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Abstract

The present paper deals with some problems on the variation of the eigenvalues and their application
to study the nature of the spectrum associated with the matrix operator

= — D(poD) + pu r e d
A E ( r — D (gq,D) +Q‘L)' D= dx @A)

with prescribed boundary conditions. By employing, among others, some of the ideas and techniques
of E. C. Titchmarsh and those of Chakraborty and Sen Gupta, it is found that under certain condi-
tions, satisfied by the coefficients of the system (A), the spectrum of the system is discrete.

Key words: Specirum (discrete), differential operator, Hilbert space, Green’s ‘matrix. absolutely
uniformly continuous, pseudomonotonics, variation of the eigenvalues, meromorphic, Dirichlet (Neu-

mann) problem.

1. Introdaction

Chakraborty and Sen Gupta® employed the Titchmarsh method’ involving the varia-
tion of the eigenvalues to obtain interalia a criterion for the discreteness of the

Spectrum associated with the differential system

_(-D*+p q -4 1.1)
Ml*( q —D’-i-r)' ~ dx

In a recent paper Sen Gupta® generalises certain results of the above paper, for
a slightly more generalised system

Ml[f]=—D’f+Pf=lSﬁ

¢ where p=(P TN and S=(; :')
g r

(1.2)
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132 N. K. CHAKRABORTY AND SUDIP KUMAR ACHARYYA

Our object in the present paper is to obtain certain results involving the crite
the discreteness of the spectra for the general system

Mg = AF9, (1.3)

- D(poD) + p ry )
Mm ( r ~ D(goD) + ¢,

where (i) pp» o =1, Py §1, n €CH(), where T:ag<x <b (a=0, b= being
allowed) and p,, q,, r; are absolutely continuous over any compact subinterva] of I

ria for

(ii) F = (F,(x)) is a symmetric 2 x 2 matrix of real valued contiruous functions,
with det F = (max (Py, ¢o))* on I. Thus, detF =1, on [.

(iii) A€ C, the set of all complex numbers and

(iv) ¢ = (:)es,
the set of all

r=(f)ec.

such that fT Ff, (Ef)T F(Ff), (Mf)* F(Mf), (Mf)T FX (Mf) € K, the basic Hilbert |

space L (a, b) ;

rr=(2) =t p

the transpose of f.

It is well known?! that (1.3) along with prescribed boundary conditions at the end
points gives rise to an eigenvalue problem, both in the finite as well as in the singular
case.

The boundary conditions to be considered for our problem are for the finite interval:
U(a) =v(a) =0

u(f) =v(Bf) =0 (1.4)
or u' (a.) =9’ (a.) = ()
u’(ﬁ)=v'(ﬁ)=0 ' (lS)

where, a <a < f <b; ¢ = (:) a solution of (.3).

_ We thus encounter the Dirichlet or the Neumarn problems for the interval (a, f)
according as the boundary conditions are given by (1.4) or (1.5).

When the interval is [0, oo), the corresponding Dirichlet and the Neumann problems
are (1.3) with 4(0) =»(0) =0 and (1.3) with &' (0) = v’ (0) =0 respectively.
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EIGENVALUE PROBLEMS {33

3 The Dirichlet integral

The Dirichlet integral associated with the system (1.3) js defined by D, (g, h)
? b
=D;(ghp) = 1§ (G H P)d, I=(qb), where

i 4 _(& & g
—— ’ G = ’ : = -
: (rl ‘h) (31 33') (8') 8= (8 20,

B hy 2
If:(’l]lr hl') =(hr)' hu(hl'hz)r

(G, H, P) = po&' by + gogs' ' + pigihy + q,8:0, + rigih, + rg:h ;
with corresponding d-finitions for D, (g, #), D,(g), for I = [0, b} and D (g, k), D (g
for I = [0, oo) (S:¢ Chakraborty and S:n Gupta®). )
If p, >0, ¢, >0 and d:tp >0, D, (g) is always positive.

if J'- = (b)’ and Va (x) = Y (bl x): i3 = 0; 1: 2: 3; “eey be the cigenvalues and the
eig:nvectors, normalised in the sense

3
Wa (®) llo,5 = oI wl Fy,dt =1,

and also if
C.= fyIFfdi= | frFy,d
® 0

be the Ryurier co flizient of f € C* (), then if py, go> 0, py > cFy, det (P — cF) 20
0a [), 5], the eig:nvaluzs for bath the Dirichlet and the N.umann problems, are
great:r than or equal to ¢. Other results concerning D, (f; g) as obtained in § 3 of
Chakraborty and S:n Gupta®, also follow for the present operator.

