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Abstract

reo-gimensional flow of an incompressible viscous fluid between two rotating non-coaxial cylinders
las been investigated when fluid is injected uniformly through the surface of the inner cylinder and
«moved through the surface of the outer cylinder. Under the assumgption of small eccentricity,
ohtion of the governing Navier-Stokes equations is obtained for the case when the gap between
e cylinders is finite. Solutions of the governing equations under the geometrical restriction of
umow gap are also presented. The effect of the radial flow or suction on the transverse velocity
& discussed for the nmarrow gap. The existence of force component in the x-direction on the inner
wlinder is due to the radial fiow. |

by words : Source flow, Non-coaxial rotating system.

L Introduction

Tvo-dimensional

. flows betwee ' : : anplicafi
" the design of n moving nearly coaxtal cylinders have applications

control mechanisms for aircraft and rockets.

wood] : . . : . .
has studied the two-dimensional flow of an incompressible viscous fiuid between

Iw : )
loﬂm?;n;;{;a::;;zla"ng_cy linders.  Using an appropriate conformal transformation
the solution of thencemnc, C‘fcula}* boundaries intp concentric ones, he I}as obtained
"Wentricity cheﬁgovem‘“g Navier-Stokes equations under the assumption of small
tow beryeen rom- used the conformal mapping technique to study the unsteady
el cylinger . “c0axial cylinders when the outer cylinder is kept fixed and the
2 S made to rotate or vibrate about a slightly eccentric pcint. Kulinski
have also used the idea of conformal mapping in studying the flow

OSlrachE
%N rotari .
14ing cylinders with axcs slightly apart.
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Urban* has used a polar coordinate system with origin a the

cylinders to study the basic flow between two non-coaxia] Cyﬁnder:emre of th”h
between their axes is small. Writing the boundary conditiong at ‘h:he“ the disgy
which is not a coordinate curve is difficult, while solving the lincao}lwr boig,
arising in the perturbation method. The principle of transfer of boun df;zed Wiy
as elucidated by Van Dyke® has been used to resolve this difficulty r_ghconqitim
is to replace the conditions on the actual boundary whose position ya;'iﬂs s]]f:p T
the perturbation parameter € by the conditions on the basic boundary whiﬂllbnﬁ;
ponds to € = 0. The solutions thus obtained satisfy the boundary condjtio;l:
actual boundary more closely by taking € small and including more Numbger orunlh
in the perturbation ser_-ies. Urban® has also discussed the relative lllftrits:?:
method of solution. Tt 1s woFth'whi_]c commenting here that even the conformy
mapping method has similar Iimitations on eccentricity. Nikitin® ajs used. i

coordinates in the study of flow between non-coaxial cylinders.

The aim of the present investigation is to extend the problem considered }
Urban® in the presence of a radial flow due to a line source along the axis of i
inner cylinder. Solution of the governing equations is obtained when the gap bewey
the cylinders is finite under the assumption that the distance between the axes of te
cylinders is small. Solutions of the governing equations are also presented i
the geometrical restriction of narrow gap. The effect of the radial flow is seen bod
in the first and second order velocities. In fact, the radial flow induces 2 forxa
the x direction on the inner cylinder.

2. Formulation

et O, and O, be the centres of the inner ard outer cylinders with radii Ry i“ﬁi:
respectively. O, is taken as the origin of the cylindrical pelar c«c::m*dmfii'-’d..muct
(r, 0, z) with z-axis along the axis of the inner cylinder (see fig. ). The 11 "
0,0, is the cccentricity ‘e’ of the system. Two non-dimensional parameted
eccentricity ratio, and 8, the gap ratio. are defined by

6‘-"—"3, (0(6(]),
5=2 0<5<2)
=R’

. . for th.
where d = R, — R, and R, = (R, + R,)/2. Using the cosinc TUI:I e cylnde®”
0,0,P, the radial distance * 4’ which is the variable gap betwe
obtained as

4e20° . o )112
= — - _sin2 0 ’
h(0) R, + edcosl + R, (1 @ + o sin
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Fe. 1. Non-coaxially rotating cylinders.

