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Abstract

Capacitive-resistive transients in extended media are discussed in terms of electric field quantities. Obviously,
in these problems, the contribution of the magnetic field to the electric field is deemed negligible. For a simple
illustrative example, the field solution is compared with the circait-theoretical result for the voltage and cur-
tent. An algorithm for solving such transients in space and time domain with the help of a Laplace solver is
presented. Any other Laplace solver can also be used for this purpose. Its applicability is demonstrated with
three examples, one of which is chosen to have a circuit-theoretical solution.
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L. Introduction

Capacitive-resistive transients occur very frequently in electrical engincering. Such tran-
sients prevail in all cases where contribution to the electric field from the time-varying
magnetic field is negligible. Some examples are outdoor insulations such as polluted
bushings, noninductive high-voltage resistors used in impulse generators and practically
all insulation in HVDC systems. For design, analysis and performance studies, it is es-
sential to know the temporal and spatial distribution of the field quantities. Solution for
most of such problems has been aitempted in the past using ladder network with lumpe_d
circuit elements. However, in a class of problems involving extended media or nonuni-
formities, lumped circuit approach will be of inadequate utility; in fact, it would almost
be impossible to arrive at meaningful equivalent circuits. The field-theoretical approach
discussed in the present work would be appropriate in such cases.

A number of researchers®” have studied capacitive-tesistive fields. Some of them®™
have considered only the steady-state distribution for the sinusoidal excitation, whe.reas
others™ have considered the transient response also. Singer’ used Fourer analysis to
split the impulse voltage waveform into component sinusoidal voltages. Then, by solving
the Laplace equation for a selected number of these sinusoidal voltages, the response for
& Impulse voltage was computed. The overall computation and storagg space demanded
% this indirect method is larger than the direct time domain solutlon.."l"akume? z’.md
Kawamoto® and Chakravorti and Mukherjee’ have computed the capacitive-resistive
transient field in the time domain. However, they have considered transient phenomena in
 axisymmetric problem with conductivity present only at the interface. For 2 better un-
derstandine af thic teancient nrocess from the field point of view and for possible compu-
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tations of such transients in the time domain, it is necessary to use the general boundary
condition given by Woodson and Melcher®. It must be noted that the contribution of the
magnetic field to the electric field must be negligible for a problem to be treated as a ca-
pacitive~resistive transient.

2. Transients in terms of electric field parameters

In any material conductivity « and permittivity &, both conduction current xE and dis-
placement current dD/of exist simultaneously. Assuming that there is no volume charge
distribution, for the interior of any domain (i.e., excluding behaviour at the interfaces)

Vig=0. (1)

If only one material is present, there will be no transient in the potential distribution. This
situation with a single material is analogous to RC parallel network connected to an ideal
voltage source. The situation changes if there exist at least two materials between the
electrodes with different properties. Within each material, V2¢= 0 still holds, but at the
interface, due to discontinuity in the field', it is not applicable. At the material interface,
the field (and hence the potential) has to satisfy, at every instant, the conditions E); = Ex
and Dy, ~ Dy, = 0, and the condition given in Woodson and Melcher®, namely,

90,
or’

where Jy, and Jp, are the components of the volume conduction current densities normal
to the interface of the two media, J; is the surface current density, o, the surface charge
density, and V, - the divergence operator defined over the surface representing the inter-
face. For isotropic materials, (2) can also be written as

Jip~In+ V- Ji=~ @)

90, . o3
at

where x; and &; are the conductivities, and &, and &, the permittivities of the interfacing
media. K, is the conductivity of the interface.

KiEyp ~ oEm + KV, - By=—

The boundary condition (2) governs the time dependence of the field quantities. It
shows that, at the material interface, any difference in the normal component of the con-
duction current and any divergence in surface current densities will be compensated by
the displacement current densities. Therefore, whenever diverging surface currents are
present and whenever &y /g, # ¥/, there will be a continuous accumulation or depletion
of charges at the interface. Assuming Ky, K, and ; are all finite, integrating (3) we get

