Ul 	".• 

• • 

u,( —y) 

q0-1 (y) q0-11 2  (y)V i (x — y) 

Ar.d 	11(x. y) 	(x. y), for a < y < x 
	 (4.2) 

0, otherwise. 

In 0 (X, x. y, A) be the Green's matrix for the interval [0, X], with elements 

x, y, AL which satisfy the discontinuity property 

a 	 a 
Fx s' 	' - 	ax 	

41. • 

• 

= iPr (y) 450, if = 1 

tqoa  
(4.3) 

(see Bhagat2). 

Thm it clearly follows that H (x, y), although not a Green's matrix, has the same 

sictoatinuity property 0.3), as the Green's matrix G (X, x, y, A). Further, H(x, y) 

always exists in 5 Ee (a, x) C (0, 

Let 	nx, x, y, A) = (r4,(x,x, y, A) 	
(4A) 

where 	 . 	4.  

fl, (X,x,y,A) = 0 	 (xt (4.5) 

(X, x, y, A) = a 4, 
(X, x, y, it) — H, (x, 

i = 2, = I., 2. 

Then (4.6) 
where r4 (.) = 	i = 1, 2, 

( 	(x) 41) His (x, 	(x) 	(x, Y)) 

Ki (xl  = Vril(x) Hi 2 (X ,  )7) ÷ (11 (X) rim 1  ) 110 (X  I N.  

and  slik 	= (142) Ha)T. 



where K(.) &noes the constant 
hold for the other r‘,. 
From (4.5) 

depending on the arguments shown. Similar results 

flau (X,x,y,A)1 2 dx(1.4-v-2)K(y,(5,121) (4.10) 
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From (4.6), 

(x, x, y, 	= I G (X, x, z, A) {K, (:, y) 	AF (z) 	(z, y)) 	 (4.7) 

Also, by Bhagat', (p. 61) 

I T1 7  (X, x, y, A) F (x) I; (X, x, y, A) dx 
0 

v--2  1 xr (z, y) F(z) (z, 	dz 
• (4.8) 

where x (x, y) = F-' (x) K1  (x. y) 	N, (x, y), A a y + iv, v 0. 
Since det F (X) 	1, 

F1T (.) Frt  (.) 	(.) 1, and hence from (4.8), after some tedious reductions, 

ix  r,, tx, 	y, 	2  dx 	V-2  (y, ot I A D 
	

(4.9) 

with similar results for the other O, (X, x, y, A). From results of type (4. 7), by making 
use of the properties of I (x, y), the SAwarz inequality, and the relations of type 
(4.10), it follows that 

ro (x, x, y, A), 	(v-2  + 1) 112  K (x, y, (5, I A I) 	 (4.11) 

where x, y lie in a fixed 50  C 5. 

We now make use of the formula, easily verifiable by integration by parts, viz., 

— x)! 0 (x) h (x) 

d \ 
Y) 2 	x)L

d 
-iry 	dy ) h (Y) dY 

Y) 2  (Y — x) O n  h (Y)dY — 2 I — Y) (e —3Y + 24 O s  (Y) h (Y) 4 

+ J(2x 	— 6y) (y) h (y) dy, 
• 
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and proceed in a manner, as indicated in Chakrabortya, so as to derive that 
Gil z  y. A) tends uniformly to Go  (x, y, A), as X tends to infinity through a suitable 

sequence and G (x, y A) = (G0  (x, y, A)) is the Green's matrix in the singular case 
[0, co) with the usual properties. 

We  now establish the following theroem : 

Theorem 4.1 : 	Let pi  (x)/F11  (x) > a, 	be monotone 	increasing, 	det (P — aF) 	0, 
for all X E / : 0 :5_ x < 00, 	where 	a  is a 	positive constant 	and Po'  q o  satisfy 	the 
conditions (i) p o  q o 	1, (ii) P o. qoe C (I) and (iii) the conditions (4.1). 	Also let the 
matrix 11  be pseudo-monotonic over L 	Then the spectrum of the given boundary 
value prot--lem is discrete over (a , P), where if > a, is arbitrary. 

Let the eigenvalues for the problem of the intervals [0, X] and (0, Xl, 	X S X', be 
represented respectively by Aiii , and A,.... 	Then from the given conditions 

Avg', At. g a> 0, and that Awe  Act (Theorem 3.4). 

Hence for suffi:ier tly large X, the sequence {An}, j 	0, 1, 2, ... h cf eigenvalues lying 
in (a  I fl) tend to {AI ) j = 0, 1, 2, 	h (not necessarily all different). 

Let A., < A... 1 , the Green's matrix 	(X, x, y, A) A = 	iv for the interval [0, X] 
for our problem, is regular except at the points A = A m„ which are the simple poles of 

G (1,x, y, 2). 

Put --bSvo, 	1, and A. + 26 S g S A. — '5 	Then for given x, y, ,6i 
J; y, it follows 	from (4 .1.1), 	that 1 Gil  (X, x, y, A) 1 5_ Mivi -i, M constant. 

The theorem now follows by arguments, similar to those of Titehmarsh 7  (p. 149). 

It is easily verifiable that the A. are actually the eigenvalues. 

Theorem 4.2 : Let P o, q 0  satisfy the conditions of theorem 4.1 and let 

qi 	VI  I 
Fa -P-2-2 cm-  !Fitt 

Where Fit  is monotone increasing. Then the spectrum of our problem is discrete 

over (0,00). 

This is an immediate consequence of the theorem 4.1. 

Let P and F be related by P = yF, where 7 is defined as in §3. Then the following 

theorem giving  the discreteness of the spectra holds. 
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Theorem 4.3 : If, in addition to the cond:tions of theorem 4.1, 7 11 (x) > a be mono, 
tone increasing, d'-t(y — aE) 0, for all xe I : 0 	x < oo, and 1'0 and /,i , j 
miinnin the same sign in [0, oo), then the spectrum of our problem is discrete over 
(ail), fit arbitrary, fl > a >0. 

Finally, we note that Sm Gupta's theorems is only a special case of the general 
theorem 4.1 obtained above. 
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