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Capacitive-resistive transients in extended media are discussed in tenns of electric field quantities. Obviously, 
in rhese problems, the contribution of the magnetlc field to the electric field is deemcd negligible. For a simple 
lliuslratlve example, the field solution is compared with the circub-theorelied resuit for the voltage and cur- 
rent. An algorithm for solving such transients in space and time doman with the help of a Laplace solver is 
presented. Any other Laplace solver can also be used far this purpose. Its applicability is demonstrated with 
Ceeexamples, one of which i s  chosen to have a circuit-theoretical solution. 
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1. Introduction 

Capacitive-resistive transients occur very frequently in electrical engineering. Such tran- 
sients Prevail in all cases where contribution to the electric field from the time-varying 
mawetic field is negligible. Some examples are outdoor insulations such as polluted 
buskings, noninductive high-voltage resistors used in impulse generators and practically 
a i l  insulation in HVDC systems. For design, analysis and performance studies, it is es- 
sential to know the temporal and spatial distribution 01- the field quantities. Solution for 

of such problems has been attempted in the past using ladder network with lumped 
elements. However, in a class of problems involving extended media or nonuni- 

formi% lumped circuit approach will be of inadequate utility; in fact, it would almost 
be impossible to arrive at meaningful equivalent circuits. The field-theoretical approach 
discussed in the present work would be appropriate in such cases. 

A number of researche~s~.~  have studied capacitive-resistive fields. Some of themz4 
considered only the steady-state distribution for the sinusoidal excitation, whereas 

0therss-7 have considered the transient response also. singerS used Fourier analysis to 
the impulse voltage waveform into component sinusoidal voltages. Then, by solving 

the L a ~ l a c ~  equation for a selected number of these sinusoidal voltages, the response for 
an voltage was computed. The overall computation and storage space demanded 
'y this indirect method is larger than the direct time domain solution. Takuma and 
Kawamot~%~d ehakravofii and ~ ~ k h ~ ~ j ~ ~ ~  have computed the capacitive-resistive 
uansient field in the time domain. However, they have considered transient phenomena in 
an misymmetric problem with conductivity present only at the interface. For a better un- 
dentandin* of +hir tnnsi~,,$ nrnceSS eom the field point of view and for possible compu- 
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tations of such transients in the time domain, it is necessary to use the general boundar) 
condition given by Woodson and Melchers. It must be noted that the contribution of the 
magnetic field to the electric field must be negligible for a problem to be treated as a ca- 
pacitive-resistive transient. 

2. Transients in terms of electric field parameters 

In any material conductivity K and permittivity E, both conduction current KE and dis- 
placement current aDlaf exist simultaneously. Assuming that there is no volume charge 
distribution, for the interior of any domain (i.e., excluding behaviour at the interfaces) 

If only one material is present, there will be no transient in the potential distribution. This 
situation with a single material is analogous to RC parallel network connected to an ideal 
voltage source. The situation changes if there exist at least two materials between the 
electrodes with different properties. Within each material, V2@ = 0 still holds, but at rhe 
interface, due to discontinuity in the field', it is not applicable. At the material interface, 
the field (and hence the potential) has to satisfy, at every instant, the conditions El, = k; 
and Dl, - 4. = o, and the condition given in Woodson and Melcbers, namely, 

where J I ,  and J b  are the components of the volume conduction current densities normal 
to the interface of the two media, J, is the surface current density, o,, the surface charge 
density, and V, . the divergence operator defined over the surface representing the inter- 
face. For isotropic materials, (2) can also be written as 

where KI and K2 are the conductivities, and s1 and s2, the permittivities of the interfacing 
media & is the conductivity of the interface. 

The condition (2) govern the time dependence of the field quantities It 
shows that, at the material interface, any difference in the normal component of the con- 
duction current and any divergence in surface current densities will be compensated bj 
the dis~lmement current densities. Therefore, whenever diverging surface currenfs are 
W x n t  and whenever KT /EE # KZ Is2, there will be a continuous accumulation or depletion 
of WCS at the interface. Assuming q, and h; are all finite, integrating (3) we get 

Sttpe e l c c ~ c  field is also fmite at the interface for a finite excitation (excluding * 
11:- Wth geometric and physical singularities), the above equation implies that tbc 
p r o w  of ~WS&~QJI or depletion of interface charges cannot be instantaneous* but 
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has to be transient. Hence, at t = 0' the surface charge density at the interface remains at 
iu value at t = 0-. If 40- is the initial charge density, then, at t = OC, 4, -D2. = G ~ -  
holds. Therefore, the initial field distribution is governed only by the permittivities of the 
materials (ie, field distribution is capacitive) and can be used as the initial condition for 
the transient field calculation. As the time progresses, the accumulation or depletion of 
the interfacial charges make the differences in conduction current densities lesser than 
that at the beginning, and hence field distribution is also dominated by the conductivities 
ofthe materials. In case where excitation settles down to a constant value over a period, it 
can be seen that the final distribution is completely resistive. Therefore, the boundary 
condition given in eqn (3), which links the conduction current with the displacement cur- 
rent at the material interface, is the key for explaining the capacitive-resistive transients 
in terms of field quantities. 

