Soarce flow between two non-coaxial rotating cylinders

A. RAMACHANDRA RAO aND P. RAGHUPATHI RAO

Deparment of Applied Mathematics, Indian Institute of Science, Bangalore 560012 , India.
Racerired on July 31, 1982 ; Revised on January 6, 1983.
absuact
To-dimensional flow of an incompressible viscous fluid between two rotating non-coaxial cylinders been investigated when fluid is injected uniformly through the surface of the inner cylinder and ravored through the surface of the outer cylinder. Under the assumption of small eccentricity, schution of the governing Navier-Stokes equations is obtained for the case when the gap between tec cylinders is finite. Solutions of the governing equations under the geometrical restriction of aurow gap are also presented. The effect of the radial flow or suction on the transverse velocity is discussed for the narrow gap. The existence of force component in the x-direction on the inner erlinder is due to the radial flow.
fry words: Source flow, Non-coaxial rotating system.

L. Introduction

Tro-dimensional flows between moving nearly coaxial cylinders have applications in the design of control mechanisms for aircraft and rockets.

Wood ${ }^{1}$ has studied the two-dimensional flow of an incompressible viscous fluid between two non-coaxial rotating cylinders. Using an appropriate conformal transformation to map the non-concentric circular boundaries into concentric ones, he has obtained the solution of the governing Navier-Stokes equations under the assumption of small tocentricity. Segel ${ }^{2}$ used the conformal mapping technique to study the unsteady low between non-coaxial cylinders when the outer cylinder is kept fixed and the innei cylinder is made to rotate or vibrate about a slightly eccentric pcint. Kulinski and O strach ${ }^{3}$ have also used the idea of conformal mapping in studying the flow
belween rotating

Urban ${ }^{4}$ has used a polar coordinate system with origin at the centre of the ing cylinders to study the basic flow between two non-coaxial cylinders when the disy between their axes is small. Writing the boundary conditions at the outer bound which is not a coordinate curve is difficult, while solving the linearized equain arising in the perturbation method. The princif,le of transfer of boundary condion as elucidated by Van Dyke ${ }^{5}$ has been used to resolve this difficulty. The prinaid is to replace the conditions on the actual boundary whose position varies slighty in the perturbation parameter ϵ by the conditions on the basic boundary which ornos ponds to $\epsilon=0$. The solutions thus obtained satisfy the boundary conditions on th actual boundary more closely by taking ϵ small and including more number of kin in the perturbation series. Urban ${ }^{4}$ has also discussed the relative merits of in method of solution. It is worthwhile commenting here that even the conscrand mapping method has similar limitations on eccentricity. Nikitin ${ }^{6}$ also used pire coordinates in the study of flow between non-coaxial cylinders.

The aim of the present investigation is to extend the problem considered Urban ${ }^{4}$ in the presence of a radial flow due to a line source along the axis of inner cylinder. Solution of the governing equations is obtained when the gap betwath the cylinders is finite under the assumption that the distance between the axsodts cylinders is small. Solutions of the governing equations are also presented mide the geometrical restriction of narrow gap. The effect of the radial flow is seen bod in the first and second order velocities. In fact, the radial flow induces a forci the x direction on the inner cylinder.

2. Formulation

Let O_{1} and O_{2} be the centres of the inner and outer cylinders with radii R_{1} and R_{1} respectively. O_{1} is taken as the origin of the cylindical pelar coordingte ștra ($r, 0, z$) with z-axis along the axis of the inner cylinder (see fig. 1). The disamt $\mathrm{O}_{1} \mathrm{O}_{2}$ is the eccentricity ' e ' of the system. Two non-dimensional parameles क t 4 eccentricity ratio, and δ, the gap ratio, are defined by

$$
\begin{aligned}
& \epsilon=\frac{e}{d}, \quad(0<\epsilon<1), \\
& \delta=\frac{d}{R_{0}}, \quad(0<\delta<2)
\end{aligned}
$$

where $d=R_{2}-R_{1}$ and $R_{0}=\left(R_{1}+R_{2}\right) / 2$. Using the cosine rule for the tind $O_{1} O_{2} P$, the radial distance ' h ' which is the variable gap between the cylinder ${ }^{\text {b }}$ obtained as

$$
h(0)=-R_{1}+\epsilon d \cos \theta+R_{2}\left(1-\frac{4 \epsilon^{2} \delta^{2}}{(2+\delta)^{2}} \sin ^{2} \theta\right)^{1 / 2} .
$$

Fic. 1. Non-coaxially rotating cylinders.

