A generalization of functional dependencies in relational databases and use of boolean algebra

K. K. NAMBIAR and V. G. TIKEKAR
Department of Applied Mathematics, Indian Institute of Science, Bangalore 560012 , India,
Rexerved on December 7, 1982 ; Revised on July 2, 1983.

Abstract

Coneept of p-dependency, a generalization of the notion of functional dependency, is introduced. It is established that every boolean function represents some p-dependency in relational database theory, in contrast to the situation with respect to functional dependency constraint. In the latter case, it is to be noted that a functional dependency is represented by a boolean term having only one uncomplemented variable. A one-to-one correspondence between the set of boolean functions and the set of p-dependency constraints is shown. Functional dependency naturally turns out to be a special case of p-dependency.

Key words: Functional dependencies, rclational databases, entropy functions, boolem algebra.

1. Introduction

Many constraints like functional dependency, multivalued dependency, join dependency, and boolcan dependency have been studied in relational database theory ${ }^{1-4}$. It is known that every functional dependency can be represented by a boolean function ${ }^{5}$, but the boolean functions corresponding to functional dependencies form only a subclass of boolean functions. In other words, every boolean function does not necessarily correspond to a functional dependency.
In this paper, we introduce a generalization of the functional dependency constraint ; we call it p-dependency. The generalized notion of p-dependency has an important property that every boolean function will represent some p-dependency. Thus we have been able to establish here a one-to-one correspondence between the set of boolean functions and the set of p-dependencies. To be specific, a boolean function in the sum of products form. in which every term has only one variable uncomplemented, represents some functional dependency and vice versais. On the other hand every boolean function (of whatsoever form) corresponds to som: p-dependency. employed in this paper. In section 3 , we review briefly the use of boolean alalgotran
to denote functional dependencies with a view to explain our method of approad This will justify our main claim in this paper that every boolean function teprexnt some p-dependency constraint.

Some illustrative examples are included in section 4. From the examples, we notine the differences between a set of strict p-dependencies and a set containing at lass one pure functional dependency. This leads us to the following result in booken algebra. In a boolean function, expressed as a sum of products, if each produr term is such that at least two of its variables are uncomplemented, then no prix implicant of this function can have only one variable uncomplemented. Sections: summarizes some of the conclusions.

2. Preliminaries : Notations and definitions

As we are discussing some fundamental concepts, it is worthwhile that we formaite our notations and definitions, so that proper foundation for the understanding of the subject is built. A relation \mathbf{R} on the collection $\left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{3}\right\}$ of atributro is a subset of the cartesian product $D_{1} \times D_{2} \times \ldots \times D_{n}$, where D_{i} is called the domain of the attribute X_{i}. The relation is denoted by $\mathbf{R}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{4}\right)$. A.B.C. $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, with or without subscripts are used to represent individual atributcs, and $\mathbf{U}, \mathbf{V}, \mathbf{W}$ are used for representing subsets of attributes : e.g., $\mathbf{U}=\left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{s}\right\}$. Th_{k} elements of the relation are called tuples and specifically n-tuples if the relation is known to contain exactly n attributes. The n-tuples of $\mathbf{R}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{2}\right)$ are dxifg nated as $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. If u represents a tuple in a relation $\mathbf{R}(\mathbb{U})$ and X is an attribute in \mathbf{U}, then $u[\mathbf{X}]$ represents the element corresponding to \mathbf{X} in the tuphe. Similarly, if \mathbf{V} is a subset of \mathbf{U}, then $u[\mathbf{V}]$ is the tuple containing the clemals corresponding to \mathbf{V}. $u(\mathbf{V})$ is called the projection of u on \mathbf{V}. $\mathbf{R}[\mathbf{V}]$, the projection of \mathbf{R} on \mathbf{V} is defined by :

$\mathbf{R}[\mathbf{V}] \Delta\{[\mathbf{V}]: u \in \mathbf{R}\}$.

If $\mathbf{R}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right)$ is a relation, then \mathbf{U} is said to determine \mathbf{V} or \mathbf{V} is fumctiondily dependent on \mathbf{U}, written as $\mathbf{U} \rightarrow \mathbf{V}$ (read as \mathbf{U} determines \mathbf{V} or \mathbf{U} functionally detrmines \mathbf{V}) if every pair of tuples of \mathbf{R} which have the same projection on \mathbf{U} also tharit the same projection on \mathbf{V}. " \mathbf{U} determines \mathbf{V} " is referred to as a functional depert dency constraint.
While investigating the basic notions of relational databases, it is irrelevant what the elements of the attribute domains are. Let us assume that they are integers and defint a probability distribution corresponding to a given relation $\mathbf{R}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{2}\right)$. a probabily distribution corresponding to a given relation $\mathbf{R}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \cdots\right.$
assign equal probabilities for all the tuples in \mathbf{R} and designate the resulting distribution as $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. If the number of elements in \mathbf{R} is N, then the value of $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ will be $1 / N$ for all the tuples appearing in \mathbf{R} and will be equal to zero for all the tuples not appearing in \mathbf{R}. In essence, we have generated a set of n random variables corresponding to attributes $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$. Without causing confusion we shall designate these random variables also by the symbols $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$. Once we have constructed these random variables, it is possible to talk about the entropies associated with them. For the cntropy of a random variable \mathbf{X}, we make use of the usual definition of entropy ${ }^{6}$:

