J. Indian Inst. Sci. 63 (A), July 1981, Pp. 153-161.
(C) Indian Institute of Science, Printed in India.

Computer simulation of vinyl copolymerisation : I. Irreversible copolymerisation

SWAPAN K. BHATTACHARYYA* AND MANAS CHANDA
Computer Centre
Dopartment of Chemical Engineering
Indian Institute of Scionce, Bangulore 560012 , India.

Abstract

A generalisod scheme is given for obtaining copolymer composition and sequence distribution in irreversible copolymerisation by Monto Carlo simulation on digital computer. The schemo has no restriction on the number of monomers in the copolymorisation system and is thus applicable to binary, ternary or any highor multicomponent systems. Several models are used in the scheme, such as chain growth model basod on conditional probability of monomer addition, diad and triad models based on unconditional probabilities, and modified diad and triad models involving both conditional and unconditional probsbilities. It is concluded by comparison with analytical rosults that the chain growth model is the best amons all the models considered.

Key words: Copolymotiestion, chain growth model, diad, triad, binary, ternary, cumulative probability matrix, monomer matrix.

1. Introdaction

The composition of vinyl polymers formed in simple two-component copolymerisation is described by the well-known Mayo-Lewis cquation ${ }^{1}$. Similar equations have been derived for calculating terpolymer composition ${ }^{2-5}$ and these have been further extended to multi-component copolymerisation of four or more monomers ${ }^{6-8}$. These equations afford calculation of copolymer composition, but do not yield any information about sequence distribution in the copolymer chain. Computer simulation of copolymerisation, on the other hand, enables one to see the simulated copolymer chain, thus providing both the composition and sequence distribution of the copolymer chain at a glance.

Price ${ }^{9}$ was the first to demonstrate the value of computer simulation by the Monte Carlo approach for visualising the nature of a polymer chain. He, however, limited his chains to 101 units of length and as a consequence had considerable scatter in

[^0]his results. Marconi et al ${ }^{10}$ in simulating binary copolymerisation treated as many as 10^{4} or more monomer units resulting in impressive precision of the Monte Carlo results. Saito and Matsumura ${ }^{11}$ also used Monte Carlo simulation to determine sequence distributions. They simulated the chlorinated polyethylene chain by a single 'copolymerisation' type of process. O'Driscoll and coworkers ${ }^{12-15}$ in a series of papers dealt with simulation of binary copolymerisation where the poisibility of depropagation mast be considured. A ditailed account of the concepts of Markovian processes as applied to polymur simslation in the description of copolymer composition and the characterisation of polymer tacticity can be found in an excellent article by Price ${ }^{18}$.

While the application of the probability concept in copolymer simulation is firmly established, the object of the present work is to present a generalised approach for computer simalation which could be applied to copolymerisation of two-, three- and any higher multicomponent systems and to evaluate several stochastic models, namely, a direct chain growth model and diad, triad, or higher models involving probability sequences of two, three or more number of units in the chain. In the present work, all propagation steps of copolymerisation have been assumed to be irreversible. The approach will be extended in a subsequent paper to computer simulation of copoly. merisation with reversibility.

2. Copolymerisation as a stochastic process

2.1. Chain growth model

The copolymar composition as also sequence distribution in irreversible binary copolymerisation is determined by four irreversible propagation reactions which can be represented by

$$
\begin{align*}
& \sim A^{*}+A \xrightarrow{k_{1}} \operatorname{\sim n} A A^{*} \\
& \sim A^{*}+B \xrightarrow{k_{1}} \sim \operatorname{\sim } A B^{*} \\
& \sim B^{*}+A \xrightarrow{k_{1}} \operatorname{\sim n} B A^{*} \\
& \sim B^{*}+B \xrightarrow{k_{1}} \operatorname{\sim n} B B^{*} . \tag{1}
\end{align*}
$$

where k_{1}, k_{2}, k_{2} and k_{4} are the rate constants of the propagation steps. The steadystate kinetic solution of this scheme leads to the well-known Mayo-Lewis equation for copolymer composition. The conditional probability, $p_{a b}$, of a chain ending in a monomer A adding on a monomer B can be expressed in the kinetic terms as

$$
\begin{equation*}
p_{a b}=\frac{k_{2}[B]}{k_{2}[B]+k_{1}[A]}=\frac{1}{1+r_{\mathrm{J}}[A] /[B]} \tag{2}
\end{equation*}
$$

where

$$
r_{1}=k_{1} / k_{2}
$$

Similarly

$$
\begin{equation*}
p_{b a}=\frac{1}{1+r_{2}[B] /[A]} \tag{3}
\end{equation*}
$$

where

$$
r_{2}=k_{4} / k_{3}
$$

The other conditional probabilities are

$$
\begin{equation*}
p_{c e}=\frac{1}{1+[B] / \overline{r_{1}[A]}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{00}=\frac{1}{1+[A] r_{3}(B)} \tag{5}
\end{equation*}
$$