Consider the flow problem when the inner and outer cylinders rotate with angular
hodtiss @ and Q, respectively and when there is a radial source flow due to which
heflid gets radially injected at the inner cylinder and the same amount of fluid 1s
swked out normally from the surface of the outer cylinder. Assuming that therc is
w flow in the axial direction of the cylinders, the radial vclocity w, the transverse
oty v and pressure p’ are functions of r and 0 only. The equations governing
!hf ﬂ‘?“’ are the continuity equation and the two-dimensional Navier-Stokes equations
" olndrical polar coordinates. The boundary conditions for the inner cylinder are

u=Pf, v =RQ, at r = R,. (2 a, b)

&m.:e ate considering a non-coaxial system of cylinders, the tangential and normal
Yerse vesl al the outer cylinder are not in the same direction as the radial and trans-
toclties. Hence the boundary conditions for the outer cylinder arc,

U=~ Q.edsing B = (ed) . s 2t 3
+ R, R sin-0 ; (3)

V=R, (ﬁd)z e 172 ) X
-92{1 ~ gy it 0} s %,-_; cdsing, (4)
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where
ﬁ o ﬂl R

For the formulated nonlinear boundary value problem. APProximate
sought by employing 2 perturbation method. The velocity field i "
serics of the form given by Pandeg by,

wu(r,0) = ug (r) + cuy (r,0) + u, (r,0) + ...
v (r,0)=v,0) + cw, (r,0) + v, (r,0) + ....

SOIHqum

@
f

powers of ¢ ¢,
ng the coms

Using (6) and (7) in the governing cquations and equating different
either sidc we obtain various order cquations which are solved usi
ponding boundary conditions derived from (2a, b), (3) and (4).

3. Solution for the finite gap

The leading terms of the velccity componerts in (6) and (7) are the exact solutios
of the coaxial problem. The equations for radial and transverse velocities are given by

rug, + ty = 0,

v 1 v
Uy (vﬂr £ "';) = ¥ (v"rr ‘a '; Vor — ;;:) - i

with the boundary conditions

g = fi, on r = Ry, L

Vo = Q].R]. on r = R].-; } "IJ

Vo =%%R, cn r =R,

; ’ : : ) ] ~ e
where v 1s the kirematic viscosity and thc subscripts denote the paitial i;r;: —
with respect to the corresponding variables. This notation is used oS
paper. The solutions of (8) and (9) satisfying (10) and (I1) are

(1)
us = ffr,
(1)
Vo = Af'”'] + ?,
where
A o 2y (?7; — 1) Ry B = QR (unp® — 1) i
}7 2 — ] n‘l-.;l‘ 2 I

_Q' __,R‘I.
ﬂ 91! ﬂ—,ﬁ_, § =

[ £+

L]

f
v
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., ig obtained from the contin}lity equa'.tion and t‘hc’ cox}dition (2a).

(7) in the governing equation ob}alned by eliminating pressure

ficients of cand ¢, one gets two linear boundary value problems

lﬂ¢|e4:|113l Tan 4 second order velocity components. The first order velocity com-
18

pr the e go,,.-erned by

p . '
- +5(— g + 1y — rvy, — Y, + )

F | 2 ; . ] v,
V (ulr f + T “1936 + -F-;- Hlo + ?vlr - 2v1ﬂ’ — ’vlrrr R U]_rga — .
= f r-

r pe
(15)
16
ty + Tt + vy =0, .
b the poundary conditions
Hl-"-'o- Ul == 0 at r = R].‘
”1='Q:"5iﬂ0 +%d0030 at r = R., .

dsnl : _ 2 ldcosfatr =R,
”1=§"§?_'{(5+1)AR= Rg} cosl a ;

2 weond order velocities are governed by

l iy
= H t . = H - ‘U ul — !'Hl'D]_"
r91”136+ itheg — - Uip Y1y

) Vs .
- 1.’1131,9 - ';_'011?19 — 1 U,, I 7 (Hﬂﬂﬂ — V.o ’v'zrg.)

