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Abstract 

Concept of p-dependency, a generalization of the notion of functional dependency, is introduced. 
It is established that every boolean function represents some p-dependency in relational database 
theory, in contrast to the situation with respect to functional dependency constraint. In the latter 
rase, it is to be noted that a functional dependency is represented by a boolean term having only 
one ancomplemented variable. A one-to-one correspondence between the set of boolean functions 
and the set of p-dependency constraints is shown. Functional dependency naturally turns out to 
be a special case of p-dependency. 
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1. Introduction 

Many constraints like functional dependency, multivalued dependency, join dependency, 
and boolean dependency have been studied in relational database theory' -4 . U is 
known that every functional dependency can be represented by a boolean functions, 
but the boolean functions corresponding to functional dependencies form only a 
subclass of boolean functions. In other words, every boolean function does not 
necessarily correspond to a functional dependency. 

in this paper, we introduce a generalization of the functional dependency constraint ; 
We call it p-dependency. The generalized notion of p-dependency has an important 
Property that every boolean function will represent some p-dependency. Thus we 
io  h

a

le been able to establish here a one-to-one correspondence between the set of 
• ibn  . okan functions and the set of p-dependencies. To be specifics a boolean function 

sum of products form, in which every term has only one variable uncomple- 
, 	

represents some functional dependency and vice versa 2 . On the other hand . 

ever boolean function (of whatsoever form) corresponds to some p -dependency. 
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Section 2 is devoted to preliminari 
employed in this paper. In section 3, 
to denote functional dependencies with 
We then establish how boolean algebra is 
This will justify our main claim in this 
some p-dependency constraint. 

es comprisi 
we review 
a view to 
used in the 
paper that 

ng the definitions and notakii 
briefly the use of boolean algebn 
explain our method a appim  
case of p-dependeney constraint,. 
every boolean function represet 

Some illustrative examples are included in section 4. From the exampl es, Wenotict  
the differences between a set of strict p-dependencies and a set containing at  last  
one pure functional dependency. This leads us to the following result in b ookia  
algebra. In a boolean function, expressed as a sum of products, if each produ a  
term is such that at least two of its variables are uncomplemented, then no prim 
implicant of this function can have only one variable uncomplemented. Secti ono 
summarizes some of the conclusions. 

2. Preliminaries : Notations and definitions 

As we are discussing some fundamenta 
our notations and definitions, so that 
the subject is built. A relation R o 
is a subset of the cartesian product I 
domain of the attribute Xi. The relatio 
X, Y, Z, with or without subscripts an 
U, V. W are used for representing sub 

concepts, it is worthwhile that we formalize 
proper foundation for the understanding of 
, the collection {X1, X2, ..., Xs} of attributes 

LX D a  x• x D., where D i  is called the 

1 is denoted by R (X1, X2, ... 1  Xj. A. B. C, 
used to represent individual attributes, and 

ets of attributes : e.g., U = {X1 , XI. Xs). ng 
elements of the relation are called ivies and specifically n-tupies 
known to contain exactly n attributes. The n-tuples of R (X1 , X2,  • • • , X1 are &sit 

an misted as (x1 , x2 , 	, x.). If u represents a. tuple in a relation R (1r) and X is 

attribute in U, then ri [Xj represents the element corresponding to X in the IliPle.  

Similarly, if V is a subset of U, then u M is the tuple containing 	the eleillen. b  
corresponding to V. u (V) is called the projection of u on V. it Iv], the profitl°4  

of R on V is defined by : 

R. III {zr [V] :11 E R}. 

If R (X1 , X 22  ... 1  X8) is a relation, then U is said to determine V or V 
ty have  

dependent on U, written as U —' V (read as U determines V or TJ functionali° 

mines V) if every pair of tuples of R which have the same projection
fr 

°ft
ail° 

V a  is  dept 
the same projection on V. " U determines V " is referred to as a 
dency constraint. 	

is jimaiodnatreta. 

While investigating the basic notions of relational databases, it is irrelevan t  ‘:1111adte: 

elements of the attribute domains are. Let us assume that they are integers 
an 

• , We 
a probability distribution corresponding to a given relation R (X1)(2) "I 
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ass ign  equal probabilities for all the tuples in R and designate the resulting distri_ 

bu 	
p 	x21•  . xn). If the number of elements in R is N, then the value of 

will be IfiV for all the tuples appearing in R. and will be equal to (tiilanx. a . s . 