Consider the flow problem when the inner and outer cylinders rotate with angular usbities Ω_{1} and Ω_{2} respectively and when there is a radial source flow due to which wefluid gets radially injected at the inner cylinder and the same amount of fluid is suded out normally from the surface of the outer cylinder. Assuming that there is wo fow in the axial direction of the cylinders, the radial velocity u, the transverse telaity v and pressure p^{\prime} are functions of r and 0 only. The equations governing he fow are the continuity equation and the two-dimensional Navier-Stokes equations in cylindrical polar coordinates. The boundary conditions for the inner cylinder are

$$
\begin{equation*}
u=\beta_{1}, v=R_{1} \Omega_{1} \text { at } r=R_{1} . \tag{2a,b}
\end{equation*}
$$

Sime we are considering a non-coaxial system of cylinders, the tangential and normal velocities at the outer cylinder are not in the same direction as the radial and transkere velocities. Hence the boundary conditions for the outer cylinder are,

$$
\begin{align*}
& u=-\Omega_{2} \epsilon d \sin \theta+\frac{\beta}{R_{2}}\left\{1-\frac{(c d)^{2}}{R_{2}^{2}} \sin ^{2} \theta\right\}^{1 / 2}, \tag{3}\\
& v=R_{2} \Omega_{2}\left\{1-\frac{(\epsilon d)^{2}}{R_{2}^{2}} \sin ^{2} \theta\right\}^{1 / 2}+\frac{\beta}{R_{2}^{2}} c d \sin \theta, \tag{4}
\end{align*}
$$

where

$$
\beta=\beta_{1} R_{1} .
$$

For the formulated nonlinear boundary value problem, approximate solutions of sought by employing a perturbation method. The velocity field is expanded by, series of the form given by

$$
\begin{aligned}
& u(r, \theta)=u_{0}(r)+c u_{1}(r, \theta)+c^{2} u_{2}(r, \theta)+\ldots \\
& v(r, \theta)=v_{v}(r)+c v_{1}(r, \theta)+c^{2} v_{2}(r, \theta)+\ldots
\end{aligned}
$$

(i)

Using (6) and (7) in the governing equations and equating different powers of o 0 either side we obtain various order equations which are solved using the coras ponding boundary conditions derived from ($2 a, b$), (3) and (4).

3. Solution for the finite gap

The leading terms of the velccity components in (6) and (7) are the exact solvitus of the coaxial problem. The equations for radial and transverse velocities are giver

$$
\begin{align*}
& r u_{0 r}+u_{0}=0, \\
& u_{0}\left(v_{0 r}+\frac{v_{0}}{r}\right)=v\left(v_{c r r}+\frac{1}{r} v_{0 r}-\frac{v_{0}}{r^{2}}\right), \tag{1}
\end{align*}
$$

with the boundary conditions

$$
\left.\begin{array}{l}
u_{0}=\beta_{1} \text { on } r=R_{1}, \\
v_{0}=\Omega_{1} R_{1} \text { on } r=R_{1}, \tag{iil}\\
v_{0}=\Omega_{2} R_{2} \text { คn } r=R_{2}
\end{array}\right\}
$$

where v is the kinematic viscosity and the subscripts denote the patial derivaiu with respect to the corresponding variables. This notation is used throughout tis paper. The solutions of (8) and (9) satisfying (10) and (11) are

$$
\begin{align*}
& u_{0}=\beta / r, \tag{!}\\
& v_{0}=A r^{0+1}+\frac{B}{r}, \tag{3}
\end{align*}
$$

