J. Indian Inst. Sci. 63 (B), June 1981, Pp. 131-140
C. Indian Institute of Science, Printed in India.

On some eigenvalue problems associated with a differential operator

N. K. CHAKRABORTY and SUDIP KUMAR ACHARYYA

Deparment of Pure Mathematios, University of Calcutta, 35, Ballygunge Circular Road, Calcutta 700019 , India.

Received on May 27, 1980 ; Revised on Junc 22, 1981.

Abstract

The present paper deals with some problems on the variation of the eigenvalues and their application to study the nature of the spectrum associated with the matrix operator $$
M \equiv\left(\begin{array}{cc} -D\left(p_{0} D\right)+p_{1} & r_{1} \tag{A}\\ r_{1} & -D\left(q_{0} D\right)+q_{1} \end{array}\right), \quad D \equiv \frac{d}{d x}
$$ with prescribed boundary conditions. By employing, among others, some of the ideas and techniques of E. C. Titchmarsh and those of Chakraborty and Sen Gupta, it is found that under certain conditions, satisfied by the coefficients of the system (A), the spectrum of the system is discrete.

Key words: Spectrum (discrete), differential operator, Hilbert space, Green's matrix, absolutely uniformly continuous, pseudomonotonics, variation of the eigenvalues, meromorphic, Dirichlet (Neumann) problem.

1. Introdaction

Chakraborty and Sen Gupta ${ }^{8}$ employed the Titchmarsh method ${ }^{7}$ involving the variation of the eigenvalues to obtain interalia a criterion for the discreteness of the spectrum associated with the differential system

$$
M_{1} \equiv\left(\begin{array}{cc}
-D^{2}+p & q \tag{1.1}\\
q & -D^{2}+r
\end{array}\right), \quad D \equiv \frac{d}{d x} .
$$

In a recent paper Sen Gupta ${ }^{8}$ generalises certain results of the above paper, for a slightly more generalised system

$$
\begin{equation*}
M_{1}[f]=-D^{2} f+P f=\lambda S f, \tag{1.2}
\end{equation*}
$$

f where

$$
P=\left(\begin{array}{ll}
p & q \\
q & r
\end{array}\right) \text { and } S=\left(\begin{array}{ll}
s & h \\
h & t
\end{array}\right) .
$$

Our object in the present paper is to obtain certain results involving the criteria for the discreteness of the spectra for the general system

$$
\begin{align*}
& M \phi=\lambda F \phi, \tag{1.3}\\
& M=\left(\begin{array}{cc}
-D\left(p_{0} D\right)+p_{1} & r_{1} \\
r_{1} & -D\left(q_{0} D\right)+q_{1}
\end{array}\right)
\end{align*}
$$

where (i) $p_{0}, q_{0} \geq 1, p_{1}, q_{1}, r_{1} \in C^{1}(n)$, where $I: a \leq x<b \quad(a=0, b=\infty$ being allowed) and p_{1}, q_{1}, r_{1} are absolutely continuous over any compact subinterval of I.
(ii) $F=\left(F_{4 j}(x)\right)$ is a symmetric 2×2 matrix of real valued continuous functions, with $\operatorname{det} F \geq\left(\max \left(p_{0}, q_{0}\right)\right)^{2}$ on I. Thus, $\operatorname{det} F \geq 1$, on I.
(iii) $\lambda \in C$, the set of all complex numbers and
(iv) $\phi=\binom{u}{v} \in \mathcal{D}$,
the set of all

$$
f=\binom{f_{1}}{f_{2}} \in C^{2}(\eta)
$$

such that $f^{r} F f,(F f)^{r} F(F f),(M f)^{r} F(M f),(M f)^{r} F^{-1}(M f) \in \mathscr{F}$, the basic Hilbert space $L(a, b)$;

$$
f^{T}=\binom{f_{1}}{f_{2}}^{T}=\left(f_{1}, f_{2}\right)
$$

the transpose of f.
It is well known ${ }^{1}$ that (1.3) along with prescribed boundary conditions at the end points gives rise to an eigenvalue problem, both in the finite as well as in the singular case.