3 N
J.o (6B~ KoFan + 6V, - B dt = -0l @
Since the electric field is also finite at the interface for a finite excitation (excluding the

regions with geometric and physical singularities), the above equation implies that the
process of acoumulation or depletion of interface charges cannot be instantaneous, but
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nas to be transient. Hence, at 7 = 0 the surface charge density at the interface remains at
its value at £=0". If oy~ is the initial charge density, then, at 7= 0", Dy, — Dy, = Gy~
holds. Therefore, the initial field distribution is governed only by the permittivities of the
materials (i.e., field distribution is capacitive) and can be used as the initial condition for
the transient field calculation. As the time progresses, the accumulation or depletion of
the interfacial charges make the differences in conduction current densities lesser than
that at the beginning, and hence field distribution is also dominated by the conductivities
of the materials. In case where excitation settles down to a constant value over a period, it
can be seen that the final distribution is completely resistive. Therefore, the boundary
condition given in eqn (3), which links the conduction current with the displacement cur-
rent at the material interface, is the key for explaining the capacitive-resistive transients
interms of field quantities.

Consider a simple one-dimensional illustrative case. Two infinite parallel conducting
plates exist at y = @ and y = b. The intervening space is filled with two homogenous and
isotropic materials as shown in Fig. 1(a). From y = y; to y = b material 1 with x; = 1 and
& =1 is present. The remaining volume has material 2 with k3 =0 and & =2. At = 0", a
unit step voltage is applied. Therefore, the excitation boundary conditions for ¢ greater
than 0 can be written as

V(@y=0 and V(b)=1
Inboth the media, V¢ = 0 holds. For this one-dimensional case, it reduces to

2
do_, ®
dy

Therefore, the potentials are given by
G(»)=hi +hy,
(6)

$2(¥) =hs + haY,
where hy, hy, hs and hy are time-dependent constants to be determined from the linearly
independent initial and boundary conditions. Using the excitation boundary conditions,
hy=—haand by = 1 - hyb. At the interface, ¢,(3) = ¢2(:), which gives

v=b { ot

> o o
: ! c2
3

(a) I

Fi6. 1. 0. Section of the illustrative problem, b. its circuit equivafent.
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5 1
h4=—h2'a—+gs 0

tere b= (b—-y) and & = (¥ — ). By imposing the continuity of potential at the inter-
ze, the condition By, = Ey, is automatically satisfied. Consider ¢ = 0" at the interface at
1ich instant, as explained earlier, Dy, = Da, holds. Using this with eqn (6),

_{y_,{ b=y
¢‘<y>\,=0~(1 2(25+5j],

sone-{2)

he interface voltage at this instant, which is an initial condition for the main problem, is

00, o =( a ) . @®

_a
2b+d

or the present problem, eqn (3) reduces to
2
K18, +E(€1Em —&€3E5,) = 0.

‘'his, with eqn (6), gives

%{afzz?)hz =0
4

[herefore, in the process of elimination of the remaining constant h;, we have ended up
with another constant k, which is independent of time. Using the initial condition (7),

¢,(y)=1—2(—b—1jexp( @ t), ®

F+25 F+2b

- y—a - 25 -d (10)
#20) ( Fi )[l (E+25jex"(a+2gtﬂ'

From the circuit approach, medium | may be considered as a parallel combination of 2
resistor and a capacitor with resistance per unit area Rl = 5 and capacitance per unit area
Cl=1/b, and medium 2 as a capacitor with capacitance per unit area C2 =2/4- This is
schematically shown in Fig. 1b, where node 2 represents the interface of the two media.
The step response of this circuit is well known:

. 1 2 V —t
= (11
e R(C1+C‘2) eXp(Rl(Cch))'
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The voltage at node 2 is

v(z)~1—( €2 )ex i 2
“are2) ™ Riciren ) a2

With the above values of R and C, eqn (12) takes the same form as eqns (9) and (10)
when evaluated at the interface. The current per unit area can be computed from both (9)
and (10) as follows. The current per unit area in media 1 is

heoe | L[, )
dy b=s ot dy =b

and that in media 2 is

9] ¢ 99
Jz—at( €5 & L:aj'

After evaluation,

1( 25 YV —a
After substituting for R and C, this equation is the same as eqn (11). In the above illus-
trative example, the capacitive-resistive transient phenomena has been expressed in terms
of field quantities. Now this problem will be discretized in time. The time dependence in
this capacitive-resistive problem appears only through the interface condition (3). Using
the forward-difference approximation for the time derivative in (4),

Gt + A7) = G[f] — At[ 3 En (1) — %2 B (D] (13)

[ R

1og Ut step excitation
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Fig. 2, Voitage at the interface.
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herefore, the surface charge at any step will be approximately equal to the charge accu-
\ulated up to the previous step plus that due to difference in conduction current between
1¢ adjacent media during the previous time step. Using this, an algorithm has been
evised later in the paper. Figure 2 shows the exact solution and that obtained by the al-
orithm for different time steps.