where

$$
\begin{align*}
& A=\frac{\Omega_{1}\left(\eta^{2}-\mu\right) R_{2}^{2}}{\eta^{2+2}-1}, \quad B=\frac{\Omega_{1} R_{1}^{2}\left(\mu \eta^{8}-1\right)}{\eta^{2+4}-1} \tag{14}\\
& \mu=\frac{\Omega_{2}}{\Omega_{1}}, \quad \eta=\frac{R_{1}}{R_{2}}, \quad s=\frac{\beta}{v} .
\end{align*}
$$

nor sudial velocity is obtained from the continuity equation and the condition (2a). Sibjibluting (6) and (7) in the governing equation obtained by eliminating pressure ond equating the coefficients of c and ϵ^{2}, one gets two linear boundary value problems on the first and second order velocity components. The first order velocity com-

$$
\begin{align*}
& \frac{v_{0}}{r}\left(u_{1 \theta \theta}-v_{1 \theta}-r v_{1 r \theta}\right)+\frac{\beta}{r^{2}}\left(-u_{1 \theta}+r u_{1 r \theta}-r v_{1 r}-r^{2} v_{1 r r}+v_{1}\right) \\
& \quad=v\left(u_{1 r \theta}+\frac{1}{r^{2}} u_{1 \theta \theta \theta}+\frac{2}{r^{2}} u_{1 \theta}+\frac{1}{r} v_{1 r}-2 v_{1 r r}-r v_{1 r r}-\frac{1}{r} v_{1 r \theta \theta}-\frac{v_{1}}{r^{2}}\right) . \tag{15}
\end{align*}
$$

$$
\begin{equation*}
u_{1}+r u_{1 s}+v_{1 \theta}=0, \tag{16}
\end{equation*}
$$

adid the boundary conditions

$$
\left.\begin{array}{l}
u_{1}=0 . v_{1}=0 \text { at } r=R_{1}, \\
u_{1}=-\Omega_{2} d \sin \theta+\frac{\beta}{\overline{R_{2}^{2}}} d \cos \theta \text { at } r=R_{2}, \tag{17}\\
v_{1}=\frac{\beta d \sin \theta}{R^{2}}-\left\{(s+1) A R_{2}^{s}-\frac{B}{R_{2}^{2}}\right\} d \cos \theta \text { at } r=R_{2}
\end{array}\right\}
$$

ixe scond order velocities are governed by

$$
\begin{align*}
& \frac{l_{r}}{r} v_{1} u_{1 \theta \theta}+u_{1} u_{1 r \theta}-\frac{u_{1}}{r} u_{1 \theta}-v_{1} u_{1 r}-r u_{1} v_{1 ; r} \\
& \quad-v_{1} v_{1 r \theta}-\frac{2}{r} v_{1} v_{1 \theta}-u_{1} v_{1 r}+\frac{v_{0}}{r}\left(u_{2 \theta \theta}-v_{2 \theta}-r v_{2 r \theta}\right) \\
& \quad+\frac{p}{r^{2}}\left(-u_{2 \theta}+r u_{2 r \theta}-r v_{2 r}-r^{2} v_{2 r r}+v_{2}\right) \\
& \quad=v\left(u_{s r r \theta}+\frac{1}{r^{2}} u_{2 \theta \theta \theta}+\frac{2}{r^{2}} u_{2 \theta}+\frac{1}{r} v_{2 r}-2 v_{-r r}-r v_{2 r r r}-\frac{1}{r} v_{2 r \theta \theta}-\frac{v_{2}}{r^{2}}\right), \tag{18}
\end{align*}
$$

$$
\begin{equation*}
u_{2}+r u_{2 r}+v_{2 \theta}=0 . \tag{19}
\end{equation*}
$$

rilh the boundary conditions

$$
\begin{align*}
u_{2}= & 0, v_{2}=0 \text { at } r=R_{1}, \\
u_{2}= & -\frac{\beta d^{2}}{R_{2}^{3}}-d \cos \theta\left(u_{1 r}\right)_{r=R_{2}} \text { at } r=R_{2}, \\
v_{2}= & \frac{d^{2}}{3 R_{9}}\left\{(s+1) A R_{2}^{2}-\Omega_{2}-\frac{B}{R_{2}^{2}}\right\} \sin ^{2} \theta \\
& T \frac{d^{2}}{2}\left\{\left(s^{2}+s\right) A R_{2}^{t-1}+\frac{2 B}{R_{2}^{3}}\right\} \cos ^{2} \theta-\left(v_{1 r}\right)_{r=R_{2}} d \cos \theta, \text { at } r=R_{2} . \tag{20}
\end{align*}
$$