The boundary conditions to be considered for our problem are for the finite interval:

$$
\begin{align*}
& u(a)=v(a)=0 \\
& u(\beta)=v(\beta)=0 \tag{1.4}\\
& u^{\prime}(a)=v^{\prime}(a)=0 \\
& u^{\prime}(\beta)=v^{\prime}(\beta)=0 \tag{1.5}
\end{align*}
$$

where, $a<a<\beta<b ; \phi=\binom{u}{v}$, a solution of (1.3).
We thus encounter the Dirichlet or the Neumann problems for the interval (a, β) according as the boundary conditions are given by (1.4) or (1.5).

When the interval is $[0, \infty)$, the corresponding Dirichlet and the Neumann problems are (1.3) with $u(0)=v(0)=0$ and (1.3) with $u^{\prime}(0)=v^{\prime}(0)=0$ respectively.

2. The Dirichlet integral

The Dirichlet integral associated with the system (1.3) is defined by $D_{I}(g, h)$ $\equiv D_{I}(g, h, p)=\int_{0}^{b}(G, H, P) d t, I=(a, b)$, where

$$
\begin{aligned}
& P=\left(\begin{array}{ll}
p_{1} & r_{1} \\
r_{1} & q_{1}
\end{array}\right), \quad G=\left(\begin{array}{ll}
g_{1} & g_{2} \\
g_{1}^{\prime} & g_{2}^{\prime}
\end{array}\right)=\binom{g}{g^{\prime}}, \quad g=\left(g_{1}, g_{2}\right), \\
& H=\left(\begin{array}{ll}
h_{1} & h_{2} \\
h_{1}^{\prime} & h_{2}^{\prime}
\end{array}\right)=\binom{h}{h^{\prime}}, \quad h=\left(h_{1}, h_{2}\right), \\
& (G, H, P)=p_{0} g_{1}^{\prime} h_{1}^{\prime}+g_{0} g_{2}^{\prime} h_{2}^{\prime}+p_{1} g_{1} h_{1}+q_{1} g_{2} h_{2}+r_{1} g_{1} h_{2}+r_{1} g_{2} h_{1} ;
\end{aligned}
$$

with corresponding dufinitions for $D_{8}(g, h), D_{0}(g)$, for $I=[0, b]$ and $D(g, h), D(g)$ for $I=\left[0, \infty\right.$) (Sic Chakraborty and Sin Gupta ${ }^{6}$).

If $p_{1}>0, q_{1}>0$ and det $p \geq 0, D_{b}(g)$ is always positive.
If $\lambda_{n}=\lambda_{n}(b)$, and $\psi_{n}(x) \equiv \psi_{n}(b, x), n=0,1,2,3, \ldots$, be the eigenvalues and the eigenvectors, normalised in the sense

$$
\psi_{n}(x) \|_{b, b}=\int_{0}^{b} \psi_{n}^{\tau} F \psi_{n} d t=1
$$

and also if

$$
C_{\mathrm{a}}=\int_{0} \psi_{\mathrm{s}}^{\tau} F f d t=\int_{0}^{b} f^{T} F \psi_{\mathrm{n}} d t
$$