Now consider the transient due to surface current density alone. The situation is
nalogous to RC ladder network, with both R and C being functions of space, ie.,
(x, ¥, z). Of course, there will be no transients if both capacitive and resistive potential
istributions are identical. Otherwise, the initial capacitive distribution will force diverg-
1g surface currents. Then there will be accumulation or depletion of the surface charges
s described by eqn (4). For the numerical computation, the reduced interface condition
vill be discretized in time as follows:

o[t + Al =o[t] - At (V- Jy). (14)

f a cartesian system is chosen for the tangent plane at the point under consideration, then
he above equation can be written with the usual notation as

a1,  dl, .
o‘i[r+Ar]_a\[t]-At( P +7v—] (15}
The solution of an axisymmetric problem having only the surface conductivity embedded
n a nonconducting medium has been considered by other researchers®”. For an axisym-
netric case the above equation can be written as

3J,
o lt+At)=0 1]~ Ar (—a—l-)

where J, is the current density along the conducting interface (and hence tangential to it}
and I, the coordinate along the intersection of the tangent plane and the symmetry plane.
Let p, be the surface resistivity. Let i—1, i, i+ 1 denote the contour points if CSM
is used for the solution, nodes if FEM is used and grid points if FDM is used, as ordered
from the top. The tangent plane at  is close to both i~ 1 and i + 1. The circumference
at i is I.(7), then the second term on the right-hand side of the above is approximately

equal to
A [ E __Ew )
Al p(i) pG+D)

where E; denotes the field in the interval (i, i— 1) and E; ., denotes that in the interval
i+ 1, i). The potentials at i — 1, 7, 7 +1 are denoted by o1, U Urs 1y respectively. Then
the above term is approximately equal to

[_._.ét_} [ S Sl _ U 7V ]
t ALLGY L (pALY T (UGN Pyl + DAL/ (106D
Therefore,
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At (v -0, ©v-v,
65[1+At]=cr,.[t]——(——‘1?—~——§—‘—), (16)

where R, denotes the resistance of the section / and S(i), the surface area attributed to the
section 7. This is identical to what has been given by Takuma and Kawamoto® and used by
Chakravorti and Mukheljee7. This equation will be used in solving one of the cases below.

3. Method for solving capacitive-resistive transient problems using
any Laplace solver

The capacitive-resistive transients in any practical system can be solved with the help of
any Laplace solver. It may be an analytical or a numerical method like the charge simula-
tion method, the finjte difference method, the finite element method, etc. To limit the
error growth and to avoid numerical oscillation, electric field at the interface must be
computed to a reasonable accuracy. Secondly, to make the algorithm general, one modifi-
cation is required. For all the media present in the problem both conductivity and permit-
tivity must be specified, whatever may be their relative magnitudes. For good accuracy
and temporal resolution it is necessary to have small time steps. This will be at the cost of
larger computational time and storage. An approximate idea of time step may be obtained
by any of the following considerations. A time step of 1/10 to 1/5, the smallest time con-
stant estimated on the problem, can be taken, or, for a step excitation, a study has to be
carried out with one small and one large time step. The signs of the interface charge
densities computed are compared. Sign reversal takes place only if the second time step
chosen is large. By trial and error, the second time step can be reduced to obtain no sign
change, thereby getting an idea of the time step to be taken. After guessing the initial
time step required, whenever possible, it may be advantageous to increase the time step
size as the solution progresses in time. On the contrary, if the time step chosen were to be
large then there may be oscillation picking up slowly as the computation progresses in
time. By reducing the time step for further computation, it is possible in some cases to
climinate the oscillations. For some problems, the applied excitation over some time in-
terval may demand a time step less than what has been estimated. :

L1, Algorithm

The specified excitation, which may be time-varying, and the other specified boundary
conditions are to be followed for all the steps below.

