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&strict 

Two-dimensional flow of an incompressible viscous fluid between two rotating non-coaxial cylinders 

bas been investigated when fluid is injected uniformly through the surface of the inner cylinder and 

Twieved through the surface of the outer cylinder. Under the assumption of small eccentricity, 
Sion of the governing Navier—Stokes equations is obtained for the case when the gap between 

the cylinders is finite. Solutions of the governing equations under the geometrical restriction of 

narrow gap are also presented. The effect of the radial flow or suction on the transverse velocity 
is discussed for the narrow gap_ The existence of force component in the x -direction on the inner 
cylinder is due to the radial flow. 

It! tvords : Source flow, Non-coaxial rotating system. 

Introduction 

Two-dimensional flows between moving nearly 
in the design of control mechanisms for aircraft 

coaxial cylinders have applications 
and rockets. 

Wood' has studied the two-dimensional flow of an incompressible viscous fluid between 
two Ron-coaxial rotating cylinders. Using an appropriate conformal transformation to map the non -concentric circular boundaries into concentric ones, he has obtained 
the s°11,11  of the governing Navier-Stokes equations under the assumption of small eccrentricit y

. seger used the conformal mapping technique to study the unsteady flow  
between . 	non-coaxial cylinders when the outer cylinder is kept fixed and the 

:nel_strach3 
cYlinder 

g 	is made to rotate or vibrate about a slightly eccentric pcint. Kulinski 

i 
kana 
utAte

O 
 n rotati

. 

 ng 
have also used the idea of conformal mapping in studying the flow 

cylinders with axes slightly apart. 
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Urban.' has used a polar coordinate system with origin at the e
mir f  

cylinders to study the basic flow between two non-coaxial cylinders W
hen een (IL tile iik the di  between their axes is small. Writing the boundary conditions at t  

which is not a coordinate curve is difficult, while solving the linearized 
en,,,,'1  

arising in the perturbation method. The principle of transfer of bound ary  ri 
as elucidated by Van Dyke5  has been used to resolve this difficulty. Th -evillii4  
is to replace the conditions on the actual boundary whose position varies li P""uw s gym iiii  the perturbation parameter c by the conditions on the basic boundary which 

con, 1 ponds to e = 0. The solutions thus obtained satisfy the boundary condition s °nit  
actual boundary more closely by taking c small and including more numbe r  of tent  
in the perturbation series. Urban4  has also discussed the relative me rits  d i  
method of solution. It is worthwhile commenting here that even the confenrgi 
mapping method has similar limitations on eccentricity. Nikitin 6  also used pill  
coordinates in the study of flow between non-coaxial cylinders. 

The aim of the present investigation is to extend the problem consider
Urban4  in the presence of a radial flow due to a line source along the axis of tist 
inner cylinder. Solution of the governing equations is obtained when the gap bthet ri  
the cylinders is finite under the assumption that the distance between the axes of tit 
cylinders is small. Solutions of the governing equations are also presentedmit 
the geometrical restriction of narrow gap. The effect of the radial flow is seen boil 
in the fist and second order velocities. In fact, the radial flow induces a fonts 
the x direction on the inner cylinder. 

2. Formulation 

Let 01  and 02  be the centres of the inner ard outer cylinders with radii Aunt 
respectively. 01  is taken as the origin of the cylindlical polar coordinate!" 
(r, 0, z) with z-axis along the axis of the inner cylinder (see fig. I). The dist, 

01 02  is the eccentricity 6  e' of the system. Two non-dimensional 
parameters 

eccentricity ratio, and 3, the gap ratio, are defined by 

(O <€< 

(0 < < 

where d = R2 R1  and Ro  =-- (Rj  -I- R2)12. Using the cosine 
01 02 P, the radial distance 	' which is the variable gap between 
obtained as 	

rule 

h  

462 62  " 	• it (0) = 	+ cdcos 0 + fig (I 	) 2

sin 2  OY  

l 
for the 

tan!

the cYlind"s 



NON-COAXIAL ROTATING CYLINDEIts 

flu. I. Non-coa.xially rotating cylinders. 