L]

LCI Po 9 =l satisfy io* s gu- = () (l) and Po 40 = 0 (x.)! for large X, 0 <e<l,
0 0 '
ot alt:raatively, poWa, Po War JoVar go ¥, € Ly [0, 00). Then for the singular gase

[0,0), D (Y, Y,) = /u O ur Om, np the Kronecker delta.
We say that p,, q,, r;, Fe M, if the following additional conditions are satisfied:

@ IaLblallnls0x, 2 =26>0
(i) lim 2%

T~ <00, 0 <¢ s;-, Q' (x) continuous ;

o '(x)

(iii) lim Fy <oo, i, j=1,2.
-y TP FH
: s (x) : ‘limit as x tends
(iv) t(x)S F, = S(x), i,j= 1, 2, T%_x) tends to a finite nloqn.zero limit a ot
to infinity.
U.Sc.—6



134 N. K. CHAKRABORTY AND SUDIP KUMAR ACHARYYA
(v) Q(x)/S(x) tends to infinity as x tends to infinity,
vi) | Q()V*dt is divergent.

If fTFf, f'T £f € L [0, o0) (with f(0) =0 for the Dirichlet problem and f’(0) = ¢
for the Neumann problem), then

and if, moreover, p, 20, detP =0,
oD
D(f)a 2 ACL (2.2)

It may be notzd that the condition f'7 Ff'e L [0, 00) as required for the derivatiops
of (2.1) and (2.2) may be dispensed with when p,, q,, r,, Fe M.

3. Variation of the eigenvalues

As in Chakraborty and Sen Gupta®, we say that a scquence of symmetric matrices

POE{PI}! Pf-(f:: ;“i)! j=1!2"':

defined over 7 is pscudo-monotonic over [, if and only if for j < k,j,k=1,2,...,
Py S Pa 9 S G Pu >0, det Py 20, and dﬁt(P, - P,) =20, for all xel

In particular, the matrix P = (f ;) is pseudo-monotonic over [0,00), if for
jok j,k=0,1,2,..., p, 2D 9 = G det (P, — P,) =0, where p,, q,, P, are p, g, P
at x, € [0, co).

We denote the class of pseudo-monotonic sequences of matrices P, over I, by PM (I).

Then by utilising the Minkowski inequality for two positive definite harmitian
Matrices A4, B of order n, vz,

| AV* + | B|Y/* 5 | A + B |V (sec Mirski®, p. 419) ... (4,)
it easily follows that
(1) aPo + B Qo e PM(I), where o, B arc positive scalars and P,, Q,€ PM (I).
Also if {P},{Q}e PM (I)
(i) det (PO, — PO =, j,k=1,2,3,....

The product sequence of ihe two sequerces (P}, {Q}, is deroted by [(P), (O} W
note that the product sequences o two pseudo-monotonic sequences {P,}, {Q,}, are not
necessarily pseudo-monotonric.
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_{ Fi (r, x) Fyy (r,
Pt F(nX) = F}i(r.x) Fi:((:i; ’

y (r, X) = ( ln 2 g () where xe I,

and Y13 (r, x) n (r, x) )’

Then the follm?ring r:heorcms hold. It is assumed that Pogo 21, 1n all the following
theorems of this article. Further, when we consider the interval [0, o0), we assume

l'.hﬂtpp 1> T1s FELAL

Theorem 3.1 : £ {P}ePM(I), 1:0 <x <b, b =00 allowed, then A, <pu,, n =0,
1,2,3, ..., where 4, and g, are the eigenvaluss for the Dirichlet (Neumann) problems,
with matrices P, and P, respectively for P, j <k, j, k=1,2,3,....

Theorem 3.2 : Let p, > 0, det P 20, {F(r,x)} e PM(I), where [ : 0 < x< b, b = o0
allowed. Then 4, 2pu,, 7 =0,1,2,3, ..., when A, and g, are respectively the eigen-
valuss for the Du.richlet (N:umann) problems, with F(x) = F(r, x) ard F (s, x)
respectively, with r <, r,s=1,2,....