Consider a simple one-dimensional illustrative case. Two infinite parallel conducting 
plates exist at y  = a and y = b. The intervening space is filled with two homogenous and 
isotropic materials as shown in Fig. l(a). From y = yi to y = b  material 1 with q = 1 and 
&I = 1 is present. The remaining volume has material 2 with K2 = 0 and 82 = 2. At t = Ot, a 
unit step voltage is applied. Therefore, the excitation boundary conditions for t greater 
than 0 can be written as 

V(a)=O and V ( b ) = l .  
in both the media, v2@ = 0 holds. For this one-dimensional case, it reduces to 

Therefore, the potentials are given by 

M Y )  = h ~  + ~ Z Y ,  

h ( y )  = h3 + h4y. (6) 

where hl, h ~ ,  h ~  and h4 are timedependent constants to be determined from the linearly 
independent initial and boundary conditions. Using the excitation boundary conditions, 
kj =-h@ and hi = 1 - h2b. At the interface, &(yi)  = h(y i ) ,  which gives 
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lere b"= (b  -y,)  and a  ̂ = (yi - a). By imposing the continuity of potential at the inter- 
:e, the condition Elt =EZt is automatically satisfied. Consider t = 0' at the interface at 
lich instant, as explained earlier, Dl,  = Dz, holds. Using this with eqn (6), 

he interface voltage at this instant, which is an initial condition for the main problem, is 

or the present problem, eqn (3) reduces to 

'his, with eqn (6), gives 

. - .  
rherefore, in the process of elimination of the remaining constant h3, we have ended UP 
viih another constant ha which is independent of time. Using the initial condition (7), 

From the circuit approach, medium 1 may be considered as a parallel combination of a 
resistor and a capacitor with resistance per unit area R1 = F and capacitance per unit area 
C1 = lib , and medium 2 as a capacitor with capacitance per unit area CZ = 212. This,Is 
~ h e ~ t i c a l l y  shown in Fig. lb, where node 2 represents the interface of the two media. 
The step response of this circuit is well known: 
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The voltage at node 2 is 

Wth the above values of R and C, eqn (12) takes the same form as eqns (9) and (10) 
%hen evaluated at the interface. The current per unit area can be computed from both (9) 
and (10) as follows. The current per unit area in media 1 is 

and that in media 2 is 

After evaluation, 

After substituting for R and C, this equation is the same as eqn (1 1). In the above illus- 
trative example, the capacitive-resistive transient phenomena has been expressed in terms 
of field quantities. Now this problem will be discretized in time. The time dependence in 
his capacitive-resistive problem appears only through the interface condition (3). Using 
the forward-difference approximation for the time derivative in (41, 
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herefore, the surface charge at any step will be approximately equal to the charge accu- 
~ulated up to the previous step plus that due to difference in conduction current between 
ie adjacent media during the previous time step. Using this, an algorithm has been 
evised later in the paper. Figure 2 shows the exact solution and that obtained by the a!- 
orithm for different time steps. 

Now consider the transient due to surface current density alone. The situation is 
nalogous to RC ladder network, with both R and C being functions of space, i.e., 

(x, y, 2). Of course, there will be no transients if both capacitive and resistive potential 
istributions are identical. Otherwise, the initial capacitive distribution will force diverg- 
ig surface currents. Then there will be accumulation or depletion of the surface charges 
s described by eqn (4). For the numerical computation, the reduced interface condition 
gill be discretized in time as follows: 

0, [t + At] = q [ t ]  - A t  (V, . J,). (14) 

f a  cartesian system is chosen for the tangent plane at the point under consideration, then 
he above equation can be written with the usual notation as 

(13  

The solution of an axisymmetric problem having only the surface conductivity embedded 
n a nonconducting medium has been considered by other  researcher^^.^. For an axisym- 
netric case the above equation can be written as 

where J, is the current density along the conducting interface (and hence tangential to it) 
and 1, the coordinate along the intersection of the tangent plane and the symmetry plane. 
Let p, be the surface resistivity. Let i - 1, i, i + 1 denote the contour points if CSM 
is used for the solution, nodes if FEM is used and grid points if FDM is used, as ordered 
from rhe top. The tangent plane at i is close to both i - 1 and i + 1. The circumference 
at i is i,(i), then the second term on the right-hand side of the above is approximatel> 
equal to 