Consider the flow-problem when the inner and outer cylinders rotate with angular 
idoeitits 111  and S22  respectively and when there is a radial source flow due to which 
the fluid gets radially injected at the inner cylinder and the same amount of fluid is 
sucked out normally from the surface of the outer cylinder. Assuming that there is 
00 flow in the axial direction of the cylinders, the radial velocity it, the transverse 
'elocitY v and pressure p' are functions of r and 0 only. The equations governing 
"flow are the continuity equation and the two-dimensional Navier-Stokes equations 
it cylindrical polar coordinates. The boundary conditions for the inner cylinder are 

(2 a, b) 

krt." are considering a non-coaxial system of cylinders, the tangential and normal 
*cities at the outer cylinder are not in the same direction as the radial and trans- 
' Mount's. Hence the boundary conditions for the outer cylinder are, 

(3)  
2 	1/2 

(Cd) Sin 2  0} 	2 
n P u izt 	,Q2Edsinu 	 D2 

J. 2  

(4) 1/  2 	ft 	• 0 02 	 sin , u R2 S2 	( 2  {I 	sin2 	Bi R! 
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where 

For 
sought 
series 

= 

the formulated nonlinear boundary value problem, approxim ate sohni  
by employing a perturbation method. The velocity field is expa

nded :ris k 
bi of the form given by 	 Rued  

u (r, 0) = 	(r) + cu (r, 0) + 	u2  (r, 0) + . . . 

v (r, 0) = 	(r) + cv (r, 0) + C 2 	(r, 0) + . . . . 

Using (6) and (7) in the governing equations and equating different powers c ol  
either side we obtain various order equations which are solved using the corns  
ponding boundary conditions derived from (2a, b), (3) and (4). 

3. Solution for the finite gap 

The leading terms of the velccity components in (6) and (7) are the exact soltiiioti 
of the coaxial problem. The equations for radial and transverse velocities are giva 

( rue, uo  = 0, 

v.) vo 	 (51 = v (ver + -r v — 

with the  the boundary conditions 

tr. = fi t  on r= 

v. = DI & OT1 r R i, I 
v = 02 R2  on r = R2 

where v is the kinematic iscosity and the subscripts denote the paitial derivati
no. 

with respect to the corresponding vatiables. This notation is used throughout 
paper. The solutions of (8) and (9) satisfying (10) and (11) are 

(1,  
h o  = 

v 0 = Arto --
B 
r ' 

where 

012 	— 14) 	D1 R1 	—  A = 	 2  B = 12 4 8 , 	 n 2_,8 

= 
R 

 P 7 '1  = 	v 



NON-COAXIAL ROTATING CYLINDERS 	 203 

continuity equation and the condition (2a). 
equation obtained by eliminating pressure 

3ne gets two linear boundary value problem 
components. The first order velocity com- 

- rv isol + tizi t — 141.0 4-  ruste — rvi  — r2v, 	in, + 2)1) 

9-01169 — VI° 
V 1 

v — 2v 	 -1- 	1 1 	2 
( :-. 	11100 + —r2  ulna + 7.:i the + —r  -1r 	1st 	Irrr 

1 	

;1 	
r  - n 140 — -172  • 

(15) 

+ rut , 4 V19 = 0, 	 (16) 

the boundary conditions 

Qtdsinil 	Ldcos0 at r = R2, 
n2 	 (17) 

MS: 1'10 
—Fs 

le second order velocities are governed by 

-V#iee + ihuks  —14g — 	ruly in  

2 	 v. 
- vivito — -r vivio 	± 	0200 — vIts 	1-172r9) 

+ ( — 1400 + Mo re — TV2 1. — T2 thrr 4-  v2) r2  

1 	2 	1 1 
= v //21,6 + —, me  + -7 149 ± ' V2r  ( 

r- 	r 2  - 	r 
li 	 — 2v — ifv2or — -1. 1)2ree —Irt.) , ( 18) Jr 

+ rit2r + 	°. 	 (19) 

lilh the boundary conditions 

= 0, v2  = 0 at r = R 1 , 

• 

	fid 2 	
d cos 0 (I110 r.,R 2 

 at r= R2, 

, 
 — Q 2  —} sin2  

42  i( 	 2B 
1 	+ 2 7 	ARr i  --i} cos2  0 — 	d cos 0, at r = R 2 . 

R2  

(20) 

ro ra
dial velocity is obtained from the 

substituting (6) and (7) 
. in. the governing 

ot
i coating the coefficients of and c2, 

for 
 the filst and second order velocity 

p 	
are governed by 

ots  
- 
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The boundary conditions for the first and second order velocity coz  

r = R.) are obtained using the transfer of boundary conditions dig P3/41  k etssed 
Dyke6

. The boundary conditions (17) prompt us to take 	 ‘1;  

	

(r, 0) = [ U1  (0 i 	c.c 

—I 
v i  (r, 0) = 	r(rUir 	eie 	c.c] 

where C.C. denotes the complex conjugate of the quantity preceding it. r L • 
, 

(21) and (22) in (15) we get the equation for U 1  as 

(U1  + 6  U 	3  U 	3  U ) 	(U 4. 3  u 
rrrr 	irrr _ -7; 	jrr 	-3 	 r 

	

r- 	 rv 	4 	r 1r 

e 	 isr 
s (rU — 	+ 4U ) = 
r2   

with the boundary conditions 

ti = O, 	= 0 on r = 

= f22  d id/i/14 on r = B2) 

= {(v0r)raa2 	diR2 2idll/R1, on r = R2. 