1. At zero time step, %o, the problem is solved for the capacitive field, i.e., by inputting
the permittivities and the initial surface charge distribution (if any) to the Laplace solver.
The computed interface voltages are used as the boundary conditions a: the interfac.es for
‘%"3 resistive problem in the time step ty2. Then the resistive problem is solved l?y input-
iing the conductivities as the material property to the Laplace solver. Then, by using

0.1t + Af] = o[£} — MK E1 () — %2Ba () + Ve - T, (17)
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the charge accumulated till ¢ is computed.

2. The charge densities computed for the time steps #,. ;, from the time steps #,. , ,,

are inputted to the capacitive problem at time steps #,1 (# =0, 1, 2, ...) and the interface
voltages are computed.

3. Using the interface voltages computed at time step #,.,, the resistive problem is
solved at time steps #, + 3,2 and the interface charge densities are computed using (17).

4, Steps 2 and 3 are repeated to cover the desired time duration.
3.2. Performance of the algorithm

The difference equation approximations used for eqns (13) and (14) are consistent®. If the
Laplace solver is also consistent, then the approximation to the problem is consistent.
Therefore, we can expect the solution obtained to be an approximation of the actual solu-
tion. It is important to know the growth of errors as the time progresses. Whenever the
computed surface charge densities converge, they converge to the final steady-state value
of the solution, because they have to satisfy (1). This does not rule out the possibility of
superimposed oscillations in the computed surface charge densities and potentials when
the time step chosen is large. This has been illustrated in one of the case studies given
later. Because of the complexity involved, it needs a separate investigation for determin-
ing the time step which results in this oscillation and which does not. This study would
include either bulk and surface conduction individually or taken together in the general form.

4. Case studies

Using the above algorithm, three illustrative cases are studied. In the first case, only th:
volume conductivity is present, in the second, only the surface conductivity is present and
in the third both volume and surface conductivities are present.

Outer sheath
4] ct
R2 c2
R3 c3
(b)

Fig. 3. Section of the cable and its circuit-cquivalent. o = 1.0 cm, b= 1.2 em, ¢ = 1.7 cm, d = 3.8 em.

Medium 1: ;=460 X 107 Q7 m, 51 =2.6; Medium 2: 15=2.12x 107 @ m™, 2= 4.9; Medium 3
w= 100 107 07 m, gy = 1.0,



CAPACITIVE-RESISTIVE TRANSIENTS IN FIELD QUANTITIES 641

089

Step excilalion

Time step (s}
. Interface 1 Interface 2 079
interioce 1
o 00 s oot %
- oS wo o)
. « 005 s o005 > e ¥
N 0.0.59 F';,"g
o ~ - ©
g o s A N Faid Time step (ps)
H Cra s, & & . onm
# © 0 o% & A3 & 4 2404 4 =019 & oos
2 s o
] © 0 OCucunt theoretcat salution
0.1
1A & N
e\ S NP Interiace 2
~0.0t I h‘v"‘ e S g g oogeron so
: : - ; — T T T T T T
0 040 060 LL] as 0.8 12 5
Time (ps) Time (ps)

Fia. 5. Variation of the voltage at the

Ft. 4. Error in the computed interface voltages.
interfaces—impulse excitation.

B
a
o
)
ki
2 - crcut theomteat soidion  h °
> ] /A
| Time step st /
TOET meriace 1 nterface 2 »
s 001 4 001
= 4 ous % o005 a
X go75 © ans o 0
-0 A
0.00 020 040 0 80 080 1.00

Tume (ps)
F16. 6. Variation of the voltage at the interfaces-chopped impulse.

4l. Case ]

In thig study, a cable with three concentric real dielectrics (with finite conductivities)
s considered. The transient appears essentially because of the finite bulk conductivity.
Figure 3 shows the section of the cable with its circuit-equivalent. The results obtained by
both the algorithm and the circuit solution are compared. The percentage error for a step
excitation for various time steps is presented in Fig. 4. Figures 5 and 6 give the interface
voliages for an impulse excitation. The numerical oscillations are evident in the case of a
larger time step.