Since a chain ending in monomer A can only add either monomer A or B,

$$
\begin{equation*}
p_{c o}+p_{c \theta}=1 \tag{6}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
p_{v_{0}}+p_{1 s}=1 \tag{7}
\end{equation*}
$$

Knowing the values of the four probabilities $p_{c o}, p_{a b}, p_{b b}$ and $p_{b a}$, as defined above, one can then carry out random experiments to constrict a polymer chain by stepwise addition of monomer units to chain end using Monte Carlo method. We term this model the 'chain growth' or 'singlet' model. The seq'ence of monomer addition, if stored in computer memory, affords both the sequence distribution and the composition of the copolymer chain.

For adapting to computer programming, the four probabilities defined above are arranged in a matrix form as

$$
\left(\begin{array}{ll}
p_{a 0} & p_{b c} \tag{8}\\
p_{a b} & p_{b b}
\end{array}\right)
$$

For determining the chain end addition by the Monte Carlo technique it is more convenient to use a cumulative probability matrix. Thus the cumulative probability matrix corresponding to the probability matrix (8) is

$$
\binom{p_{a a} \quad p_{b a}}{p_{a c}+p_{a b}, p_{b a}+p_{b b}} \text { or }\left(\begin{array}{ll}
p_{a n} & p_{b a} \tag{9}\\
1 \cdot 0 & 1 \cdot 0
\end{array}\right)
$$

For a ternary copolymerisation system involving monomers A, B and C, the cumulative probability matrix becomes

$$
\left(\begin{array}{lll}
p_{c a} & p_{b c} & p_{o a} \tag{10}\\
p_{c a}+p_{b b} & p_{b a}+p_{b b} & p_{o c}+p_{b o} \\
1 \cdot 0 & 1 \cdot 0 & 1 \cdot 0
\end{array}\right)
$$

The cumulative probability matrix for any higher order copolymerisation system (involving more than three monomers) can be similarly written.

Depending on the chain end unit, such as either A or B in binary copolymersation, the unit to be added next is determined. Thus, in a binary copolymerisation of monomers A and B, each chain growth step consists of generating a random number between 0 and 1 and comparing it with the elements of the appropriate column of the cum'lative probability matrix (9) in order to determine the unit to be added next. For example, if the chain end is A, the random number is compared with the matrix elements (i, j) in column 1 and if the random number is found to be equal to or less than, say, the $(2,1)$ element but greater than the $(1,1)$ element, the monomer unit to be added is evidently B. Consequently, in the next growth step the random number is compared with the matrix elements in column 2 to determine the monomer unit to be added next. Thus, if the random number is found to be equal to or less than, say, the $(1,2)$ element, the monomer unit to be added is A. The number of the row of the particular element, 1 or 2 , thus corresponds to the monomer unit, A or B, respxtively. On a computing machine the chain addition is therefore conveniently performed with the hely of the monomer matrix $\binom{1}{2}$, with 1 and 2 representing, respectively, A or B.

Similar arguments apply for ternary or any other higher multicomponent copolymerisation systems. Por example, for ternary copolymerisation the corresponding monomer matrix is $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, with 1,2 and 3 representing, respectively, monomers A, B and C.

A general computer program was written based on the above simu lation approach and run on a DEC-1090 computer assuming different values of monomer reactivity ratios (r_{1}, r_{2}) and copolymer chain lengths.

Some simulation results of copolymer composition obtained for high and low values of r_{1} and r_{2} are compared with the values calculated from the Mayo-Lewis equation ${ }^{1}$ in table I. The agreement is good and is seen to improve as a higher chain length is considered for simulation. However, the improvement obtained with chain length greater than 2000 is only marginal. The sequence of monomers in a simulated copolymer

Table I

Comparison of simulated and analytical copolymer compositions

Monomer reactivity ratio $r_{1} \quad r_{2}$		Feed composition		Chain length n	Copolymer composition, F_{1} Simulated Analytical	
0.01	0.01	0.4	0.6	1000	0.500	0.498
20.0	$20 \cdot 0$	0.4	0.6	1000	0.360	0.316
				1500	0.333	0.316
				2000	0.310	0.316

chain for $r_{1}=0.01, r_{\mathbf{1}}=0.01$ is observed to be almost completely alternate as would be expected in view of the low values of both r_{1} and r_{2}. When both r_{1} and r_{2} are considerably greater than unity a black copolymer would be expected to result. The simulated copolymer chain obtained directly as the computer output for a feed of 40 mole per cent A and 60 mole per cent $B, r_{1}=20, r_{2}=20$ and a chain length of 1000 units is shown in fig. 1 , clearly revealing the expected block nature of the copolymer.