Let LcI:0=<x <b, b =00 allowed and let

P=(P "\ =0 on

ry ¢

=?(x)F(x) on 1_']:1:

where ’(x)=(;u hD
n P2

is a real valu:d, positive d:finite, symmetric and absolutely continuous matrix defined
on I -1, 77D <cD. Then

Theorem 3.3 : If u, = k, where k is a positive constant and the product sequence
{F(r,x)}, {KE -7 (r,x)}] ePM(I — L), then L 24, 2k 7=0,1,2,..., where
o M. are the eiganvalues for the Dirichlet (Neumann) problems, with

F(x) = F(r,x), Px) =7 Fs ¢ (nx) F(r,¥) and
F(x) = F(s, %), P(x) =7 (s, %) F(s,x),r <s, r,§= S -
respectively; £ is the 2 x 2 unit matrix,

Let the intervals [0, 5] and [0, B], B > b be represented respectively by I, and g and
let I, be an interval, included in f,. Then we have

Theorem 3.4 : If p,> 0,and det P 20, and if A., 4, denote the .nt.h eigenvalues for
the Dirichlet (Neumann) problem of the intervals /, and I, respectively, then A, Z fy,

t=l; L2, ...
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PBinally, we have

Theorem 3.5 : If u, = k, where k is a positive constant and the product sequence
[{kE — 2 (r, %)}, {F(r,x)}] ePM(I;— L), then A, 2u, =2k n=0,1,2,.

A, and u, are the eigznvalues for the problem of the intcrvals £, with = Ve
F(x) = F(r,x), P(x) =7 (r,x) F(r,x) and Iy with F(x) = F(s, x),
P (x) =y(s,x)F(s,x);r <s,r,s=123....,B> b.
E, F. 7, I,, I, having the same meanings as before,
The result follows by choosing
fx)=y(x), O3 x<b
= 0, bs xS B
so that D, (f, P(r, x)) — Dg(f, P (s, X))
="{_“f'{7 (r, X) F(r,x) = 7 (s, X) F(s, x)} f dx,
and th:n ad>pting the familiar Titchmar<h analysis" (pp. 89-90).
4 Discreteness of the spectra
Lot po,. goe C2 (D), I : a < x < b, satisfy additional conditions
Po*(x) = 4pe(x) py” (x) = Ap, (x)
gdo?(x) — 4 q,(x) 94 (x) = Bg, (x)} (4.1)

wh:re A, B =2 0.
Let 0 <a < x < X, and

(X)) =u(x—a)=0
|
v;(X) =¥ (x —a) = b o (@)}*7¢{g0 (x)}4sin {b, (v (x) — v (@)},
y(x) = ;[' q¢(2)~%/* dz, and b,, a positive constant, which depends on B.

Then it easily follows that U, = {i,, v,} satisfies the system MU, =0, where

e D 5 B i .
M, = (PoD) =1 0 ’ 3
0 -~ = D(gyD) — 1 |
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with initial conditions
ul (ﬂ) = vl (ﬂ) ——; 0
w' (@) =0, v (@) = {qo(a)}/*.

Let H(x, y) be the matrix,

7 1y = Hll (x‘ y) Hﬂ (xs y)
H () (Hu (x,y) Hg(x,y)

(Pn_l MNagrV2 (Mo, (x =) w (x - )
w (x — ) 4 (Mg ) v (x - y))
And H(x.y) = ﬁ(;x. ¥), fora<y<x (4.2;

0. otherwise.

L't G (X. x. y, A be the Green's matrix for the interval [0, X], with elements
g, (X, x, ». A which satisfy the discontinuity property

J 3 |
g-x Gd (X, Y +0. Yy }.) - B-.xoﬂ(xsy =0, Ys A') - i
_ [P D) by ifi=1 )
{qﬂ-l (}’) 5"-; lf I = 2 ! (4.3)
(sce Bhagat?).

¥), although rot a Green's matrix, has the same

Th>n it clearly follows that H (X,
n's matrix G (X, x, y, ). Further, H(x, )

d:scontinuity property (4.3), as the Gree
always exists in & = (a, x) C (0, X).