At [ Ei Ei+l 1 
Al P&) P&+O ' 

where E, denotes the field in the interval (j, i - 1) and E, + , denotes that in the intermi 
(i + 1, 0. The potentials at i - 1, i, i +1 are denoted by v,_ ,, v,, v, + ,, respectively Then 
the a b v e  term is approximately equal to 
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where R, denotes the resistance of the section 1 and S(i), the surface area attributed to the 
section i. This is identical to what has been given by Takuma and ~ a w a m o t o ~  and used by 
Chakravorti and ~ u k h e r j e e ~ .  This equation will be used in solving one of the cases below. 

3. Method for solving capacitive-resistive transient problems using 
any Laplace solver 

The capacitive-resistive transients in any practical system can be solved with the help of 
any Laplace solver. It may be an analytical or a numerical method like the charge simula- 
tion method, the finite difference method, the finite element method, etc. To limit the 
error growth and to avoid numerical oscillation, electric field at the interface must be 
computed to a reasonable accuracy. Secondly, to make the algorithm general, one modifi- 
cation is required. For all the media present in the problem both conductivity and permit- 
tivity must be specified, whatever may be their relative magnitudes. For good accuracy 
and temporal resolution it is necessary to have small time steps. This will be at the cost of 
larger computational time and storage. An approximate idea of time step may be obtained 
by any of the following considerations. A time step of 1/10 to 115, the smallest time con- 
stant estimated on the problem, can be taken, or, for a step excitation, a study has to be 
carried out with one small and one large time step. The signs of the interface charge 
densities computed are compared. Sign reversal takes place only if the second time step 
chosen is large. By trial and error, the second time step can be reduced to obtain no sign 
change, thereby getting an idea of the time step to be taken. After guessing the initial 
the step required, whenever possible, it may be advantageous to increase the time Step 
size as the solution progresses in time. On the contrary, if the time step chosen were to be 
large then there may be oscillation picking up slowly as the computation progresses in 
time. By reducing the time step for further computation, it is possible in some cases to 
eliminate the oscillations. ~0~ some problems, the applied excitation over some time in- 
km.1 may demand a time step less than what has been estimated. 

3.1. Algorithm 

fie specified excitation, which may be time-varying, and the other specified boundary 
are to be followed for all the steps below. 

At zero time step, to, the problem is solved for the capacitive field, i.e., by inputting 
Wmittivities and the initial surface charge distribution (if any) to the Laplace solver. 

The computed interface voltages are used as the boundaly conditions a: the interfaces for 
9 resistive problem in the time step tIiz Then the resistive problem is solved by input- 
%the conductivities as the material property to the Laplace solver. Then, by using 
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the charge accumulated till tl is computed. 

2. The charge densities computed for the time steps t ,+ 1, from the time steps t n , :  :, 
are inputted to the capacitive problem at time steps t ,  , I (n = 0, 1, 2, . . .) and the interface 
voltages are computed. 

3. Using the interface voltages computed at time step t,+ ,, the resistive problem is 
solved at time steps t. +312 and the interface charge densities are computed using (17). 

4. Steps 2 and 3 are repeated to cover the desired time duration 

3.2. Performance of the algorithm 

The difference equation approximations used for eqns (13) and (14) are consistent8. If the 
Laplace solver is also consistent, then the approximation to the problem is consistent. 
Therefore, we can expect the solution obtained to be an approximation of the actual solu- 
tion. It is important to know the growth of errors as the time progresses. Whenever the 
computed surface charge densities converge, they converge to the final steady-state value 
of the solution, because they have to satisfy (1). This does not rule out the possibility of 
superimposed oscillations in the computed surface charge densities and potentials  hen 
the time step chosen is large. This has been illustrated in one of the case studies given 
later. Because of the complexity involved, it needs a separate investigation for determin- 
ing the time step which results in this oscillation and which does not. This study would 
include either bulk and surface conduction individually or taken, together in the general form. 

4. Case studies 

Using the above algorithm, three illustrative cases are studied. In the first case, only th: 
volume conductivity is present, in the second, only the surface conductivity is present and 
in the third both volume and surface conductivities are present. 
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FIG. 4. Error in the computed interface voltages FIG. 5. Variation of the voltage at the 
inlerfaces-impulse excitation. 