2.2. Diad and triad models based on unconditional sequence probability

In a copolymer chain of monomer units A and B, there can be four diad sequences nim:ly $-A \cdot A \cdot-A \cdot B \cdot, B \cdot A \cdot$ and $-B \cdot B \cdot$. The unconditional probability of finding a particular sequence, say $-A-B-$, is then given by ${ }^{12}$

$$
\begin{equation*}
f_{a b}=\frac{p_{c b} \cdot p_{b c}}{\left(p_{c b}+p_{b a}\right)} \tag{11}
\end{equation*}
$$

where $p_{a b}$ is the conditional diad probability of unit A being followed by B and $p_{b d}$ that of B bring followed by A, given by equations (1) and (3), respectively. The other three unconditional probabilities $f_{e a}, f_{b a}$ and $f_{b b}$ can be similarly defincd and it can be easily shown that

$$
\begin{equation*}
f_{a c}+f_{a b}+f_{b a}+f_{b b}=1 \tag{12}
\end{equation*}
$$

In a copolymer chain consisting of A and B units there can obviously be eight triad sequences. The unconditional probabilities of these scquences, namely, $f_{\text {aca }}, f_{\text {abb }}, f_{a b a}$, $f_{\text {obb }}, f_{b a s}, f_{b a b}, f_{b s a}$ and $f_{\text {bob }}$ can be readily obtaincd by multiplying the proper uriconditional diad probabilities. Thus, $f_{a t a}$ is given by

$$
f_{a b a}=f_{a b} \cdot p_{b c}
$$

and so on,

AAAAABBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAABBBBBBBBBBB BAABBBAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBAAAAAABBAAAA AAAAAAAAAAAAAABBBBBBBBBBBBBAAAAABBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAABBBAABBBAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAA AABBBBBBBBBA AAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBB BBBBBBBBBBBBBBBAAAAAABBBBAAAAAAAAAAAAAAAAAAAAAABBA ABBBBBBBBBBBBBBBBBB8BBBBBBBBBBBBBBBAAAAAAAAAAAABBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEBBBBBBBBBBBBBBBB BBB8 BBBAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBAAAAAAABBBBBBBB BBBBBBBBBBB8BBB8BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBB8BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBEBBB BBBBAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEBBBBBBBBBBBBBBBB BBBBBBBBBBBBBAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBA AAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAABBBBBBBBBB

Fio. 1 Simulated copolymor chain : Feed composition $[A]=0.4,[B]=0.6$; monomer reactivity ratios $r_{1}=\mathbf{2 0 . 0}, r_{\mathbf{2}}=\mathbf{2 0 . 0}$ and chain longth $n=1000$.

A copolymer chain is constructed by Monte Carlo technique using either diad unconditional probabilities or triad unconditional probabilities. Tetrad and higher models can similarly be developed.

A number of simulation experiments were conducted to obtain copolymer chain sequence distribution and copolymer compositions for different feed compositions and monomer reactivity ratios r_{1} and r_{2} using both diad and triad models. In all cases, while the copolymer composition was found to be in excellent agreemrnt with the value calculated from the copolymer composition equation, the sequence distribution however, was at variance with what was predicted by the chain growth model and what would be expected from the theory of copolymerisation. Thus, a copolymer chain sequence obtained for $r_{1}=0.01$ and $r_{2}=0.01$ was considerably less alternate in character and that obtained for $r_{1}=20.0$ and $r_{2}=20.0$ showed much shorter blocks of each monomer than in the chain growth model.

The anomaly in sequence distribution produced in the above diad and triad models can be attrituted to the fact that while the sequence in each diad or triad block is based on the probability principle described above, the linking of the consecutive diads of triads does not, however, obey any probability criterion. Thus, for example, if in
applying the diad model, $A B$ and $B A$ are obtained as two consecutive diads by the Monte Carlo m:thod, the $B B$ pair in the resulting chain segment $A B B A$ would exist without obeyirg any predetermined probability criterion. This results in anomalous sequence distribation as actually observed. Similar arguments also hold good for triad and any other higher modes.

2.3. Modified diad and triad mod:Is

Since the sequence anomaly in the aforesaid diad and triad model stems from the linking of diad or triad segments without obcying any predetermined probability criteron, the at ove models have been modified so that at any stage the chain erd unit is taken into consideration in determining the subsequert diad or triad segment. Thus in the modified diad model for binary copolymerisation of A and B monomers, one has to consider the following two conditional tree structures depending on the terminal unit being either A or B