Pzer; for all the tuples not appearing in R. In essence, we have generated a set of n 
random variables corresponding to attributes XII X2) • • . Xn . Without causing confu- 

sion we shall designate these random variables also by the symbols X 1 , X„ 	X. 
Once we have constructed these random variables, it is possible to talk about the 
entropies associated wi th them. For  the entropy of a random vatiable X, we make 
use of the usual definition of entropy° : 

H (X)+. — I PkitV2 Pk 
	

(2.1) 
kal 

where h is the probability of the rardom variable X taking the k-th value. We 
shall need the distribution p 	x2, . , x.) and its marginal distributions it should 
be clearly understood that these marginal distributions are not necessarily the distri- 
butions of the corresponding projections. 

Making use of the entropy function H (XD X2, • . Xn) it is possible to define an 
additive set function with its domain as boolcan functions of the boolean variables 
414. ..., Ac. Assuming that it will not cause any confusion, we use the symbol 
H for the new additive set function also. Consider the set IQ containing the 2" 
minterms formed out of the variables X1 . X2 , 	, X. Every subset of Q corres- 
pods to a boolean function of the variables XI. , A'2 , ..., X., viz., the sum of the 
mintenns contained in the subset. The collection which has these subsets or equi- 
valently these functions as elements is obviously an additive class of sets (alternatively 
called as a-algebra, or a-field). See Munroc 7  for the definition of additive class. We 
then define H by 

(Xi + X2 + 	X0)4 H(XX 2 , 	X tn) 	 (2.2) 

and 

Ii ( YiY2, • • • Yr 23. 22 • • • 2 	1 „-,),. 4 7  11 (YI  

— 	(Y + Y + C) 
i. fel 
e.) 

1 ' ± 	H(Yi Yi Yk + 
it, fekal 
i<JCs 

+ 	1Y -11  ( Yst 	y2 + • • • + Yr  4 C) 

H (C) 	 (2.3) 
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where 

C = 	+..  Znes, 

x; 	
this 	not th; 

The value corresponding to the minterm 	. . . 	 can be taken as zero if th ere  arc no more variables under consideration than X1 , X2 1 	or  if is 
case, the value can be chosen as a non-negative number as required. Oncetie  
non-negative number is specified, the total entropy can be written as 

H (Xi  + X2 + •• • • ) H (Xi  + X2 + • • • + Xs) + I-f (II 	... 	(2.4)  

In passing we note that a parallel for the formulae (2.3)-(2.4) exists in the theory 
of probability wherein we have exactly the same formulae if H is replaced by the 
probability P and Xi's, Yi's and Zi 's are the events. 

We now quote two important results which we shall invoke in establishin g  mu 
main contribution in this paper. These results are proved elsewhere'''. 

Result 1 : The functional dependency 

{x1 , x2 , X3) X 4 

holds if and only if the entropy 

(111213X4) = 0. 

A similar result is true for any other functional dependency statement. 

Result 2 : In a relation R (X1 , X2) • • • 2 XA)2 H (1.1 X9) = 0 if and only if the entrop 

of every term appearing in the minteim expansion cf 11X., is zero, i.e., any numbei  

of variables can be concatenated to the 
A similar result holds for any entropy 
dencics. 

product 11 X2  without disturbing the equalitt  
equation corresponding to functional der 

Now we state the definition of our generalized concept of p-depency den(p .s19.6! 
for partial 1). If R 	X27 - , Xs) is a relation, then U is said to pedetennine v 

V is p-dependent on U, written as U -,1)  V, if IT functionally determines at least°  
of the attribtues of V. For example, 

1  , 	} --3* pc 	} 

means 

{Xi, XL} —) X3 

or {Xi , X2} X4 
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or  {X1, X2) N5 

v VL..a fin Xal or tap 41.2.1 r (fl  O? 

or {X1 , X2}-' {X3, X5} 

or (XI, N2) {X4. Xs} 

or 1X1, X2} -4  {X3, X4, X5}. 

