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s 00 quantities of physical interest are derived for boundary value problems by applying the
sl teory of complementary variational principles.

kwels: Variational principles. complementary principles.

| Introduction

"' has shown that one can construct complementary variational principles for
tpar of canonical equations

i 14 W
( Tx--ﬁ,]'h=,__

X

e Tand T+ are adjoint lincar operators, W (x, ) is a functional which 1s

ey, | ; D . : " ;
"I x and concave in y and :‘.‘_ , ;b_ arc appropriate functional derivatives.
i oX d})
k?ﬂ“jd Mechanics
o “.R Canonical
ling Extremuy
following i

it is possible to identify situations where the governing equations
form. Morc specifically, the procedure has been illustrated by

M principles for boundary value problems occurring in the study
tuations -

mThQ, Steady flow of

<p 4 mixture of two incompressible Newtonian fluids through
PE of arbitra[y

cross-section S. Bounds on the flux are derived.
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212 M. A. GOPALAN

(ii) The Reyrolds equation for pressurc in a full fipjte journal he. .
fed axially with an inccmpressible lubricant. Boupgs on bea"ng'fhich
One of

compornents are obtainf:d without having recourse 1o finding | the jo
tion or numerical solution of the differential equation, W 8 the seriq

. . e
with merely skectching the mcthod. COntent Ol

2. Mixture of two incompressible Newtonian fluids

2.1 Mathematical formulation

From the general theory given by Craine?, the governing cquations may be deg
3

a

AV u + BV*v —a( —v) = — Ky o1
CVu +DV*v +a(u—v)=—K(1 —y) 0y

where 72 is the two-dimensional Laplacian, v and v are the velocity compoa
of the respective constituents in the mixturc, the constant K (> 0) is the prem
gredient for the flow, and y (0 <y < 1) Is a composition factor which is a conun
and A=4 +345 B=pu3 — %%, C=puy—%7, D=p +%74. The coefioes
lhy, My M3, Mg /g @and o 2re constants and satisfy the relations :

20, u; = 0, duqp, = (U3 + 1) a =0, 45 > 0.

The fluid is assumed to satisfy the condition that

u = v =0 on the boundary M. )
The mean velocity is defined to be

U=yu+(1-7)0 o
and the volume flow rate as "

0= Uds.
$

o | : ave
Flimipating v ard » from (2.1) ard (2.2) in turn ard using (2.4), we b 08

(V4= VDU =k,

subisct to (1
U=0,V*U=-/on M

where
ky = oK/(AD — BC)

B2 = o I p/(AD - BC)

f=1

K :
'= ap—By P — 1 -N@B+ 0+ -4
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| shown i ref. 3 that U is always positive for an arbitrary-shaped pipe
hee 0.
It e _ BC) P 0, >

AD :
!ﬂi (Pul (2.6) In canonical
)

v'.".
1= (ﬁ grad

form, wc takce

0 that (2
T*TU = Ky (#5)
\oW we wrile
YH 2.9
TU = @s = Mf,
dH (2. 10)

T*p = ki = U

{ wiable Hamiltonian H ig, theicfore,

H(U,tﬁ) =%¢l¢ +k1U= (21\
deic ¢ is transpose of ¢
') Complementary principles
(onsider the functional

10,8 = (HU, ¢ — ¢ TU)dS

S
J _pg? ; (2.12)
+ _J. (él?;% - U T—f—f}l + U, H)dM

c (2.13)

={(H(U,¢) — UT* ) dS
5

oblem is denoted bY U=U, g : g,

Wit 4 = - .
¢ =(4,4). Theexactsolution of the pr with the conditions

F"_SL thoose a trial function U satisfying TU = ¢

"U=~lon M. Then (2.12) gives
] a1 [ am. (2.14)
6O =[6,0 - 3 (2 O + B2 V0. VODE =1 ] o
S C

Then (2.13) gives
(2. 15)

a,

hoose another trial function ¢ satisfying T *$ = ky
JW)'-‘H&'GS ds. .
8 to 1 (U, ¢), that1s,

Tt .

. [“nczﬁnals G(U) and J (¢) provide lower and uppcer houncs (2.16)
O <6) = 1(U, §) = J(§) <JT @) |

u-&.'--3
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Multiplying (2.6) by U and integrating we have

@ = [(VUF +[2 VU, TULdS +! f%gdﬂ!.
C

WA
Using (2.17) we wnte
_ Kk 1 U
[(U: '35) - 7Q w ) T dM. (Zli
2 )
Thus (2.16) is writcn as
7 7 I U 2 [ [
=G N — dM Ni . e
klfJ(U) + kq J on di SQSkl () + & fbn dM. o

C

As the exact function ¢ satisfies TU = ¢, it is convenient to choose § = Ty where
is an approximation to the exact function U. Thus the RHS of (2.19) begyp

2 [ [y
klj(Tw) & kljbn M
C

wherc y satisfies the constraint 7* Ty = k;. By choosing properly the trial funtios.
the bounds on Q arc obtaincd to any desired degree of accuracy.