be the $\mathrm{F}_{\mathrm{J} u}$ urier colffisient of $f \in C^{1}(I)$, then if $p_{0}, q_{0}>0, p_{1}>c F_{11}$, $\operatorname{det}(P-c F) \geq 0$ o. [$], b$], the eig:nvalues for bath the Dirichlet and the N.umann problems, are great:r than or equal to c. Other results concerving $D_{b}(f, g)$ as obtained in § 3 of Chakraborty and S in Gupta ${ }^{6}$, also follow for the present operator.
Let $p_{0}, q_{0} \geq 1$ satisfy $\begin{aligned} & p_{0}^{\prime} \\ & p_{0}\end{aligned}, \begin{aligned} & q_{0}^{\prime} \\ & q_{0}\end{aligned}=0(1)$ and $p_{0}, q_{0}=0\left(x^{0}\right)$, for large $x, 0<c<1$, or alternatively, $p_{0} \psi_{n}, p_{0}{ }^{\prime} \psi_{n}, q_{0} \psi_{n}, q_{0}{ }^{\prime} \psi_{n} \in L_{2}[0, \infty]$. Then for the singular case $[0, \infty), D\left(\psi_{m}, \psi_{n}\right)=\lambda_{n} \delta_{m, n}, \delta_{m, n}$, the Kronecker delta.
We say that $p_{1}, q_{1}, r_{1}, F \in \mathcal{M}$, if the following additional conditions are satisfied:
(i) $\left|p_{1}\right|,\left|q_{1}\right|,\left|r_{1}\right| \leqq Q(x), \quad Q(x) \geq \delta>0$
(ii) $\lim _{\rightarrow \rightarrow \infty} \frac{Q^{\prime}(x)}{Q^{\circ}(x)}<\infty, 0<c \leq \frac{3}{2}, Q^{\prime}(x)$ continuous;
(iii) $\lim _{\rightarrow \rightarrow \infty} \frac{F_{y}^{\prime \prime}}{F_{i j}}<\infty, i, j=1,2$.
(iv) $t(x) \leqq F_{i j} \leqq S(x), i, j=1,2, \frac{s(x)}{t(x)}$ tends to a finite nonzero limit as x tends: to infinity.
(v) $Q(x) / S(x)$ tends to infinity as x tends to infinity.
(vi) $\int Q(t)^{-1 / 2} d t$ is divergent.

If $f^{T} F f, f^{\prime T} F f \in L[0, \infty)$ (with $f(0)=0$ far the Dirichlet problem and $f^{\prime}(0)=0$ for the Neumann problem), then

$$
\begin{equation*}
D\left(f, \psi_{n}\right)=\lambda_{n} C_{n} \tag{2.1}
\end{equation*}
$$

and if, moreover, $p_{1} \geq 0, \operatorname{det} P \geq 0$,

$$
\begin{equation*}
D(f) \geq \sum_{n=0}^{\infty} \lambda_{n} C_{n}^{2} \tag{2.2}
\end{equation*}
$$

It may be noted that the condition $f^{\prime r} F f^{\prime} \in L[0, \infty)$ as required for the derivations of (2.1) and (2.2) may be dispensed with when $p_{1}, q_{1}, r_{1}, F \in \mathcal{M}$.

3. Variation of the eigenvalues

As in Chakraborty and Sen Guptad we say that a sequence of symmetric matrices

$$
P_{0} \equiv\left\{P_{3}\right\}, P_{t}=\left(\begin{array}{ll}
p_{4 j} & r_{4 j} \\
r_{4 j} & q_{i j}
\end{array}\right), j=1,2 \ldots,
$$

defined over I is pscudo-monotoinic over I, if and only if for $j<k, j, k=1,2, \ldots$, $p_{k} \leqq p_{4,}, q_{11} \leqq q_{k}, p_{11}>0$, $\operatorname{det} P_{1} \geq 0$, and $\operatorname{det}\left(P_{j}-P_{k}\right) \geq 0$, for all $x \in I$.

In particular, the matrix $P \equiv\left(\begin{array}{cc}p & r \\ r & q\end{array}\right)$ is pseudo-monotonic over $[0, \infty)$, if for $j>k, j, k=0,1,2, \ldots, p_{j} \geq p_{k}, q_{t} \geq q_{k}, \operatorname{det}\left(P_{f}-P_{k}\right) \geq 0$, where p_{v}, q_{v}, P_{d} are p, q, P at $x, \in[0, \infty)$.