The solution of (23) satisfying (24) is 

U1  = c1 11  (r) 	c212  

where 

Cl = 	d — id/1/fl D 14 (R) --  “Ver)faR2 d idiiiRil /2 (R)]!t )  

C2 = R(VOr)fscR2 d idt I I aril 1 	— (02  d id fi I RD 13021A? 

= (RO 1 4 (R2) —  

(7: 1 

C.1.1 

)4  .1 (2144) di — ka OJAI 9 di. 

12 (r) = rky ().k I) dr — r 2  I k 2 Yr, 01'49 dr, 

1 3 (0 = rk J urki” - 
2 4 (Ark-1 1 ) th-, 

14 (1•  
rk ; (Ark 1 s dr 7,1  

' 
142 yp  (Ark I)dr 

4•• 
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AiV 12 	_ (iB 
k 	"r" 	) 	P 	-- +1 + k 2 	8ky l2/(k + 1) 	(27) 

2 

lp  are Besse] functions of order P. The first order radial and transverse 
I  and  
leocities are 

= [1{c111 (r) 	es12 (0) ege + 
(r.0) 	 (28) 

v i (r,O) 	1 V tri 13 (I) 	c2A1  4 (i.); C 	c.c. 	 (29) 

t result given in (26) ard (27) in the limit k --+ 0 coincide with those of Urbana', 
ni s  corresponding to the case where there is no iadial flow, 

Following Urban' the solution for the narrow gap is obtaincd by employing 

LcvmptoliC Ntissel's series for the Besse' functions 4 (io: 1) ard Y, (Ad k I) in (25).  

The factors K and rt.' appealing in the expressions for 130 and 14  (r) in (29) do 

lot offer  any difficulty and all the integrations can be performed in a straight- 
fermi way except for lengthy algebra. 	NW: obtain in the limit of the small gap 

t expression for the first order transverse velocity V/  (X, 0) as 

+ 1) X' 	+R30* —2) + p (30_ — 4); 9' 

toe.- 4) +11 (30 — 8))- ajcoso 

3a[20.1. Ar= 
 

	

+20 x(e. -1) 2 	o) -] sine°, (30) 

where a= (IAA is the suction parameter, 	and X arc as given in the following 

4. Solution for the narrow gap 

lt this sectien some useful and simple results are derived by considering an extra 
ninon, namely, the gap between the cylinders is small in addition to the small 
"tneitY. The idea of narrow gap is introduced in both the governing equations 
44  the boundary conditions and the corresponding solutions are presented. 

We 
introduce a new independent variable X by r = R1  + h/2 + la and it has te lange , 

Furthet 	0. ard O. are given by 	xe + 
V Al e ir-- 1±E cos0. A point in the fluid domain is now prescribed by X 
#2:

ontd  
lit our problem the zeroth order transverse velocity satisfying the limiting 

r.0 	boundary conditiors for small gap is the same as that given by Urban% nuitis  

;0) I + 
( 1  - I) 	. 	 (31) 
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The radial velocity given by (12) under the above restriction becomes 
co, throughout the gap. The equation corresponding to (23) under the r • -71t 

narrow gap reduczs 	non-dimmsional form to 	 enstilaion 

A XXXX =II  0. 

(32) 
The corresponding boundary conditions arc 

0, = 01 	t sjix  = Cu — 1) 0 at X 
= 204. 

solving (32) subject to (33), tail  is obtained and from which taiii (X, 0) and Om 
are written as 

(x, o) = to +z4  at x3 + 1430, —2) + p (3 Or — 4)) 04 r +11(38. -4) 

+ it (30- — 8)) at X + {(e, - 2) + p (e - 4)) el] sin() 

	

- a cos 0 [204. X 3  + (3(9 +  - 3) 0.23. 	+ # 	— 3) et - vet + F+1 
(39 

271  ()co) = (3(a + at x2 + 	- + p oat - 4)) e x + 1{09. -41 

+p(30 - 8)} ei cos o + 3a (201 X 2  + 2 (0 : — 

(35) 

. 4% Expression for v i  (X1 0) given by (35) agrees with the one given i n  (30) which  
In the limit 35

obtained from the finite gap solution by an asymptotic analysis. 
a -> 0, that is, when there is no radial flow (34) and (35) nduce to 
solutions discussed by Urban4. 	

the corresponding 

In order to obtain the second order solutions we define UG i n  a way similar t°  
that of U1  in (23). In view of the boundary conditions (20) we take U2 as  

06)  
U2 (r, 0) = U2 (r) e"e 	Y (r). 