FIG. 6 .  Variation of the voltage at the interfaces-chopped impulse. 

4.1. Case I 

In this study, a cable with three concentric real dielectrics (with finite conductivities) 
is considered. The transient appears essentially because of the finite bulk conductivity. 
Figure 3 shows the section of the cable with its circuit-equivalent. The results obtained by 
joth the algorithm and the circuit solution are compared. The percentage error for a step 
excitation for various time steps is presented in Fig. 4. Figures 5 and 6 give the inlerface 

for an impulse excitation. The numerical oscillations are evident in the case of a 
iarger time step. 

Here a high-voltage noninductive tail of an impulse generator is analysed for a 

lightning impulse, A time-to-front of 0.9083 ps was taken, which is within the 
t o i e m ~ e  limit specified in the (1.2 p + 30%). Figure 7 shows the dimensions 
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of the resistor studied. It consists of a wire-wound resistance wound on a 4 cm diameter 
ceramic tube placed in an insulating cylinder containing an insulating oil. The laboratory 
is approximated to a cylindrical structure of radius 12 m and height 14 m. With this, the 
problem can be treated as axisymmetric. For the excitation considered, the conduction 
current in the dielectric is not significant compared to the capacitive currents. Therefore, 
they are neglected to reduce the computation time. For the solution of the Laplace equa- 
tion, the thermal module of ANSYS 4.4 was used. The equipotentials for capacitive and 
resistive ( i .e . ,  governed by the resistive surface) fields are shown in Figs 8 and 9. The 
voltage distribution along the resistive surface, i.e., along the tail resistor at various time 
stepsis shown in Fig. 10. 

1 

FIG. 7. Section of the tail resistor. 

4.3. Case 3 

in this Case, a high-voltage cable (without a metallic sheath) in a tank containing a 
commercial insulating liquid is studied. The conductor of the cable is of 19 strands. 
over which there is a solid insulation (Fig. 11). The bulk conductivities of the solid insu- 
lation and the insulating liquid are taken arbitrarily as 4.545 x !Xi m-' and 1.0 
w4 Q-' m-', respectively. The respective relative prmittivities are taken as 4.2 and 2.2: 
The outer surface of the solid insulation is assumed to have a surface conductivit~ 
3.571 x 10-" a' m-'. A step voltage was given to the cable with respect to the tank. 
this case also, ANSYS 4.4 was used for the solution of the Laplace equation. The Poten- 
tial distributions at selected time instants are shown in Figs 12-15. 

The assumption that there is no volume charge distribution is made to avoid compii* 
CUkf~s assaciated with the movement of these charges under the influence of the field: In 

these charges are fixed or if their behaviour is very close to camers in a conductrng 
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then the above algorithm can easily be extended to include them. The only 
change required would be to use a Poisson solver instead of a Laplace solver. In addition, 
@ar has to be calculated from the capacitive distribution. Also, in this work, only linear 

Toll resistor with sh ie ld  

ANSYS 4 . 4  

U N t V  VERSION 
J U N  20 1993 

A =0.055556 

B =0.166667 

C =0.271118 
D =0.3811819 

E s0.5 

F =0.61Il11 
G =0.722222 

I Tail resistor with shield 

'r 8 Capacitive potent~al distribution (normalized). FIG. 9. Resistive potential distribution (normaiized) 

Dtst~nce t r m  the top IP u ) 

10. Voltage distrlbutlon ~n the tail resistor Ro. I I. Schematic diagram of the cable inside tanl. 
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PIG 14 Potenllnl distribution at 225 s Frc IS .  Potenunl d~s lnhut~o~n at 457 5 5 



CAPACITIVE-RESISTIVE TRANSIENTS IN FIELD QUANTITIES 645 

material properties are considered. If the material properties are nonlinear then the only 
;omplication that seems to arise is the requirement of a Laplace solver capable of handling it. 

j. Conclusions 

I. It is shown that the general boundary condition on the current density vector ex- 
mses capacitive-resistive transients in terms of field quantities. 

2. A general algorithm has been given which solves these transients in terms of field 
luant~ties, with the help of any Laplace solver. 

3. Three different cases have been illustrated using this algorithm. The first example 
18s only hulk conduction and the solution obtained by the algorithm compares well with 
he circuit solution for the voltage and current at thc interfaces. In the second example, a 
iigh-voltage resistor was considered. Voltage distribution along the resistor for an im- 
d s e  excitadon was computed. The third example has bolh surface and bulk conductions 
]laying a role in determining the field distribution. Potential distributions at four selected 
nstants are given. 
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