We denote the class of pseudo-monotonic sequences of matrices P_{0} over I, by $P M(I)$.
Then by utilising the Minkowski inequality for two positive definite harmitian Matrices A, B of order $n, v_{i} z$.,

$$
|A|^{1 / n}+|B|^{1 / n} \leqq|A+B|^{1 / n}(\text { sec Mirskiv p. pl } 419) \ldots\left(A_{0}\right)
$$

it easily follows that
(i) $a P_{0}+\beta Q_{0} \in P M(I)$, where a, β are positive scalars and $P_{0}, Q_{0} \in P M(I)$.

Also if $\left\{P_{i}\right\},\{Q,\} \in P M(I)$
(ii) $\operatorname{det}\left(P_{s} Q_{j}-P_{k} Q_{k}\right) \geq, j, k=1,2,3, \ldots$.

The product sequerce of ihe two sequerces $\left\{P_{j}\right\},\left\{Q_{j}\right\}$, is denoted by $\left[\left\{P_{j}\right\},\left\{Q_{j}\right\}\right\}$. Wc note that the product sequences o two pseudo-monotonic sequences $\{P\},,\left\{Q_{j}\right\}$, are not necessarily pseudo-monotonic.

Put

$$
F(r, x)=\left(\begin{array}{ll}
F_{11}(r, x) & F_{12}(r, x) \\
F_{12}(r, x) & F_{29}(r, x)
\end{array}\right)
$$

and

$$
\gamma(r, x)=\left(\begin{array}{ll}
\gamma_{11}(r, x) & \gamma_{12}(r, x) \\
\gamma_{12}(r, x) & \gamma_{12}(r, x)
\end{array}\right), \text { where } x \in I .
$$

Then the following theorems hold. It is assumed that $p_{0} q_{0} \geq 1$, in all the following theorems of this article. Further, when we consider the interval $[0, \infty)$, we assume that $p_{1}, q_{1}, r_{1}, F \in \mathcal{M}$.

Theorem 3.1: If $\{P\} \in P M(1), I: 0 \leq x<b, b=\infty$ allowed, then $\lambda_{n} \leq \mu_{n}, n=0$, $1,2,3, \ldots$, where λ_{n} and μ_{n} are the eigenvalues for the Dirichlet (Neumann) problems, with matrices P_{j} and P_{k} respectively for $P, j<k, j, k=1,2,3, \ldots$.

Theorem 3.2: Let $p_{1}>0$, det $P \geq 0,\{F(r, x)\} \in P M(I)$, where $I: 0 \leqq x<b, b=\infty$ allowed. Then $\lambda_{n} \geq \mu_{n}, n=0,1,2,3, \ldots$, when λ_{n} ar. μ_{n} are respectively the eigenvalu:s for the Dirichlet (Niumann) problems, with $F(x)=F(r, x)$ and $F(s, x)$ respectively, with $r<s, r, s=1,2, \ldots$.

Let $I_{1} \subset I: 0 \leqq x<b, b=\infty$ allowed and let

$$
\begin{aligned}
P \equiv & \left(\begin{array}{ll}
p_{1} & r_{2} \\
r_{1} & q_{1}
\end{array}\right)=0 \text { on } I_{1} \\
& =\gamma(x) F(x) \text { on } I-I_{1},
\end{aligned}
$$

where

$$
\gamma(x)=\left(\begin{array}{ll}
\gamma_{11} & \gamma_{12} \\
\gamma_{21} & \gamma_{22}
\end{array}\right)
$$

is a real valued, positive definite, symmetric and absolutely continuous matrix defined on $I-I_{1}, \boldsymbol{f}^{\boldsymbol{r}} \mathfrak{D} \subseteq \mathscr{D}$. Then