The boundary conditions for the first and second order velocity componate $r=R_{2}$ are obtained using the transfer of boundary conditions discussed by f_{1}
Dyke ${ }^{5}$. The boundary conditions (17) prompt us to take

$$
\begin{align*}
& u_{1}(r, \theta)=\frac{1}{2}\left[U_{1}(r) i e^{i \theta}+\mathrm{c} . c\right] \tag{b}\\
& v_{1}(r, \theta)=\frac{-1}{2}\left[\left(r U_{1 r}+U_{1}\right) e^{i \theta}+\mathrm{c.c}\right]
\end{align*}
$$

where c.c. denotes the complex conjugate of the quantity preceding it. Subsiluma (21) and (22) in (15) we get the equation for U_{1} as

$$
\begin{align*}
& \left(U_{1 r r r}+{ }_{r}^{6} U_{1 r r}+\frac{3}{r^{2}} U_{1 r r}-\frac{3}{r^{3}} U_{1 r}\right)-\frac{i v_{0}}{r v}\left(U_{1 r r}+\frac{3}{r} U_{1 r}\right) \\
& \quad-\frac{s}{r^{2}}\left(r U_{1 r r r}+4 U_{1 r r}\right)=0 \tag{i}
\end{align*}
$$

with the boundary conditions

$$
\left.\begin{array}{l}
U_{1}=0, U_{1 r}=0 \text { on } r=R_{1}, \\
U_{1}=\Omega_{2} d-i d \beta / R_{2}^{2} \text { on } r=R_{2}, \\
U_{1}=\left\{\left(v_{0 r}\right)_{r=R_{2}}-\Omega_{2}\right\} d / R_{2}+2 i d \beta / R_{2}^{3}, \text { on } r=R_{2} .
\end{array}\right\}
$$

The solution of (23) satisfying (24) is

$$
U_{1}=c_{1} I_{1}(r)+c_{2} I_{2}(r)
$$

where

$$
\begin{aligned}
& c_{1}=\left[\left(\Omega_{z} d-i d \beta / R_{2}^{2}\right) I_{4}\left(R_{z}\right)-\left\{\left(v_{0 r}\right)_{r \bullet R_{2}} d+i d \beta / R_{2}^{2}\right\} I_{2}\left(R_{2}\right)\right] / \Delta, \\
& c_{2}=\left[\left\{\left(v_{0 r}\right)_{r=R_{2}} d+i d \beta / R_{2}^{2}\right\} I_{1}\left(R_{\mathrm{s}}\right)-\left(\Omega_{2} d-i d \beta / K_{2}^{2}\right) I_{3}\left(R_{2}\right)\right] / \Delta \text {, } \\
& \Delta=I_{1}\left(R_{2}\right) I_{4}\left(R_{3}\right)-I_{2}\left(R_{2}\right) I_{3}\left(R_{2}\right), \\
& I_{1}(r)=\int_{R_{1}}^{r} r^{k} J_{p}\left(\lambda r^{k+1}\right) d r-\frac{1}{r^{2}} \int_{R_{2}}^{r} r^{k+2} J_{p}\left(\lambda r^{k, 1}\right) d \bar{r}, \\
& I_{2}(r)=\int_{R_{1}}^{r} r^{k} Y_{p}\left(\hat{\lambda} r^{k+1}\right) d r-\frac{1}{r^{2}} \int_{R_{1}}^{r} r^{k+2} Y_{p}\left(\lambda r^{k+1}\right) d r, \\
& I_{3}(r)=\int_{R_{1}}^{r} r^{k} J_{p}\left(\lambda r^{k+1}\right) d r+\frac{1}{r^{2}} \int_{R_{1}}^{r} r^{k_{2} 2} J_{p}\left(\lambda r^{k+1}\right) d r, \\
& I_{4}(r)=\int_{R_{1}}^{r} r^{k} Y_{p}\left(\lambda r^{k, 1}\right) d r+\frac{1}{r^{2}} \int_{R_{1}}^{r} r^{k^{+2}} Y_{p}\left(\lambda r^{k_{i, 1}}\right) d r
\end{aligned}
$$

