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ine 

was on quantities of physical interest are derived for boundary value problems by applying the 
sat theory of complementary variational principles. 

11! vats: Variational principles, complementary principles. 

1. ktroatietion 

t:iirsi has shown that one can construct complementary variational principles for 
i pair of canonical equations 

T*.y• = 

‘let T and T* are adjoint linear operators, W ft y) is a functional which is 

lirnti in X and concave in y and 	are appropriate functional derivatives. 

:pallid mechanics it is possible to identify situations where the governing equations 
canonical form. More specifically, the procedure has been illustrated by 
extremum principles for boundary value problems occurring in the study 

ollowing; s.tuattons : 

rq Thç steady 
flow of a mixture of two incompressible Newtonian fluids through 

a  PIN of arbitrary cross-section S. Bounds on the flux are derived. 
I 

•
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We 	
414 

(ii) The Reynolds equation for pressure in a full finite journal bearin
g kt  fed axially 	 , with an inccmpressible lubricant. Bounds on 

one oi "NJ 
components are obtained without having recourse to finding th

e  tht  tion or numerical solution of the differential equation, 	
seri 

ottistiti  with merely sketching the method. 	 content  

2. Mixture of two incompressible Nevitonian fluids 

2.1 Mathematical formulation 

Front the general theory given by Craine 2 , the governing equations may  be definite  

AV 2  u + BV 2  v — a (ft — v) = — Ky ill 

CV 2  u + D\7 2  v + a (u — iv) = — KO — 7) 0 

where V 2  is the two-dimer 
of the respective constituents 
gradient for the flow, and y (0 
and A = 	± -1 As, B = 113  

tsional Laplacian, u and v are the velocity comporatt 
in the mixture, the constant K (> 0) is the pan 
< v < 1) is a composition factor which is a coot 

A5, C = p4 	25 5  D = 411 2.  + I Ai. The coefficierth 

	

P2' p3 , 	). 5  and a ere constants and satisfy the relations : 

0, pi, 	0, 4itip2 	(pa  + it4) 2 , a 	0, 	> O. 

The fluid is assumed to satisfy the condition that 

U = v = 0 on the boundary M. 

The mean velocity is defined to be 

yu + (1 — ey)v 	
jiM 

and the volume flow rate as 
(2.5) 

Q=S U dS. 

Eliminating u arid v from (2. 1) ard (2. 7) in turn ard using (2.4), vdc ha y(  
(21  

/3 2 y 2)U = k, 

	

subiirl to 	 (1.1 
U = 0, y 2  U= /on Al 

where 

k 1  = alq(AD — BC) 

11 2  = a p il(AD — BC) 

I = 	[.„2D 
(AD— Bo  
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lips been shown in ref. 3 that  
1>0. 

U is always positive for an arbitrary-shaped pipe 

WC LAC 

To 
ptit (2.6) in canonical form, 

ce cad) 

id 	

Vs grad) 

ilid its adjoint 
P 	

— /I div) 

so that (2.6) takes the form 

T*111 sz-- 
(2.8) 

New ice  write 

, 	;NH 
TU=f= -574 

H 
T*0 =k 1 = dirt , 

%suitable Hamiltonian H is, thetcrore, 

H(U, 4)) = Ot# + 

there e is transpose of 0. 

.2 Complementary principles 

Consider the functional 

1 (13, 0) = I( H (0, — TO) dS 

+ J ( Ze 	- Z•th 	- 
U 	fit f 02 . it) dM 

C 
on  4)11 

= (H 	CT* (k) dS 

(2.9) 

(2.10) 

(2.1 

(2.13) 

"tre = OD  J. The exact solution of the problem is denoted by C  

choose a trial function Ow satisfying TO = # with the conditions C = 0, 

—1  on M. Then (2.12) gives 
3 Os 

_ [(v2 Z7)2 fi 2  VC . VC]) dS - rcaw di& 	(2.14) 

helti choose another trial function # satisfying PPO = k r  Then (2.13) gives 

(2. 15) 

irk  knetionais  G (0) and J Oh provide lower and upper bounds to / (U, 0) , that is, 

(2.16) 

Illt....3 
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Multiplying (2.6) by LI and integrating we have 

/4Q = ((y 2  Ur + IP V U V UUS + 1 

Using (2.17) we write 

kJ. n 1  P—ti (Mt ( 	= 	2 	?ft 

Thus (2.16) is writien as 

/ f 17 	 f CI (U) + 	 Ar i el (0) + 
/ 	

7-- At ki 	Zit 	 It 1 	on 

As the exact function 	satisfies TU = 9, it is convenient to choose # = Tv where , 
is an approximation to the exact function U. Thus the RHS of (2.19) bec ome;  

2 	 -41 
J (Ti) + 	M dM, 

where ig satisfies the constraint T* Tip = I:1 . 	By choosing properly the trial functioa1/4 
the bounds on Q are obtain.cd to any desired degree of accuracy. 