Theorem 3.3: If $\mu_{n} \geq k$, where k is a positive constant and the product sequence $\{\{F(r, x)\}, \quad\{K E-\gamma(r, x)\}] \in P M\left(I-I_{1}\right)$, then $\lambda_{n} \geq \mu_{n} \geq k, n=0,1,2, \ldots$, where n, μ_{n} are the eigenvalues for the Dirichlet (Neumann) problems, with

$$
\begin{aligned}
& F(x)=F(r, x), P(x)=\gamma F \equiv \gamma(r, x) F(r, x) \quad \text { and } \\
& F(x)=F(s, x), P(x)=\gamma(s, x) F(s, x), r<s, r, s=1,2,3, \ldots
\end{aligned}
$$

respectively; E is the 2×2 unit matrix.
Let the intervals $[0, b]$ and $[0, B], B>b$ be represented respectively by I_{b} and I_{B} and let I_{1} be an interval, included in I_{2}. Then we have
Theorem 3.4: If $p_{1}>0$, and $\operatorname{det} P \geq 0$, and if λ_{n}, μ_{n} denote the nth eigenvalues for the Dirichlet (Numann) problem of the intervals I_{p} and I_{B} respectively, then $\lambda_{n} \geq \mu_{n}$, $\boldsymbol{n}=\mathbf{0}, 1,2, \ldots$

Finally, we have
Theorem 3.5: If $\mu_{n} \geq k$, where k is a positive constant and the product sequence $[\{k E-y(r, x)\},\{F(r, x)\}] \in P M\left(I_{B}-I_{1}\right)$, then $\lambda_{n} \geq \mu_{n} \geq k, n=0,1,2, \ldots$, where λ_{n} and u_{n} are the eigenvalues for the problem of the intervals I_{b}, with

$$
\begin{aligned}
& F(x)=F(r, x), P(x)=\gamma(r, x) F(r, x) \text { and } I_{B} \text { with } F(x)=F(s, x), \\
& P(x)=y(s, x) F(s, x), r<s, r, s=1,2,3, \ldots, B>b .
\end{aligned}
$$

$E, F, 7, I_{B}, I_{B}$ having the same meanings as before.
The result follows by choosing

$$
\begin{aligned}
f(x) & =\psi_{0}(x), & & 0 \leqq x<b \\
& =0, & & b \leqq x \leqq B,
\end{aligned}
$$

so that $D_{b}(f, P(r, x))-D_{B}(f, P(s, x))$

$$
=\int_{t \rightarrow 12} f^{r}\{y(r, x) F(r, x)-y(s, x) F(s, x)\} f d x,
$$

and thin adppting the familiar Titchmarsh analysis ${ }^{7}$ (pp. 89-90).

4 Discreteness of the spectra

Let $p_{0}, q_{0} \in C^{2}(I), I: a<x<b$, satisfy additional conditions

$$
\left.\begin{array}{l}
p_{0}^{\prime 2}(x)-4 p_{0}(x) p_{0}^{\prime \prime}(x)=A p_{0}(x) \\
q_{0}^{\prime 2}(x)-4 q_{0}(x) q_{0}^{\prime \prime}(x)=B q_{0}(x) \tag{4.1}
\end{array}\right\}
$$

whire $A, B \geq 0$.
Let $0<a<x<X$, and

$$
\begin{aligned}
& u_{1}(x)=u_{1}(x-a)=0 \\
& v_{1}(x)=v_{1}(x-a)=\frac{1}{b_{1}}\left\{q_{0}(a)\right\}^{3 / 4}\left\{q_{0}(x)\right\}^{-1 / 4} \sin \left\{b_{1}(\psi(x)-\psi(a))\right\},
\end{aligned}
$$

$\psi(x)=\int_{0}^{0} q_{0}(z)^{-1 / 2} d z$, and b_{1}, a positive constant, which depends on B.
Then it easily follows that $U_{1} \equiv\left\{u_{1}, v_{1}\right\}$ satisfies the system $M_{0} U_{1}=0$, where

$$
M_{0} \equiv\left(\begin{array}{cc}
-D\left(p_{0} D\right)-1 & 0 \\
0 & -D\left(q_{0} D\right)-1
\end{array}\right),
$$

with initial conditions

$$
\begin{aligned}
& u_{1}(a)=v_{1}(a)=0 \\
& u_{1}^{\prime}(a)=0, v_{1}^{\prime}(a)=\left\{q_{0}(a)\right\}^{1 / 2} .
\end{aligned}
$$