$$
\begin{equation*}
k=\frac{s}{2} \cdot \lambda=\left(-\frac{A i}{v}\right)^{1 / 2}, p=\left(\frac{i B}{v}+1+k^{2}-8 k\right)^{1 / 2} /(k+1) \tag{27}
\end{equation*}
$$

$1 I$, and Y, are Bessel functions of order p. The first order radial and transverse relocities are

$$
\begin{align*}
& u_{1}(r, \theta)=\frac{1}{2}\left[i\left\{c_{1} I_{1}(r)+c_{8} I_{2}(r)\right\} c^{r \theta}+c . c\right] \tag{28}\\
& v_{1}(r, \theta)=\frac{1}{2}\left[-\left\{c_{1} I_{3}(r)+c_{2} I_{4}(r)\right\} c^{i \theta}+c . c\right] \tag{29}
\end{align*}
$$

The results given in (26) ard (27) in the limit $k \rightarrow 0$ coincide with those of Urban ${ }^{4}$, orresponding to the case where there is no tadial flow.
Following Urban the solution for the narrow gap is obtaincd by employing ssmpiotic Nissel's series for the Bessel functions $J_{p}\left(\lambda_{1} k^{k \cdot 1}\right)$ ard $Y_{p}\left(\lambda_{1}{ }^{k-1}\right)$ in (25). The factors r^{k}, and r^{k-1} appearing in the expressiors for $I_{3}(r)$ and $I_{4}(r)$ in (29) do wol offer any difficulty and all the integrations can be performed in a straightforward way except for lengthy algebra. Wc: obtain. in the limit of the small gap ite expression for the first order transuerse velocity $\tilde{v}_{1}(X, 0)$ as

$$
\begin{align*}
& v_{1}(X, \theta)=\left[(3 \mu+1) X^{2} \Theta_{+}^{2}+\left\{\left(3 \Theta_{+}-2\right)+\mu\left(3 \Theta_{-}-4\right) ; \Theta X\right.\right. \\
&\left.+\frac{1}{4}\left\{\left(3 \theta_{-}-4\right)+\mu(3 \Theta-8)\right\} \Theta \cdot\right] \cos \theta \\
&+3 a\left[2 \Theta_{+}^{2} X^{2}+2 \Theta X(\Theta-1)+\left(\frac{\Theta_{+}^{2}}{2}-\Theta_{+}\right)\right] \sin \theta \tag{30}
\end{align*}
$$

dere $a=\beta_{1} / R_{v} \Omega_{1}$ is the suction parameter, Θ_{t} and X are as given in the following sxion.

1. Solution for the narrow gap

L lis section some useful ard simple results are derived by considering an extra restiction, namely, the gap between the cylinders is small in addition to the small anaricity. The idea of narrow gap is introduced in both the governing equations add the boundary conditions and the corresponding solutions are presented.
We introduce a now independent variable X by $r=R_{1}+h / 2+h X$ and it has the lange $-\frac{1}{2} \leq X \leq \frac{1}{2}$. Further Θ, Θ ard Θ. are given by $\Theta=X \Theta+c / 2$ and $\theta, \theta_{ \pm}=1 \pm \epsilon \cos \theta$. A point in the fluid domain is now prescribed by X od θ. In our problem the zeroth order transverse velocity satisfying the limiting
onation ard boundary conditions for smatl gap is the same as that given by Urban
on

$$
\begin{equation*}
\underset{\mathrm{L}_{\mathrm{C},-2}}{ } \dot{\dot{v}}_{0}(X)=\left[\frac{1+\mu}{2}-(1-\mu) X\right] . \tag{31}
\end{equation*}
$$ narrow gap reduces in nen-dimensional form to (23) under the restriciond