Let r(X! Xy Vs J') = (rij (X: X, Vs A’) (4'4)
where |
; 4

r'll (X‘l X, }’: A) - G,I(Xl x!yi ;') - H.li(x!y) ‘

[ (X, %y, 2) = Gy (X, %, 3, 4) — Hu (%:9) | (4.5)

rii (X‘l x: y: )“) o Gu (X: x: y: A) - Hij (x! y)

i=2j=1,2.
Then (M — AF) I, (X, %, 5, &) = — F{F1 K () — 41 (x, )}

4 .6)

| Whﬁre r‘(,) == {I"h’ r‘.}, [ = 1,2,

_{ (x) + 1) Hys (% y) +n (x) Hy (x, ») _
B = (("1 (x) H,s (%, y) + (4 (%) + 1) H, (%, -").

and H, (x,y) = (H,s Hy)
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PFrom (4.6),
L%y d) = | G x 2 ){K (59) - AF (@) H, (2, )} d: @

Also, by Bhagat!, (p. 61)

{ mr X x, 5, H FG) T (X. %, p, 3 dx
]

< y-? f xl' (z, y) F(Z’) X (Z, _V) dz (4‘3)

where y (x,5) = FY(x) K, (x.y) — A H, (x, ), A = pu+iv,v# 0,
Since det F(X) 21,

NT()Fri() 21 (.)1?% and hence from (4.8), after some tedious reductions,
X
J 1 (X xy,AtdevrK(),d.14)) (4.9)
®

where K (.) denot2s the constant dcpending on the arguments shown. Similar results
hold for the other I,
Brom (4.5)

F1G X ) tdxs (L +v)K(O,d,|40) (4.10)

with similar results for the other G,, (X, x, y, 1). PFrom results of type (4. 7), by makirg
use of the properties of H,, (x, y), the S_hwarz inequality, and the relations of type
(4.10), it follows that

[Ty (X%, 0, DI S (vt + D)V2K(x,0,5,| 4)) (4.11)
where x, y lie in a fixed §, C 5.

We now make use of the formula, easily verifiable by integration by parts, vz,

€ — x)*¢ (x) 2 (x)
$
= [ ¢-n0o-0(g 4 j;, b () dy
¢
—{ =12 (—x)9" (») h(»)dy—2 f (E=p) (E=3y+2x) ¢’ A (Y &

¢
+- { (Px +45 — 6y) ¢ (») A(y) dy,
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and proceed in a manner, as indicated in Chakrabortys, so as to derjve that G,
(X, x, y- ) tends uniformly to G, (x, y, 4), as X tends to infinity through a suitable

sequence and G(x,y 4) = (G, (x, y, 4)) is the Green’s matrix in the singular case
[0, 0o) with the usual properties.

we now establish the following theroem :

Theorem 4.1 : Let py (x)/F; (x) > @, be monotone increasing, det (P — aF) >0,
for all xel:0 =x <oo, where q is a positive constant and p,, g, satisfy the
conditions (i) Po 9o =L, (11) Po. go& C (1) and (iii) the conditions (4.1). Also let the
matrix P be pseudo-monotonic over I. Then the spectrum of the given boundary
value protlem is discrete over (q, f), where £> 4, is arbitrary,

Let the eigenvalues for the problem of the intervals [0, X]and [0, X'], X< X', be
represented respectively by A, and A... Then from the given conditions

heg’s Azt < a > 0, and that 4, = A (Theorem 3.4),

Hence for suffiziently large X, the sequence {A,}, j =0,1,2, ... & «f eigenvalues lying
in (e |B) tend to {4} j =0, 1,2, ... h (not necessarily all different).

Let 4, < 4..,;, the Green's matrix G(X, x, y,4) A =u + iv forthe intewal {0, X1
for our problem, is regular except at the points A = Z,,, which are the simple poles of
G(X,x, ), 4).

Put ~5<vsd, 8|S, and A +28 SpS A —26. Then for given x, j,
x# y, it follows from (4.11), that | G, (X, X, ), A< M|v|™? M corstant.

The theorem now follows by arguments, similar to those of Titchmarsh? (p. 149).

[tis easily verifiable that the A, are actually the eigenvalues.

Theorem 4.2 :  Let p,, g, satisfy the conditions of theorem 4.1 and let

51 q, ry
T T = | =
Fiy' Fy = | Fy

Where #,/F,, is monotone increasing. Then the spectrum of our problem is discrete
over (0, oo).

This is an immediate consequence of the theorem 4.1.

Let P and F be related by P = yF, where 7 is defined as in §3. Then the following
theorem giving the discreteness of the spectra holds.
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Theorem 4.3 : If, in addition to the conditions of theorem 4.1, 3;, (x) > o be mopq.
tone increasing, d:t(y — oE) 20, forall xe7:0 S x <oo, and F, and 2k j=1,2
maintiin the same sign in [0, 00), then the spectrum of our problem is discrete over

(a, f), B arbitrary, f> a >0.

Finally, we note that S:n Gupta’s theorem?® is only a special case of the genera
theorem 4.1 obtained above.
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