P

T re (— Usg T Flag — TU2e — re Vo T+ ‘02)

Vs
= "(ﬂane t = liggg + mlag TV T 20, = Mspre — Y200 — 2

Uy + Mty + Dy = 0. (19)

Wih the boundary conditions

uz=0, v, =0 at r = Rl'-'

=¥

A

-"’z."'k'; ~dcos® (uy,) ., at r = R,
' 3

v d*

ﬁiﬁ;{(s + 1) AR, - Q, ~ %} sin2 0

e
N3 {(s‘* +5) AR 4 =

= 20
Eg} cos> () — (Vis)p=prs dcosl, at r = R,. (20)
2
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The boundary conditions for the first and second order vejgj
r = R, are obtained using the transfer of boundary con ditiocuy COmpegg
Dyke®. The boundary conditions (17) prompt us to take ons dzscumdb’n

w (r,0) =3[ Us (r)ie? + ccl.

h

— 1 A
0, (,6) = = (U, + Up) €€ + <] .
i
where c.c. denotes the complex conjugate of the quantity preceding |
21) and (22) in (15) we get the equation for U, as g I, Subsmmq.
6 3 3 v, 3
(Ulrrrr + r Ulrrr + ;--‘5 Ulrr — ';E; U1r> . W (U;,., -+ ;Ulr)
)
- r_z' (rUlrrf + 4U1") = 0 :
with the boundary conditions
Ul-':O, U1,=0 on r = Rl’
Uy = 2:d — idf/R2 on r = Ry, } )
Ul i {(Uﬂr r=Rs 92} d/R2 - 2ldﬁj‘Rg! on r = Ry
The solution of (23) satisfying (24) 1s
Uy = oI (r) + el (1) 3
where
¢ = [(:d — idB/R3) 1, (R.)~ {(wop)=r, d + fdﬂ/Ré} IE(RQ]-"A’\I
¢, = {(Worrer, d + idB[RE} Iy (R) — (£2 d— idf/R2) Ty (RNID:
A =1 (R) Iy (R) — L (R:) Iy (R, |
IL,(r) = j % J, (Ar¥Y) dr — % j jke2 (At dr,
R; -4 ’
I (r) = f %Y, (Ar¥) dr — 1-3 j a2 Y, () dr, >
Ry ! P
I3(r) = j ¢ J, (Ar€Y) dr +:~_—2 f e Jo (k) dr,
Ry R
I (f) = f 1E Y, (¥ ) dr + 1_5 J‘ re2 Y, (Ar"*’) dr
2

Ry B3 o }
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172 iB . 172
0d k-—-f A=("'d§) ,F=T+1+k"‘8k /(k+1) (27)
— 2"
L, are Besse! functions of order p. The first order radial and transversc
J; i =¥
l cities 8¢ -
u (0) = 3 [itah 0) + &l 00 & 4 e, (28)
1 ¥
0, (n0) =1 [- {afs (1) + ey ()} '8 + ], (29)
1\ *
s given in (26) ard (27) in the limit & > 0 coincide with those of Urban?,
The 158 e where there is no tadial flow,

prresponding 10 the cas

Following Urban' the solution for thc NAFTOW  gap *is obtaincd by cmploying

olic Missel’s series for the Bcsscl funClIOI?S Jo (4157 ard Y, (4% 1) in (25).
Th}gmgctors 2 and 7' appearing In the expressiors for /;(r) and 7, (r) in (29) do
ut offer any difficulty and all the Integratiors can +be performed in a  straight-
peard way except for lengthy algebra. Wc obtair in the hmit of the small gap