erraellsi °1131  Now equation (18) under the restriction of narrow gap reduces in non-I  
form to 

(31 
62XXXx 'it 0, 

(38) 
C;Fxxxx = O. 



f 	= 0 at X = 

= +P) e 
ç4 0) 

O- at A = 
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The corresponding boundary conditions are 

C: = 0, itlrx  0 at X = 

e_ 
02= 	at X -27. le  

oex  of + 2) e -34 a at .Y = 

(39) 

The solution of (37) satisfying (39) is 

= {(30 

 

—5) 4- /1(3e. - 7)) et +i{(90  - la) p(90 

+ 1 	- 5) + 	- 7)) ei x2 ± -} (3 + 3/) el. X3  

x (2  

- 14)} at x 

(41) 

Solution of (38) satisfying (40) is given by 

Coo = - 2=—")  er4.(x3 + x2 + x). 
(04_ - 3) 

(42) 

The constant in the solution of (42) is chosen as zero without any loss of generality. 
horn (41) and (42) the solutions for the second order transverse and radial velocities 
at obtained as 

v2(X,0) = e°s 20  (4 1(90 —10) + /i (9e - 14)1 	+ f(90 —5) 

P (9e - 7)) a x 4(3 + 3/0 01. X: + 6a ft (4 — 3 0.) o 

(2 +  /4) el- 	+ 2X + 1)9 • +1(2 -- 3 e)e x_ 4 924._ xi] + 	- 3) 

MX,O) 	2 sin 20 	{(3 

 (43a) 

— 5) 4 p (39 	7)1 at + 	- 10) 

- 14)) et 1 foe - 5) + it (90 — 7)) at x2 
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+ 3/4 at x3) + 6a tn. (2 — e 	+ (4 ... 3 et)  0, x  

(2 - 3 e el. x2 - et XI 

In the limit a 	0, (43a, b) reduce to the cot respinding results of Urbani. (434 

5. Discussion of the results for small gap 

The physical quantities of interest in this problem are the forces acting on tit  
cylinders. if X' and Y' denote the components of force on the inner eylinderiutt 
x and j' directions respectively, then we have for a cylinder of l ength g  Abbu  

et 017 , 
2r 

X' = R1  H f (P( „)  cos 0 — P ( ,0)  sin 0) dO , 
0 

Yi = R1  if Ir(P(„) sin° 	P( ,8)  cost)) dO, 	 (4i) 
0 

where 
1 

P(„)  = 	P' ±2pvit 	P 	
v

,. and - ( re) = V, 	— 110 pv 
r 

FIG. 2. Transverse velocity profiles at 0 = 0 when 
€ =0.1, 

, 

Flo. 3. Transverse velocity profiles 
a;  

when g r--- 0.1. 
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's 4. Transverse velocity profiles at 0=.• ni2 when 

e01. 

Fos 5. Transverse velocity profiles at 0 =3n/2 

when e = 0. 1. 

at the components of stress tensor on the 
*tinning the expressions for P()  and Poo  
mithe inner cylinder for the narrow gap case, 

inner cylinder and P' is the 
in terms of nondimensional 
we get the forces as 

pressure. 
velocities 

= 6R 1 npvL21  I 54  a, 

Ri pv121  75 (2/4 +1) 
	 (47) 

P is the density of the fluid. From (46) 
r  °lily exists. Thus the force X' is entirely 
*I ‘okirce along the axis of the inner cylindei . 

we observe that in the limit a -4 0 

on account of the radial flow due to 

4V/flail  gap transverse velocity is important in the st; 
wseussed by Urbart4. Our results coincide with those 
'ttotliRrameter tends to zero. We discuss only the narrow 
is

les when the outer cylinder is at. rest (p = 0), for a given n
iall and for two prescribed values of the suction pavan 

bility analysis and has 
of Urban.' when the 
gap transverse velocity 
eccentricity ratio which 
eter. Figure 2 depicts 
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the transverse velocity profiles for c = 0•1 and for two values of s uc  • 
at the location 0 = 00 . It is seen that the effect of radial fl ow

ti  on 
IS to  Pc% 

decreats transverse velocity near the inner cylinder and lc increase it near th e Outer csk 
The same thing happens, at the location 0 = n, as seen from fig .  3. F.urrilifi 

, 

seen that at 0 = 0 and it there is no effect of radial flow on th e  transverse llen sh 
which includes terms up to c order only. The transverse velocity profil

es  vat! 
locations 0 = n/2 and 0 = 3n/2 respectively are shown in figs. 4 and 5 for di '

4 . suction parameters and for e = 0 . 1. At 0 = 42, the effect of the radiai 6 to decrease the transverse velocity neai the inner cylinder wheieas lo ner _ 9  
0 = 3n/2. 	 44 4 
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