Let $\tilde{H}(x, y)$ be the matrix,

$$
\begin{align*}
\tilde{H}(x, y) & =\left(\begin{array}{ll}
H_{11}(x, y) & H_{21}(x, y) \\
H_{12}(x, y) & H_{32}(x, y)
\end{array}\right) \\
& =\left(\begin{array}{cc}
p_{0}^{-1}(y) q_{0}^{-1 / 2}(y) v_{1}(x-y) & u_{1}(x-y) \\
u_{1}(x-y) & q_{0}^{-1}(y) q_{0}^{-1 / 2}(y) v_{1}(x-y)
\end{array}\right) \tag{4.2}
\end{align*}
$$

And $\quad H(x, y)=\tilde{H}(x, y)$, for $a<y<x$
0 , otherwise.
Lit $G(X, x, y, \lambda)$ be the Green's matrix for the interval $[0, X]$, with elements $\sigma_{\sqrt{\prime}}(X, x, y, \lambda)$, which satisfy the discontinuity property

$$
\begin{align*}
& \frac{\partial}{\partial x} G_{y}(X, y+0, y, \lambda)-\frac{\partial}{\partial x} G_{i}(X, y-0, y, \lambda) \\
& =\left\{\begin{array}{l}
p_{0}^{-1}(y) \delta_{i j}, \text { if } i=1 \\
q_{0}^{-1}(y) \delta_{3}, \text { if } i=2
\end{array}\right. \tag{4.3}
\end{align*}
$$

(see Bhagat ${ }^{2}$).
Then it clearly follows that $H(x, y)$, although rot a Green's matrix, has the same discontinuity property (4.3), as the Green's matrix $G(X, x, y, \lambda)$. Further, $H(x, y)$ always exists in $\delta \equiv(a, x) \subset(0, X)$.

Let $\quad \Gamma(X, x, y, \lambda)=\left(\Gamma_{u j}(X, x, y, \lambda)\right.$
where

$$
\left.\begin{array}{l}
\Gamma_{11}(X, x, y, \lambda)=G_{1}(X, x, y, \lambda)-H_{12}(x, y) \\
\Gamma_{12}(X, x, y, \lambda)=G_{a 2}(X, x, y, \lambda)-H_{11}(x, y) \\
\Gamma_{i j}(X, x, y, \lambda)=G_{u j}(X, x, y, \lambda)-H_{i j}(x, y)
\end{array}\right\}
$$

Then $\quad(M-\lambda F) \Gamma_{1}(X, x, y, \lambda)=-F\left\{F^{-1} K_{1}(x, y)-\lambda H_{1}(x, y)\right\}$,
where $\quad \Gamma_{i}()=.\left\{\Gamma_{i}, \Gamma_{i,}\right\}, i=1,2$,

$$
\begin{equation*}
K_{1}(x, y)=\binom{\left(p_{1}(x)+1\right) H_{12}(x, y)+r_{1}(x) H_{11}(x, y)}{\left(r_{1}(x) H_{12}(x, y)+\left(q_{1}(x)+1\right) H_{11}(x, y)\right.} . \tag{4.6}
\end{equation*}
$$

and $H_{1}(x, y)=\left(H_{12}, H_{12}\right)^{\mathrm{T}}$.