Jp other words, Pc, X)) functionally determines at least one of the non-null subsets 

{X3, xi) Xs). 

3, Justification of boolean algebra to represent p-dependency constraints 

In order to explain the basis of our use of boolean algebra to represent p-dependency 
constraints and also for the sake of completeness we explain first how boolean algebra 
is utilized in the case of functional dependencies. 

The transition from functional dependencies to boolean algebra is accomplished as 
follows. First, given functional dependencies are transformed to correspording entropy 
equations using Result 1 of section 2. Then, the entropy statements can be represented 
in a Venn diagram. Venn diagram representation is then converted to the corres- 
ponding Kamaugh map which in turn gives the boolcan furction for the functional 
dependencies with which we started. Take, for example, the functional dependencies 

A B 
and 

B C 

where A, B, C are three attributes. 
shell by 

The corresponding entropy statements are 

11(AB) = 0 
and 

H(BC) = 0. 

P10•1. Venn 
diagrara corresponding to the entropy equations. 
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The Venn diagram that depicts these entropy equations? given in fi g. 1; the  
ponding portions of the diagram are hatched. In view of Result 2 of secet t),• 441 
entropy of each hatched portion, (ABC), H (ABC), if (ABC),  

I, is sta  rately zero. From the Venn diagram, one can see that 11(A C) 0. This e
rt 

r-or. 
equation yields the functional dependency constraint, viz., A 	C which has it ro -Z 
true in view of the transitivity law when applied to the given functional dependericinti 
A B and B C. Since there always exists a Karnaugh map corresponding 
every Venn Venn diagram, we can draw a Karnaugh map to represent whatever is d epiati  
by the Venn diagram. Let us enter 1 or zero in the Karnaugh map accordin g as  
the entropy of the corresponding portion of the . Venn diagram is zero or non. zero. 
The Karnaugh map corresponding to fig. 1 is given in fig. 2. 

It is casy to see that the prime implicants of this function are AB, BC, and AC' 
expected and the function itself can be written as 

La + BC + AC. 

Let us now proceed to establish how boolean algebra is utilized in the me of 
p-dependency constraints. For definiteness and simplicity we shall restrict oursehr 
to five attributes X 1 , X„ X3, X 4. X5. But our proof is quite general and therefore 
applies to any p-dependency constraint involving any number of attributes. Consider 
the p-dependency constraint : 

{X1 , x2} 2: pc3, )(4, 	 0.0 

By definition of p-dependency given in section 2, (3.1) implies 

{X1, X2) X3 

or iX.I. , X2) --+ X4 

or PC1 , X2} -+ X 5  

or pC1, Xa --, Pi3 , X 4 1 

or {X1, X2} -4 {$3, X 5} 

or {X1, X,} 	X5} 	
0.1) or X 4 , 4t51. 

A 	• 

Fie. 2. Karnaugh map corresponding to fig. 1. 
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In  dos. of Result 1 of section 2._ we have from (3.2) 

H (15.11) = 0 

or  ft 	Lie! .1"41 = 0 

or H II 	= 0  

or Hapi;13) = 0 mad II avitaX4) 0 

or  (.1J.1-2) = 0 and H(iii H tirs) = 0 

= 0 and I/ (IL4 or H 	 1-5) = 0 aira-14)  

or = 0 and Hel,17,r4) = o and H (X71,171X 5) = O. 	 (3.3) 

Now in view of Result .2 of section 2. if (3. 3) has to be true, it is compulsory that 

= t 
	

(3.4) 
The  bookan  curia:jot  associrted with this entropy equation is 

:tut Arviri  

Thus we have established that the p-dependency 
the boolean function (3 - 51_ Thus_ in general, the 
the p-dependency copsraint 

....xt4 -ej  

Is pen by 

(3.5) 

constraint (3.1) is represented by 
boolean function corresponding to 

A very special case of the p-depesdeney constraint occurs when a set of attributes 
determines every other pTirline ra the relation, the so-called total dependency defined 

by Nambiae. 	Thus if 11. It  13  determine 	every other attribute in a relation, the 

co:responding boolean functiert is i1ici3. Note that the interpretation of the boolean 
function X1121314  is that it kast ore of these four columns in the relation is a 

consuant. 