P

i expression for the first order transversc velocity v, (X, 0) as
o (X,0)=[Cu + 1D X 0% +{30: —2) +1u(30. - 4);0. X
+1H(30. - ) +u (30 — 8)} 0 ]cos 0

+ 3{29; X* 420 X(@. - 1) + %‘* ~ @r)] sin 0, (30)

vee o = fi,/R,Q2, is the suction paramcter, @, and X are as given in the following
o,

4 Solution for the marrow gap

h“}“_ﬁﬁﬂlcn some useful ard simple results arc derived by considering an extra

x‘::::; “311_1:13]?_» the gap botween l.h‘;‘. cylinders i§ small in addition. to the anall

i bt;und e Idea qf narrow gap 1s mtroduce.d In botl‘a the governing cquations
ary conditions and thc corresponding solutions are presented.

We | ; "
Mroduce a pew Independent variablc X by r = R, + /#/2 + AX and 1t has

M:ienic:lifxgi- Furthet ©, @ ard @ are given by O = XO. + ¢/2

' r1ecosf. A point in the fluid domain is now prescribed by X
- ap:]m; problem Lhc_zcrolh order transverse velocity satisfyin:g the limiting
Wiy, oundary conditiors for small gap is the same as that given by Urbant

-

=l - p) X:I. (31)
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The radial velocity given by (12) under the above restriction beco

s : m
throughout the gap. The t_:qudu:.:m corresponding to (23) under the resl ™
narrow gap reducss in non-dimznsional form to Sinctigy o

U1xxxx = 0.

(3

The corresponding boundary conditions arc

U =0 Uy=0at X=—1
O

i }
20, .

Uy = —ia), Uy =(— 16O at X =

solving (32) subject to (33), 5‘1 is obtained and from which !TI(X, 0) andﬁu'g)
are written as .

u (X,0) = [(1 + ) O3 X* + 3{(30. — 2) + u(36. - 4)} 63 X* +}{(36. -4
+1BO. -8} 603X +3{(O0. —2) +u(O. — 4)} 63 sinl

—acos0 20 X3+ (30, —3) 0L X2+ 20 —3)0iX-1(6.+)6]

' (3

oy (X,0) = [3(e + 1) 02 X* +{(30. — 2) +u (30, — 4)} 0, X+}{36.-4
+u(30 —8);6.]cos0 +3a(20% X* +2(0. -1)0.X

+%(0. - 2) 0,)sin 0. (3

Expression for v, (X,0) given by (35) agrees with the one given in (30) whih ¥

obtained from the finite gap solution by an asymptotic analysis. In the limt 3

S Q, that 1s, when there is no radial flow (34) and (35) rcduce to the corresponddd
soluticns discussed by Urbant.

. . im! w
In order t_o obtain the second order solutions we defing U, n @ Wy siml
that of U in (23). In view of the boundary conditions (20) we take Uz

ol

(%
U2 (!’, 0) — Ug (f') 32‘0 - Y(!‘)
Now equation (18) under the restriction of narrow gap reduces 1n nondim™
form to
" (37
U?XXXX - 014
(¥

r ]
Y Xxxx = 0.
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ry conditions are

he €€ ,
. O'nx=0;1t\=-:‘: )
L:—" .
0= 4 — ) at X = 29“ (39)
e_
Efﬂx=(.u+2)@ -—3@&&1X=2—6—
i
- v -0atX=-—%
L 5 (40)
om0 atX =15

e solution of (37) satisfying (39) 1s
[, = 5(06. — 5) +1(30. = W} O3 +3{90. —10) +4(90. — 14} 61 X
+1196. = 5) +u(960 — D} OF X* +3(3 + ) OF X7
salH(2 - 0)€R +3{(4-30)€E1X 1 3(2-30) 62X