From (4.6),

$$
\begin{equation*}
\Gamma_{1}(X, x, y, \lambda)=\int_{0}^{x} G(X, x, z, \lambda)\left\{K_{1}(z, y)-\lambda F(z) H_{1}(z, y)\right\} d z \tag{4.7}
\end{equation*}
$$

Also, by Bhagat ${ }^{1}$, (p. 6l)

$$
\begin{gather*}
\int_{0}^{x} \Gamma_{2}^{T}(X, x, y, \lambda) F(x) \bar{\Gamma}_{1}(X, x, y, \lambda) d x \\
\leqslant v^{-2} \int_{0}^{x} \chi^{\tau}(z, y) F(z) \bar{\chi}(z, y) d z \tag{4.8}
\end{gather*}
$$

where $\chi(x, y)=F^{-1}(x) K_{1}(x, y)-\lambda H_{1}(x, y), \lambda=\mu+i v, v \neq 0$.
Since $\operatorname{det} F(X) \geq 1$,
$\Gamma_{1}{ }^{T}(). F \overline{\Gamma_{1}}(.) \geq\left|\Gamma_{11}(.)\right|^{2}$, and hence from (4.8), after some tedious reductions,

$$
\begin{equation*}
\int_{0}^{x}\left|\Gamma_{11}(X, x, y, \lambda)\right|^{2} d x \leqq v^{-2} K(y, \delta,|\lambda|) \tag{4.9}
\end{equation*}
$$

where K (.) denotes the constant depending on the arguments shown. Similar results hold for the other Γ_{s}.
From (4.5)

$$
\begin{equation*}
\int_{0}^{x}\left|G_{\mu}(X, x, y, \lambda)\right|^{2} d x \leqq\left(1+v^{-2}\right) K(y, \delta,|\lambda|) \tag{4.10}
\end{equation*}
$$

with similar results for the other $\boldsymbol{G}_{4,}(X, x, y, \lambda)$. From results of type (4.7), by makirg use of the properties of $H_{i j}(x, y)$, the S.hwarz inequality, and the relations of type (4.10), it follows that

$$
\begin{equation*}
\left|\Gamma_{4,}(X, x, y, \lambda)\right| \leqq\left(y^{-2}+1\right)^{1 / 2} K(x, y, \delta,|\lambda|) \tag{4.11}
\end{equation*}
$$

where x, y lie in a fixed $\delta_{0} \subset \delta$.
We now make use of the formula, easily verifiable by integration by parts, viz.,

$$
\begin{aligned}
&(\xi-x)^{2} \phi(x) h(x) \\
&= \int_{0}^{\xi}(\xi-y)^{2}(y-x)\left(\frac{d}{d y} \phi \frac{d}{d y}\right) h(y) d y \\
&-\int_{0}^{\xi}(\xi-y)^{2}(y-x) \phi^{\prime \prime}(y) h(y) d y-2 \int_{0}^{\xi}(\xi-y)(\xi-3 y+2 x) \phi^{\prime}(y) h(y) d y \\
&+\int_{0}^{\xi}(2 x+4 \xi-6 y) \phi(y) h(y) d y
\end{aligned}
$$

and proceed in a manner, as indicated in Chakraborty ${ }^{6}$, so as to derive that $\boldsymbol{G}_{\| \prime}$ (X, x, y, i) tends uniformly to $G_{i j}(x, y, \lambda)$, as X tends to infinity through a suitable sequence and $G(x, y \lambda)=\left(G_{i j}(x, y, \lambda)\right)$ is the Green's matrix in the singular case $[0, \infty)$ with the usual properties.

We now establish the following theroem :
Theorem 4.1: Let $p_{1}(x) / F_{11}(x)>a$, be monotone increasing, $\operatorname{det}(p-a F) \geq 0$, for all $x \in I: 0 \leqq x<\infty$, where α is a positive constant and p_{0}, q_{0} satisfy the conditions (i) $p_{0} q_{0} \geq 1$, (ii) $p_{0} . q_{0} \in C$ (I) and (iii) the conditions (4.1). Also let the matrix P be pseudu-monotonic over I. Then the spectrum of the given boundary value protlem is discrete over (a, β), where $\beta>a$, is arbitrary.