$$
\begin{equation*}
\tilde{U}_{1 x X X X}=0 . \tag{3}
\end{equation*}
$$

The corresponding boundary conditions arc

$$
\left.\begin{array}{l}
\tilde{U}_{1}=0, \tilde{U}_{1 X}=0 \text { at } X=-\frac{1}{2} \tag{37}\\
\tilde{U}_{1}=(\mu-i a), \tilde{U}_{1 x}=(\mu-1) \Theta \text { at } X=\frac{\Theta_{-}}{2 \Theta_{+}}
\end{array}\right\}
$$

solving (32) subject to (33), \tilde{U}_{1} is obtained and from which $\tilde{u}_{1}(X, \theta)$ and $\dot{v}_{1}(X, \theta)$
are written as

$$
\begin{align*}
& \tilde{u}_{1}(X, \theta)=\left[(1+\mu) \Theta_{+}^{3} X^{3}+\frac{1}{2}\left\{\left(3 \theta_{+}-2\right)+\mu\left(3 \theta_{-}-4\right)\right\} \Theta_{+}^{2} X^{2}+\frac{1}{4}\left(\left(3 \theta_{-}-A\right.\right.\right. \\
& \left.\left.\quad+\mu\left(3 \Theta_{-}-8\right)\right\} \Theta_{+}^{2} X+\frac{1}{8}\left\{\left(\theta_{-}-2\right)+\mu(\Theta-4)\right\} \Theta_{+}^{2}\right] \sin \theta \\
& \left.\quad-\alpha \cos \theta\left[2 \Theta_{+}^{3} X^{3}+\left(3 \Theta_{+}-3\right) \Theta_{+}^{2} X^{2}+\frac{3}{2} \theta-3\right) \theta_{+}^{2} X-\frac{1}{4}\left(\theta_{+}+1\right) \theta_{+}\right] \tag{it}
\end{align*}
$$

$$
\begin{align*}
& \tilde{v_{1}}(X, \theta)=\left[3(\mu+1) \Theta_{+}^{2} X^{2}+\left\{\left(3 \Theta_{+}-2\right)+\mu\left(3 \Theta_{+}-4\right)\right\} \theta_{+} X+\frac{1}{4}\left\{\left(3 \theta_{--4)}\right.\right.\right. \\
& \left.\quad+\mu(3 \Theta-8)\} \Theta_{+}\right] \cos \theta+3 a\left(2 \Theta_{+}^{2} X^{2}+2\left(\theta_{-1}-1\right) \theta X\right. \\
& \left.\quad+\frac{1}{2}\left(\Theta_{+}-2\right) \Theta_{r}\right) \sin \theta . \tag{ii}
\end{align*}
$$

Expression for $\tilde{v}_{1}(X, \theta)$ given by (35) agrees with the one given in (30) which ws obtained from the finite gap solution by an asymptotic analysis. In the limits $\alpha \rightarrow 0$, that is, when there is no radial flow (34) and (35) reduce to the corresponding soluticns discussed by Urban ${ }^{4}$.
In order to obtain the second order solutions we define U_{2} in a way similat ${ }^{10}$ that of U_{1} in (23). In view of the boundary conditions (20) we take U_{2} as

$$
\begin{equation*}
U_{2}(r, \theta)=U_{2}(r) e^{2 t \theta}+Y(r) \tag{36}
\end{equation*}
$$

Now equation (18) under the restriction of narrow gap reduces in nondimentional form to

$$
\begin{align*}
& \tilde{U}_{2 X X X X}=0 \tag{j}\\
& \tilde{Y}_{X X X X}=0 . \tag{38}
\end{align*}
$$

The conresponding boundary conditions are

$$
\left.\begin{array}{l}
\tilde{u}_{:}=0, \tilde{U}_{: X}=0 \text { at } X=-\frac{t}{2} \\
\tilde{U}_{:}=\ddagger(1-\mu) \text { at } X=\frac{\Theta-}{2 \theta} \tag{39}\\
\tilde{U}_{: x}=(\mu+2) \theta-3 \theta \cdot a \text { at } X=\frac{\Theta_{-}}{2 \Theta}
\end{array}\right\}
$$