3. Pressure equation in a full finite journal hearing 

3.1. Governing equations 

radius R rotating with 2  con 

pressure p in a full finite bog, 

be constant, is 4  

Consider a journal bearing of 
angular velocity 0). Reynolds ec 
when the viscosity of lubricant p 

—t 	 (h3  f\I-)  ox 	 t z 	bz 

length L and 
Nation for the 
is assumed to 

-4)h = 61111 -- ?x 
where x is taken in the direction of rotation. Here 
is the velocity of the journal. Now let x and z 
circumferential and axial directions of the bearing (fig. 
written as 

It is the film thickness and 
11 

be the coordinates along it 
0. Thc film thickness ingtt 

= (1 + c cos 0) = c1 H , c = 
where cl = radial bearing clearance, 

C = eccentricity, and 
= eccentricity ratio. 

Introducing dimensionless quantities 0 .= x//?, ii= zIR (3. I) becomes 

;.1  

1-1 3 ` P )_,_ 
cu 	0 	' 	(1-1 3  -?±) 	1-1 

?ri 
 

td1 	 TO a — pco(R-1/1). 



N 	e 

P v= Tu1  + r2u2  for all suitable vector 

(3.5) 

for all suitable 
Tand its 

ad their adjoints 

T;= 	(113/2) 
Zri 

Arc f f prki de = I (7; y) dO 	+ Boundary Terms. k=  I, 2 

:Sas and #. These operators are now used to define 

adjoun P which are such that 
Tp =(Tin 

T., n 
for all suitable 

the operator 

scalar functions p and 

functions ii with components u
1  and u2 . 
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rt.i. 
 joungd-bcaring anfigura tion. 

—1:4:aitie I lint n=0 at 	 = OR and the 

'We 
:pp!) the bourdary conoulvlize 

	, 	_ 	. 

tote ~%1131100 condition that p = 0 for 0 Er a ~ 	7r, i.e., we will not allow  

louse  pressures in the s)stem. Ntultiplying both sides of (3.2) by p and integrating 
IPPI  

over the surface. we get 

cET 	psin 0 

_g 

g 
de dn = 

To put (3.2) in cationiol form. introduce the operators 

Ti = But-},  T2 = 
(3.4) 

g r 
f 11'[. (4- )1  + 02 )2 1 dO du. \Zti 

g 

(3.3) 

No (3.2) takes the form 

TtTp = —  a Z. 100. 
Now we write 

TP u = ?Mb; Ttu = — afli130 = bliPer• 

'Cilia& Hamiltonian R is, thetefore, 

Ti (lc = 	ap (b100) 
transpose  of 

(3.6) 
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3 .2. Derivation of bounds 

Consider the functional 

g V 	A  
1 (14 	= f if (U. TP 	(U, P) dO dr, — 1/3  P(PPO)i dn  et 0 	 0 ' 

T H3  P P 	i t  dO 
o 	 —t 

r 
= f [(T* 	P FE (U, 	P)j de dq. 

—t o a 

The exact solution of the problem is denoted by U = u, P = p. First, choose a  
function P satisfying TP = U with the conditions P (0,1) = p 0.4 o r_ 1)(071  
= PO, = 0. Then (3.7) gives 

r 

J (P) = 	 113 [ (Vo: + C132  + aP 	dO 	0,9) 
—t o 

Next, choose another trial function U satisfying T*U = — a (gig). Then (3.1) 
gives 

t 
G (U) =sic! WI HO (kb 

o 

The functionals J(P) and G(U) provide upper and lower bounds to 1(u, p), thatis, 

G (U) 	(u) = I (u, p) = J (p) 	(P). 	 (3.11) 

Since 

t 7 
/(U,p) = 	cte f p sin 0 dO (hi 

by using (3. 3), (3. 1 1) is written as 

2 - 	R 2  J(P)Wsin0 	— 	
, 	 0. 12)  

ot.E 	 etc 

where 

t r 
WsinqS = R 2 J J p sinO dO dq.  

et 

Since the exact function ii satisfies Tp = u, 
ip is an approximation to the exact function 

it is convenient to choose II :-.110Thert  

p. Thus the RHS of 
(3.12) beot  

2 
— R2  G (TO 

de 
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who 	 s 

G (71p) r----  -1 f 
et 

fir H . [ ( 5 ) 2 + QL,,,y jdo th, 
. 

S satisfies the constraint T*Tvi = — a (bHP0). It is seen that (3.12) provides y,  
upper and lower bounds on the component of the load capacity at right angles to 
the line of centres of the journal bearing. We note that it is possible to derive 

bonds 
on IV sin # when the lubricant is fed circumferentially. 
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