Let the eigenvalues for the problem of the intervals $[0, X]$ and $\left[0, X^{\prime}\right], X \leqq X^{\prime}$, be represented respectively by $\lambda_{m x^{\prime}}$ and $\lambda_{\text {ss }}$. Then from the given conditions

$$
i_{=z^{\prime}}, \lambda_{\text {max }}<a>0 \text {, and that } \lambda_{\text {max }} \geq \lambda_{\text {max }} \text { (Theorem 3.4). }
$$

Hence for suffi:ien tly large X, the sequence $\left\{\lambda_{y s}\right\}, j=0,1,2, \ldots h$ (f eigenvalues lying in $(a \mid \beta)$ tend to $\left\{i_{3}\right\} j=0,1,2, \ldots h$ (not necessarily all different).

Let $\lambda_{0}<j_{-1}$, the Green's matrix $G(X, x, y, \lambda) \quad \lambda=\mu+i v$ for the interval $[0, X]$ for our problem, is regular except at the points $\lambda=\lambda_{\text {nes }}$, which are the simple poles of $G(X, x, y, \lambda)$.

Put $-\delta \leqq v \leqq \delta, \delta \mid \leqq 1$, and $\lambda_{m}+2 \delta \leqq \mu \leqq \lambda_{m}-2 \delta$. Then for given x, y, $x \neq y$, it follows from (4.11), that $\left|G_{y j}(X, x, y, \lambda)\right| \leqq M|v|^{-1}, M$ constant.

The theorem now follows by arguments, similar to those of Titchmarsh ${ }^{7}$ (p. 149).
It is easily verifiable that the λ_{n} are actually the eigenvalues.
Theorem 4.2: Let p_{0}, q_{0} satisfy the conditions of theorem 4.1 and let

$$
\frac{p_{1}}{F_{11}}, \frac{q_{1}}{F_{22}} \geq\left|\frac{r_{1}}{F_{12}}\right|
$$

where r_{1} / F_{12} is monotone increasing. Then the spectrum of our problem is discrete over $(0, \infty)$.

This is an immediate consequence of the theorem 4.1.
Let P and F be related by $P=y F$, where $\boldsymbol{\eta}$ is defined as in §3. Then the following theorem giving the discreteness of the spectra holds.

Theorem 4.3 : If, in addition to the conditions of theorem 4.1, $\gamma_{11}(x)>a$ be mono. tone increasing, d:t $(y-a E) \geq 0$, for all $x \in I: 0 \leqq x<\infty$, and F_{u} and $\gamma_{1,}, i, j=1,2$ maintain the same sign in $[0, \infty)$, then the spectrum of our problem is discrete over (a, β), β arbitrary, $\beta>a>0$.

Finally, we note that S in Gupta's theorem ${ }^{8}$ is only a special case of the general theorem 4.1 obtained above.

Acknowledgements

The authors express their grateful thanks to the referee for his valuable suggestions and comments.

References

1. Bhagat, b. Eigenfunction expansions associated with a pair of second order differential equations, Ph.D. thesis, Patna University, 1966.
2. Bhagat, b.
3. Bhagat, b.
4. Charraborty, N. K.
5. Chakraborty, n. K.
6. Chakraborty, N. K. and Sen Gupta, P. K.
7. Tttchmarsh, E. C.
8. Sen Gupta, Prabir Kumar
9. Mirsky, L.

Eigenfunction expansions associated with a pair of second order differential equations, Proc. Natn. Inst. Sci. India, 1969, Part A35, 161-174.
Some problems on a pair of singular second order differential equations, Proc. Natn. Inst. Sci. India, 1969, A35, 232-244.
Some problems in eigenfunction expansions (I), Q. J. Math. (Oxford), 1965, 16, 135-150.
Some problems in eigenfunction expansions (III), Q. J. Math. (Oxford), 1968, 19, 397-415.
On the distribution of the eigenvalues of a matrix differential operator, J. Indian Inst. Sci., 1979, 61 (B), 19-42.
Eigenfunction expansions associated with second order differential equations, Part II, Oxford University Press, 1958.
The spectrum of a matrix differential operator, J. Indian Inst. Sci., 1980, 62 (B), 43-46.
An introduction to linear algebra, Oxford, 1955.