44 Mustrathe maples 

In this sen i 
as an 	°11 'It 'orb: 	two illustrative examples involving p-dependencies and 

aside poe n, 
all imerrsiin result concerning prime implicants. 

Eta/Vie 4.1 	. 
Consider  tie i-dependencies 

A --sos 



A 

1 

1 1 
I ..... 1 1 

1 1 
A a s 

i 
lb 1s 

a A 

1 1 
S - S • 
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and 

{2t, 13} -4 C. 
The booleall function representing these  rdePe"encY constraints i s 44 11. 

given by  
ABC + ABC. 

It can be easily seen by drawing the Karnaugh map for this function tbat
l.ts 

 

prime implicant is 

AC 

implying 

A —+ 
(4.1 

Thus the given two p-dependencies (4.1) together imply the functional demi* 
(4.3). This fact can easily be deduced by straightforward arguments for 
simple example. 

Example 4.2 : Consider the strict p-dependencies 

A —) {B, C} 

B {D, E} 

and 

C (D, E}. 

All of these are strict p-dependencies in the sense that none of them is a functional 
dependency. The boolean function representing (4.4) is 

ABC + BDE + CDE. 	 (4 5) 

From the map we get The Karnaugh map of this function is shown in fig. 3. 

IDE, IBC, ilDE, CDE 

FIG, 3. Karnaugh map corresponding to (4.5). 
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rime  irnplicants of (4.5). Thus the use of boolean algebra to represent 
35 tile P  ererdeliC gives us a simple way to identify an additional p-dependency, viz mi   

P 	k 
jut Ail 

tied by t he  given p-deper.dencies (4.4). If we do not employ boolean algebra 

have to advance a long winding qualitative argument to arrive at this result. 
'L an easily  appreciate that such an argument will be extremely cumbersome if we 

! 
f: dealing with a large number of attributes, as will be the case in any practical 

illation  involving databases. This substantiates our claim that use of boolean 

:era is a natural method of representing p-deperdercy constraints in relational 

databases. 

Consideration of our examples leads us to an interesting result in boolean algebra 

lid we wish to state now. We observe that in example 4.1, the given set of 
pdtpendencies has in it one pure functional dependency, viz., {A, B} —* C. We 
ot6erved that the given p-dependencies implied a pure functional dependency, viz., 

A.4 C. In example 4.2, on the other hand, we were given strict p-dependencies (4.4) 
iostart with, and none of them was a functional dependency. (There were more than 

a attribute on the right hand side of the symbol --*). Here we note that the given 

strict p-dependencies implied another strict p-dependency only, viz., A -p+ ID, El. 

Millie thought over similar sets of constraints shows that if all the given constraints 
!restrict p-dependencies, it is impossible that they together imply a pure functional 
&pendency. To convince ourselves that this is really so we observe that in any 

pdependency constraint, the set of attributes on the left hard side of --0 functionally 
determines at least one of the non-null subsetrof attributes appearing on the right 

band side of f-• . Such being the case, it is impossible that a number of strict 
J.dependencies together can capture one single attribute which will be functionally 
ktermIned by a set of attributes. Thus unless there is at least one pure functional 
ti;trdency constraint in a given set of p-dependency constraints, the given set cannot 

IrPlY a pure functional dependency constraint. 
The consequence of the result regarding strict p-dependencies stated above, when 

_ ilslated purely in terms of boolean algebra is as follows : If, in a boolean function 
t:Pt ressed es a sum of products, each term is *such that at least two of its variables 

_ unc
omplernented. then no prime implicant of this boolean function can have effiy. 

 one variable uncomplemented. 

S. 
emlelusinais  

basi c  a: 
stal f  tuni of the investigatiors reportcd in this paper is to provide the manic- 

"Nations for some of the fupdamental corcerts of relational databases, 
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The entropy functions and its generalisation to the additive set functi ons ha  
found useful for this purpose. We have shown that boolean algebra p

r°1
ve.:4  natural approach to the study of p-dependency constraints in relational databas
e " An important fact derived in this paper is that there is one-to-one corr

espond between sets of p-dependencies and boolean functions, 
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