3. Pressurc cquation in a full finite journal bearing

3.1. Governing equations

Consider a journal kearing of length L and radius R rotating with ? cnm?lf
angular velocity w. Reynolds equation for the pressure p in a full fiaite b
when the viscosity of lubricant y is assumed to be constant, is*

0 Ry d 2P hY} (3
. h? — — (B )=

A e ke h 6‘MUE.1'

< d2

ok . - . & - ’ _-mdu
where x is taken in the direction of rotation. Herc / is the film _thlclm':s;on#
is the velocity of the journal. Now let x and z be the coordinates #7%

circumferential and axial directions ot the bearing (fig. 1). The film thicknes
written as

h
where ¢

it

(I 4+ €cosb) = ,H, ¢ = ¢/

f

radial bearing clearance, %
¢ = eccentricity, and
¢ = eccenlricity ratio,

Introducing dimensionless quantiiics 8 = x/R, # = z/R (3. 1) becom®

: N
2 (H 30 +“§.’,}(H3 *"') = , a = fpa (R¥/c3)-

= o —
¢ N,
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{ ernﬂ-bcaring coafiguration.

he bourdary conditions that p = Oat n=—-¢¢ &= L/2R and the
it p =0 for 0< 0 <<n, ic.,, we wil not allow

cavitation €on P* ‘
stem. Multiplying both sides of (3.2) by p and integrating

We 2ppht
pmate
gealive pressures 1 the s)

oves the surfalf. W gft.
.3

: ¥ ; "\ % D 2
uej jpsin 0 dé dn = j j H’*[(ﬁ) +(§€) ]dﬂ dn. (3.3)
e’

-4 e 0

%) in canonical form. introduce the operators
2 (3.4)

. :
T1=Hu':5'§", T3=H31 :én

To put (5.

1 their adjoints
(3.5)

o & ® D »
1= -3 @), T3 = - 5 ()

—~ 1.2 for all suitable

p—

siere [jyTédbdn = (T 40 dn + Boundary Terms. k _
dll. | now uscd to define the operator T and 11s

imetions w and ¢. These operalors arc

T1PY for all suitable scalar functions p and

ot T* which are such that Tp =

2! :
I"v=Tiu + T for all suitable vecler functions u with componcnts 1 and u,.
Then (3.2) takes the form
- IIp= - a)HNS. -
- Mo¥ we write I
Ip=u=3Hpu, T*u = — adH[) = YH

A T
lable Hamiltonian H is, theiefore,

i ‘&l’e u'H(“-p) - i ulu — ap (BHIBB)
= lranspose of u,
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3.2. Derivation of bounds

Consider the functional
](UP)".%.?-(U'TP—H(UP 0 d g 3 T
’ --gﬂ , )f r’_'__.[g H: P(DP/DB)}U(”’

:
—{ HSPQPhY) | do
0 - 0

e
i

W

§{urru) P - A, )b din

T

The exact solution of the problem is denoted by U = w, P = p. First P
function P satisfying TP = U with the conditions P (0, ) = P(x,y) =-.P(ﬂEl .
= P(0,8) = 0. Then (3.7) gives - ~{

0= [ GG @Y ]oilen
= o

Next, choose another trial function U satisfying T*U = — a (DHI). Then (33
gLves
8 .'
G(U) = ~ {-g { UtU db dy. (.10
-—b 0

The functionals J(P) and G (U) provide upper and lower bounds to 7(u, p). s
GU)<G(@) =1wp) =J(p)<J(P). .10

Since
Er
I(U,p) = — -}ae{}'psm(?d@ iy
—$ 0

by using (3.3), (3.11) is written as

2 s : 5 (.
- = RIP)SWsing < - = R*G (V)

where

: ¢ x
Wsing = Rﬂjg §fpsin 8 do y.
0

hefe
- G‘U#W:d

¥ 1S an approximation to the exact function p. Thus the RHS of (3-12)

7,
— — R* G (Ty)

a€

Since the exact function u satisfies 7Tp = u, it is convenient to choos
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where
1 T M\ ? D \2
3 oA oy
0

Jisfies the constraint T*Ty = — o QH[0). It is seen that (3.12) provides
upper 200 lower bounds on the component of the load capacity at right angles to

e line of centres of the journa:I bea_ring. We note that it is possible to derive
hounds ON W sin ¢ when the lubricant 1s fed circumferentially,

and ¥ S
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