1010

$$
\left.\begin{array}{l}
\dot{Y}=\dot{Y}_{X}=0 \text { at } X=-\frac{1}{2} \tag{40}\\
\dot{Y}_{x}=(2+\mu) \theta . \text { at } X=\frac{\Theta-}{2 \theta} .
\end{array}\right\}
$$

Ire solution of (37) satisfying (39) is

$$
\begin{align*}
i_{i}= & \frac{1}{18}\{(3 \theta-5)+\mu(3 \theta-7)\} \theta_{+}^{2}+\frac{1}{8}\{(9 \theta-10)+\mu(9 \theta-14)\} \Theta_{+}^{2} X \\
& +\frac{1}{4}\{(9 \theta-5)+\mu(9 \theta-7)\} \theta_{+}^{2} X^{2}+\frac{1}{2}(3+2 \mu) \theta_{+}^{s} X^{3} \\
& +\left\{a \left[\frac{1}{1} \frac{1}{8}\left((2-\theta) \epsilon_{+}^{2}\right\}+\frac{1}{8}\left\{(4-3 \theta \cdot) \epsilon_{+}^{2}\right\} X+\frac{1}{4}(2-3 \theta \cdot) \theta_{+}^{2} X^{2}\right.\right. \\
& \left.-\frac{1}{2} \theta_{+}^{3} X^{2}\right] . \tag{41}
\end{align*}
$$

Salion of (38) satisfying (40) is given by

$$
\begin{equation*}
\dot{Y}(X)=-\frac{(2+\mu)}{\left(\theta_{+}-3\right)} \theta_{+}^{2}\left(X^{3}+X^{2}+\frac{1}{4} X\right) . \tag{42}
\end{equation*}
$$

Ite conssant in the solution of (42) is chosen as zero without any loss of generality. fron (41) and (42) the solutions for the second order transverse and radial velocities us obtained as

$$
\begin{align*}
& \dot{v}_{2}(X, \theta)=-\cos 20\left[\frac{1}{8}\{(9 \theta-10)+\mu(9 \Theta-14)\} \theta+\frac{1}{2}\{(9 \Theta-5)\right. \\
& +\mu(9 \theta-7)\} \theta \cdot X-\frac{9}{2}(3+3 \mu) \theta_{+}^{2} X^{2}+6 a\left\{\frac{1}{8}(4-3 \theta) \theta\right. \\
& \left.+\frac{1}{2}(2-3 \theta) \theta \cdot X-\frac{8}{2} \Theta_{+}^{2} X^{2}!\right]+\frac{(2+\mu) \theta_{+}^{2}}{(\Theta-3)}\left(3 X^{2}+2 X+\frac{1}{4}\right), \tag{43a}\\
& u_{2}(X, \theta)=-2 \sin 2 \theta\left[\frac{1}{18}\{(3 \theta-5)+\mu(3 \theta-7)\} \theta_{+}^{2}+\frac{1}{8}\{(9 \theta-10)\right. \\
& \left.+\mu\left(9 \theta_{+}-14\right)\right\} \theta_{+}^{2}+\frac{1}{4}\left\{(9 \Theta-5)+\mu\left(9 \Theta_{+}-7\right)\right\} \Theta_{+}^{2} X^{2}
\end{align*}
$$

$$
\begin{aligned}
& +\frac{1}{2}\left\{(3+3 \mu) \Theta_{+}^{3} X^{3}\right\}+6 a\left[\frac{1}{18}(2-\Theta) \Theta_{+}^{2}+\frac{1}{8}\left(4-3 \theta_{+}\right) \theta_{+}^{2} X\right. \\
& \left.+\frac{1}{4}(2-3 \Theta) \Theta_{+}^{2} X^{2}-\frac{1}{2} \Theta_{+}^{3} X^{3}\right] .
\end{aligned}
$$

In the limit $a \rightarrow 0,(43 a, b)$ reduce to the corresponding results of Urbant.