- 4 63 X7 (41)

ohion of (38) satisfying (40) is given by

Y(x) = - (g:“;) O (X* + X2 + 1 X). (42)

lke constant in the solution of (47) is chosen as zero without any loss of generaltty.

om (41) and (42) the solutions for the sccond order transverse and radial velocities
Ut obdined as

;’E(Xaﬂ)‘-'- ~¢0s20 [L56(90 — 10) + (90 — 14} 0 + +{(90 - 5)
0 —~ O X - 2(3 +3)6LX: +6a{$(4—-30.)0,

N o (2 +8) 0% 3y Loy , 43¢)
'%(2*39-)@.X—%@1X'}]+*(9__3) (347 + +3) (

W= ~2sinp[a (3o -5 +u (30 - T 0% +3{00 —10)
TS0, — 14y 6z +31{(90 —5) +u(90, — N} 9.2!. X2
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+3{ +3W) 03X + 6o (2~ 0) 0% +4(4 -39, ,
+3(2-360)60LX* -1 6% X ”
In the limit a— 0, (43a. b) reduce to the corresponding results of Urbaps b

5. Discussion of the results for small gap

The physical quantitics of interest in this problem are the forces acting op
cylinders. 1f X’ and Y’ denote the components of force on the inner cyliner in
x and y directions respectively, then we have for a cylinder of length g b

et al?,

£ < T .
Y = Rl H _‘; (P("} cos f — P(fg) sin 0) d(?, (4
2 _
Y’ = Ry H [ (P, sin0 + P cos0)d, (%)
[
where
v 1
P,y = — P'" + 2pvu, and Py = ('v, B | + ;uo) pv
1.00 - — 1.00
0.75} 075
'; Ed
v
1
0.50} 050
i 1
i i
® 25\ binE
L
0
| o e B
=05 e 05 -05 4
.. orofiles al !
FIG. 2. Transverse velocity profiles at § = 0 when Fig. 3. Transverse velocity P

E=0'Il whcn e=0.l'
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» 100

975

<t

# 50

0.25

0 ]

-05 0
X

% 4. Transverse velocity profiles at 0 =m/2 when FiG. 5. Transverse velocity profiles at ! =3m/2

=0l when € =0-1.

& the components of stress temsor on the inner cylinder and P’ (s the pressure.

Weitting the expressions for P,y and Pg In terms of nondimensional velocities
uthe inner cylinder for the narrow gap case, we get the forces as

X'=6R, npv £, Hg a,

V'~ 2nRypv @ HE(2p +1) (1)

';"h:rep s the density of the fluid. From (46) we observe that in the limit a -0

T;ly ®sts. Thus the force X’ is entirely on account of the radial flow due to
"% along the axis of the inner cylinder.

;Rdi;mil §4p lransverse velocity is important .in the stabtlity axialirsm ;mf I:;iz
.anamsed by Urbant. Our results coincide with those of Urban® W zelocity
i Whenmﬂer tends to zero. We discuss only the NArow gap trgqsver;iio oo
By, the outer cylinder is at rest (z = 0), for a given eccentricily T '
"d for two prescribed values of the suction parameter. Figure 2 depict§
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the transverse velocity profiles for ¢ = 01 and for two values of i
at the location § =0° Tt 1s scen that the cffect of radig flow istunm.
transverse velocity near the inner cy]indt_:r and 1c increase it pegy the Osldecrg“-
The same thing happens, at the location ==, as scen from fie, 1 ;rbg%.
seen that at 0 = 0 and 7= therce is no cffect of radial flow on the hal'mcunhuhi
which includes terms up to ¢ order only. The transverse velocity p'm';; }
locations § = m/2 and @ = 3m/2 respectively are shown in figs. 4 4 45 ty diﬂlh
suction parameters and for e = 0-1. At 0 =.R12’ the effect of he e, .
to decrease the transverse velocity near the inner cylinder wheyegs i m;:

§ = 3zn/2.
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