42. Case 2

Here 2 high-voltage noninductive tail resistor of an impulse generator i.s at}alys'ed‘for a
Standard lightning impulse. A time-to-front of 0.9083 ps was taken, which is ‘.Nuhm' the
tolerance limit specified in the standards (1.2 pis + 30%). Figure 7 shows the dimensions
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of the resistor studied. It consists of a wire-wound resistance wound on a 4 ¢m diameter
ceramic tube placed in an insulating cylinder containing an insulating oil. The laboratory
is approximated to a cylindrical structure of radius 12 m and height 14 m. With this, the
problem can be treated as axisymmetric. For the excitation considered, the conduction
current in the dielectric is not significant compared to the capacitive currents. Therefore,
they are neglected to reduce the computation time. For the solution of the Laplace equa-
tion, the thermal module of ANSYS 4.4 was used. The equipotentials for capacitive and
resistive (i.e., governed by the resistive surface) fields are shown in Figs 8 and 9. The
voltage distribution along the resistive surface, L.e., along the tail resistor at various time
steps is shown in Fig. 10.

T 4 Corona shietd

4cm.

‘ —Resistonce wire

¥ i—8 mm

3 E
; g ] —~8
K 283 3
5 £el @
8 £T¥

v —A—

Fig. 7. Section of the tail resistor.

4.3. Case 3

In this case, a high-voltage cable (without a metallic sheath) in a tank containing 2
commercial insulating liquid is studied. The conductor of the cable is of 19 strands,
over which there is a solid insulation (Fig. 11). The bulk conductivities of the solid insu-
lation and the insulating liquid are taken arbitrarily as 4.545 x 107 @' m™ and 10X
107 07 m, respectively. The respective relative permittivities are taken as 4.2 and 2.2.
The outer surface of the solid insulation is assumed to have a surface conductivity of
3571 x 1077 Q" mh. A step voltage was given to the cable with respect to the tank. For
this case also, ANSYS 4.4 was used for the solution of the Laplace equation. The poten-
tial distributions at selected time instants are shown in Figs 12-15.

The assumption that there is no volume charge distribution is made to avoid compli-
cations associated with the movement of these charges under the influence of the ﬁeld.' In
case these charges are fixed or if their behaviour is very close to carriers in a conducting
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medium, then the above algorithm can easily be extended to include them. The only
change required would be to use a Poisson solver instead of a Laplace solver. In addition,
dpidr has to be calculated from the capacitive distribution. Also, in this work, only linear

Tail resistor with shield Tail resistor with shield

ANSYS 4.4
UNIV VERSION ANSYS  4.&
JUN 20 1993 UNIV YERSION
JUN 20 1993
A =0.055558 A 20.055556
B =0,166667 B=0_166667
¢ =0.277778 €=0.277778
D =0. 388889 D =0.388889
E =0.5 E20.5
F =0.611111 F 060111
6 =0.722222 6 =0.722222
H =0.833333 ¥ K =0.833333
1 =0. 94444k |-+ 1 20.944444
X X -

16 8 Capacitive potential distribution (normalized).  FIG. 9. Resistive potential distribution (normalized)

io
S Imputse exeitation
o~
TSN
4 aae T
s me ()
RN o oans
a s N o 0428
Y= LSRN o 0965
qa o e, o — - Tending to wfimty
%, 2a %o R
Be e o N
044 A a
e fa e %
s a  te. g,
0,0 N .. \’fr,,,°
“ .
024 %% s DN
% Bg . ~
EE YRS
nglaasse
LEFEY 9% PO
(X% EALEY YW
T

T T T
to [} 0.4 06 0.8 10 ‘——‘0

Distance from the top (p u)

5 10. Voltage distribution 1 the tail resistor. Fio. 11. Schematic diagram of the cable inside tank
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material properties are considered. If the material properties are nonlinear then the only
somplication that seems to arise is the requirement of a Laplace solver capable of handting it.

5. Conclusions

I. It is shown that the general boundary condition on the current density vector ex-
resses capacitive-resistive transients in terms of field quantities.

2A general algorithm has been given which solves these transients in terms of ficld
Juantities, with the help of any Laplace solver.

3. Three different cases have been illustrated using this algorithm. The first example
1as gnly bulk conduction and the solution obtained by the algorithm compares well with
he circuit solution for the voltage and current at the interfaces. In the second example, a
ligh-voltage resistor was considered. Voltage distribution along the resistor for an im-
JUJS? excitation was computed. The third example has both surface and bulk conductions
laying a role in determining the field distribution. Potential distributions at four selected
nstants are given. :
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