5. Discussion of the results for small gap

The physical quantities of interest in this problem are the forces acting on the cylinders. If X^{\prime} and Y^{\prime} denote the components of force on the inner cylinder in the x and y directions respectively, theil we have for a cylinder of length H, abbo et $a l^{7}$,

$$
\begin{align*}
& \bar{X}^{\prime}=R_{1} H \int_{0}^{2 \pi}\left(P_{(r r)} \cos \theta-P_{(r \theta)} \sin \theta\right) d \theta, \tag{H}\\
& Y^{\prime}=R_{1} H \int_{0}^{2 \pi}\left(P_{(r)} \sin \theta+P_{(r \theta)} \cos \theta\right) d \theta,
\end{align*}
$$

where

$$
P_{(r)}=-P^{\prime}+2 \rho v u_{r} \text { and } P_{(r \theta)}=\left(v_{r}-\frac{v}{r}+\frac{1}{r} u_{\theta}\right) \rho v
$$

Fig. 2. Transverse velocity profiles at $\theta=0$ when $\epsilon=0 . \mathrm{J}$.

Fig. 3. Transverse velocity profies at $\theta=\hbar$ when $\epsilon=0.1$.

in. Transverse velocity profiles at $0=\pi / 2$ when $\mathrm{i}=\mathrm{O} \cdot \mathrm{l}$.

Fig. 5. Transverse velocity profiles at $0=3 \pi / 2$ when $\epsilon=0.1$.

Is he components of stress tensor on the inner cylinder and P^{\prime} is the pressure. sobexiuting the expressions for $P_{(r r)}$ and $P_{(r \theta)}$ in terms of nondimensional velocities mithe inner cylinder for the narrow gap case, we get the forces as

$$
\begin{align*}
& X^{\prime}=6 R_{1} \pi \rho \nu \Omega_{1} H \frac{c}{\delta} a, \\
& Y^{\prime}=-2 \pi R_{1} \rho \nu \Omega_{1} H \frac{\epsilon}{\delta}(2 \mu+1) \tag{4}
\end{align*}
$$

$r^{\text {ther }} p$ is the density of the fluid. From (46) we observe that in the limit $a \rightarrow 0$ ${ }^{r}$ only exists. Thus the force X^{\prime} is entirely on account of the radial flow due to trsource along the axis of the inner cylindel.
The imall gap transverse velocity is important in the stability analysis and has Wend discussed by Urban ${ }^{4}$. Our results coincide with those of Urban ${ }^{1}$ when the man parameter tends to zero. We discuss only the narrow gap transverse velocity Whiles when the outer cylinder is at rest $(\mu=0)$, for a given eccentricity ratio which small and for two prescribed values of the suction parameter. Figure 2 depicts
the transverse velocity profiles for $\epsilon=0.1$ and for two values of suction parme The same thing happens, at the location $0=\pi$, as seen from fig. 3. Furthet in, seen that at $0=0$ and π there is no effect of radial flow on the transverse velow which includes terms up to c order only. The transverse velocity profles at locations $\theta=\pi / 2$ and $\theta=3 \pi / 2$ respectively are shown in figs. 4 and 5 for diptox suction parameters and for $\epsilon=0 \cdot 1$. At $0=\pi / 2$, the effect of the radial iton to decrease the transverse velocity neal the inner cylinder whereas it increass, $\theta=3 \pi / 2$.

Acknowledgement

The authors are thankful to the referecs for their valuable ccemments and sugestion.

References

1. WOOD, W. W.
2. Segel, L. A.
3. Kulinski, E. S. and Ostrach, S.
4. Urban, R. L.
5. VAN Dyke, M.
6. Nikitin, A. K.
7. Abbot, T. N. G., Bowen, G. W. and Walters, K.
J. Fluid Mech., 1957, 3, 159.
Q. Appl. Math., 1961, 18, 335.
J. Appl. Mech., 1967, 34, 16.

Appl. Sci. Res.. 1971, 24, 105.
Perturbation methods in fluid mechanics, Academic Prar in York, 1964.

Inzhenernyi Sbornik, 1956, 23, 173.
J. Phys. D. Appl. Phys., 1971, 4, 190.