$$
\begin{equation*}
H(\mathbf{X}) \Delta-\sum_{k=1}^{n} p_{\mathbf{k}} \log _{2} p_{k} \tag{2.1}
\end{equation*}
$$

where p_{k} is the probability of the rardom variable X taking the k-th value. We shall need the distribution $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and its marginal distributions; it should be clearly understood that these marginal distributions are not necessarily the distributions of the corresponding projections.

Making use of the entropy function $H\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right)$ it is possible to define an additive set function with its domain as boolcan functicns of the boolean variables $X_{1}, X_{g}, \ldots, X_{n}$. Assuming that it will not cause any confusion, we use the symbol H for the new additive set function also. Consider the set Ω containing the 2^{n} minterms formed out of the variables $X_{1}, X_{2}, \ldots, X_{n}$. Every subset of Ω correspands to a boolean function of the variables $X_{1}, X_{2}, \ldots, X_{n}$, viz., the sum of the minterms contained in the subset. The collection which has these subsets or equivalently these functions as elements is obviously an additive class of sets (alternatively called as σ-algebra, or σ-field). See Munroe ${ }^{7}$ for the definition of additive class. We then define H by

$$
\begin{equation*}
H\left(X_{1}+X_{2}+\ldots+X_{m}\right) \Delta H\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{m}\right) \tag{2.2}
\end{equation*}
$$

and

$$
H\left(Y_{1} Y_{2} \ldots Y_{r} \bar{Z}_{1} \bar{Z}_{2} \ldots \bar{Z}_{n^{-r}}\right) \stackrel{\sum_{i=1}^{r}}{r} H\left(Y_{1}+C\right)
$$

$$
\begin{align*}
& -\sum_{\substack{i, j=1 \\
i<1}}^{r} H\left(Y_{i}+Y_{i}+C\right) \tag{2.3}\\
& +\sum_{\substack{i, j \in k=1 \\
i<j<k}} H\left(Y_{i}+Y_{j}+Y_{k}+C\right) \\
& -\cdots \\
& +(-1)^{r+1} H\left(Y_{1}+Y_{2}+\ldots+Y_{t}+C\right) \\
& -H(C)
\end{align*}
$$

[^0]where
$$
C=Z_{1}+Z_{2}+\ldots Z_{n-r}
$$

The value corresponding to the minterm $\bar{X}_{1} \bar{X}_{2} \ldots \bar{X}_{n}$ can be taken as zero if there are no more variables under consideration than $X_{1}, X_{2}, \ldots, X_{n}$ or if this is not the case, the value can be chosen as a non-negative number as required. Once this non-negative number is specified, the total entropy can be written as

$$
\begin{equation*}
H\left(X_{1}+X_{2}+\ldots\right)=H\left(X_{1}+X_{2}+\ldots+X_{n}\right)+H\left(\bar{X}_{1} \bar{X}_{2} \ldots \bar{X}_{n}\right) \tag{2.4}
\end{equation*}
$$

In passing we note that a parallel for the formulae (2.3)-(2.4) exists in the theory of probability wherein we have exactly the same formulae if H is replaced by ix probability P and X_{i} 's, Y_{i} 's and Z_{i} 's are the events.

We now quote two important results which we shall invoke in establishing our main contribution in this paper. These results are proved elsewhere, ${ }^{1}$.

Result 1 : The functional dependency

$$
\left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right\} \rightarrow \mathbf{X}_{4}
$$

holds if and only if the entropy

$$
H\left(\bar{X}_{1} \bar{X}_{2} \bar{X}_{3} X_{4}\right)=0
$$

A similar result is true for any other functional dependency statement.

Result 2: In a relation $\mathbf{R}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right), H\left(\bar{X}_{1} X_{2}\right)=0$ if and only if the entrop of evcry term appearing in the minterm cxpansion of $\bar{X}_{1} X_{2}$ is zero, i.e., any number of variables can be concatenated to the preduct $\bar{X}_{1} X_{2}$, without disturbing the equalify. A similar result holds for any entropy equation corresponding to functional depert dencies.