Terminal

Terminal

Thus for terminal A there are four conditioral probabilities for diad addition ramely. $p_{\text {cuc }} p_{\text {cou }} p_{\text {cos }}$ and $p_{\text {ceen }}$, each given by a product of conditioral probabilities of appropriate diad sequences. Thus, $p_{c i o}=p_{a b} \cdot p_{b a}$ ar.d so on.
The corresponding cumulative frobability matrix for Monte Carlo simulation of copolymer chain can then be written as

$$
\left(\begin{array}{ll}
p_{\text {coc }} & p_{\text {boc }} \tag{I4}\\
p_{\text {coc }}+p_{\text {oob }} & p_{\text {boc }}+p_{\text {oot }} \\
p_{\text {coc }}+p_{\text {oco }}+p_{\text {cac }} & p_{\text {oce }}+p_{\text {boo }}+p_{\text {oco }}
\end{array}\right)
$$

and the corresponding monomer matrix as

$$
\left(\begin{array}{l}
11 \tag{15}\\
12 \\
21 \\
22
\end{array}\right)
$$

With 1 and 2 representing, respectively, A and B monomer units. The cumulative probability matrix and the corresponding monomer matrix can be similarly written for ternary or any other higher copolymerisation systems.

For the modified triad model, one can similarly write the conditional tree structures for terminal units (cf. 13), the cumulative probability matrix (cf. 14) and the corres. ponding monomer matrix (cf. 15).

Computer program; were written for the modified diad and triad models based on the above schem:s and applicable in general to binary, ternary or any higher copoly. merisation systems. The programs were run on a DEC 1090 computer using various combinations of monom?r reactivity ratios and feed compositions. The modified models resulted in significant improvement in simulation performance over the original diad and triad models. Thus while the simulated copolymer compositions were in excellent agreement with the theoretical compositions (to within 99%), the simulated chain sequences were also in good accord with theoretical predictions.

3. Conclusions

Using Monte Carlo techniques and several probatility models, namely, a singlet chain growth model, a diad model, a triad model, and modified diad and triad models, copolymarisation with irreversibility has been simulated on the computcr in order to obtain both the copolymer composition and sequence distribution in the form of a symbolic representation of the copolymer chain. In each case, the procedure involves generating a random number between 0 and 1 , and comparing it with the elements of a particular column (depending on the chain end unit) of an appropriate cumulative probability matrix to determine, with the help of the corresponding monomer matrix the monomer unit or sequence of monomer units to be added to the chain end. This procedure is repeated till the desired chain length is achieved. A generalised computer program has been devcloped which can be applied to any of the above models to simulate a copolymer chain. It is observed, however, that no additional saving in computer time is achieved by adopting more complex diad, triad or higher models instead of the simple chain growth (singlet) model, all of them requiring about 0.20 second. The chain growth model is also conceptually simpler as it represents a direct simulation of the growth of the copolymer chain.

Nomenclature

A : Monomer

B : Monomer
f : Unconditional probability
F : Mole fraction of monomer in copolymer
k : Rate constant of propagating step
p : Conditional probability
r : Reactivity ratio

Subscripts

$a \quad:$ Monomer A
h : Monomer B.

References

1. Mayo, F. R. And Lewis, F. M.
2. Alfrey, T., Jr. Aim Goldfinger, G.
3. Valvassori, A. and SARTORI, G.
4. Ham, G. E.
5. HNM, G. E.
6. Waunso, C. and Bricos, E. R.
7. Alfrey, T., Jr. AND Goldinger, G.
8. HAM, G. E.
9. Price, F. P.
10. Marcomi, P. F., Thrtarein. R. And Capoyant, M.
11. Sarto, T. AND Matsumura, Y.
12. Howely J. A., IzU, M. and ODriscoll, K. F.
13. IzU, M. AYD O'Driscon, K. F.
14. IzU, M. and J. Polym. Sci., A-1, 1970, 8, 1687. ODriscoll, K. P.
15. Kang, B. K.
16. Price, F. P.
J. Am. Chem. Soc., 1944, 66, 1594.
J. Chem. Phys., 1944, 12, 332.

Fortschr. Hochpolymer-Forsch., 1967, 5, 28.
J. Polym. Sci., A2, 1964, 2735.
J. Macromol. Chem., 1966, 1, 403.
J. Am. Chem. Soc., 1945, 67, 1774.
J. Chem. Phys., 1946, 14, 115.
J. Polym. Sci., A2, 1964, 4191.
J. Polym. Sci., Part C, 1968, 25, 3.

Chemica el' industria, Suppl., 1971, 7, 1.

Polym. J., 1973, 4, 124.
J. Polym. Sci., A-1, 1970, 8, 699.
J. Polym. Sci., A-1, 1970, 8, 1675.

Ph.D. Thesis, Univorsity of Waterloo, 1973.
Copolymer composition and tacticity, Chapter 7 in Lowry, G. G. (Ed.) Markov chains and Monte Carlo calculations in polymer science, Marcel Dckker, N.Y., 1970.

[^0]: * Present address: Computer Contre, Al-Fatch Univorsity, Tripoli, Libya.