Now we state the definition of our generalized concept of p-dependency (p standugg for 'partial'). If $\mathbf{R}\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}\right)$ is a relation, then \mathbf{U} is said to p-determind V of \mathbf{V} is p-dependent on \mathbf{U}, written as $\mathbf{U} \xrightarrow{\boldsymbol{p}} \mathbf{V}$, if \mathbf{U} functionally determines at least ofic of the attribtues of \mathbf{V}. For example,

$$
\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\} \xrightarrow{\mathrm{D}}\left\{\mathbf{X}_{3}, \mathbf{X}_{\mathbf{4}}, \mathbf{X}_{\mathbf{5}}\right\}
$$

means

$$
\begin{aligned}
& \left\{\mathbf{X}_{1}, \mathbf{X}_{\mathbf{c}}\right\}
\end{aligned} \rightarrow \mathbf{X}_{3},
$$

$$
\begin{aligned}
& \text { or }\left\{\mathbf{X}_{1}, \mathbf{X}_{\mathbf{2}}\right\} \rightarrow \mathbf{X}_{5} \\
& \text { or }\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\} \rightarrow\left\{\mathbf{X}_{3}, \mathbf{X}_{\mathbf{4}}\right\} \\
& \text { or }\left\{\mathbf{X}_{1}, \mathbf{X}_{3}\right\} \rightarrow\left\{\mathbf{X}_{3}, \mathbf{X}_{5}\right\} \\
& \text { or }\left\{\mathbf{X}_{1}, \mathbf{X}_{3}\right\} \rightarrow\left\{\mathbf{X}_{4}, \mathbf{X}_{5}\right\} \\
& \text { or }\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\} \rightarrow\left\{\mathbf{X}_{3}, \mathbf{X}_{4}, \mathbf{X}_{5}\right\} .
\end{aligned}
$$

In other words, $\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\}$ functionally determines at least one of the non-null subsets ff $\left\{\mathbf{X}_{3}, \mathbf{X}_{\mathbf{4}}, \mathbf{X}_{5}\right\}$.

3. Justification of boolean algebra to represent \boldsymbol{p}-dependency constraints

In order to explain the basis of our use of boolean algebra to represent p-dependency constraints and also for the sake of completeness we explain first how boolean algebra. is utilized in the case of functional dependencies.

The transition from functional dependencies to boolean algebra is accomplished as follows. First, given functional dependencies are transformed to correspording entropy equations using Result 1 of section 2. Then, the entropy statements can be represented in a Venn diagram. Venn diagram representation is then converted to the corresponding Kamaugh map which in turn gives the boolean furction for the functional dependercies with which we started. Take, for example, the functional dependencies

$$
\mathbf{A} \rightarrow \mathbf{B}
$$

and

$$
\mathrm{B} \rightarrow \mathrm{C}
$$

where A, B, C are three attributes. The corresponding entropy statements are given by

$$
H(\bar{A} B)=0
$$

and

$$
H(B C)=0
$$

FV. I. Venn diagram corresponding to the entropy equations.

The Venn diagram that depicts these entropy equations is given in fig. 1; the coman. ponding portions of the diagram are hatched. In view of Result 2 of sections entropy of each hatched portion, $H(\bar{A} \bar{B} C), H(\bar{A} B C), H(\bar{A} B \bar{C}), H(A \bar{B} C)$, is xpen rately zero. From the Venn diagram, one can see that $H(\bar{A} C)=0$. This entom truc in view of the transitivity law when applied to the given functional dependencig $A \rightarrow B$ and $B \rightarrow C$. Since there always exists a Karnaugh map corresponding φ_{6} every Venn diagram, we can draw a Karnaugh map to represent whatever is depiokd by the Venn diagram. Let us enter 1 or zero in the Karnaugh map according 8 the entropy of the corresponding portion of the Venn diagram is zero or norrata The Karnaugh map corresponding to fig. 1 is given in fig. 2.

It is casy to see that the prime implicants of this function are $\bar{A} B, \bar{B} C$, and $\bar{A} C$ expected and the function itself can be written as

$$
\bar{A} B+\bar{B} C+\bar{A} C .
$$

Let us now proceed to establish how boolean algebra is utilized in the case of p-dependency constraints. For definiteness and simplicity we shall restrict oursim to five attributes $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}, \mathbf{X}_{4}, \mathbf{X}_{5}$. But our proof is quite general and therofor applics to any p-dependency constraint involving any number of attributes. Conidar the p-dependency constraint :

$$
\begin{equation*}
\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\} \xrightarrow{p}\left\{\mathbf{X}_{3}, \mathbf{X}_{4}, \mathbf{X}_{5}\right\} \tag{․i.1}
\end{equation*}
$$

By definition of p-dependency given in section 2, (3.1) implies

$$
\begin{array}{ll}
& \left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\} \rightarrow \mathbf{X}_{3} \\
\text { or }\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\} \rightarrow \mathbf{X}_{4} \\
\text { or }\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\} \rightarrow \mathbf{X}_{5} \\
\text { or }\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\} \rightarrow\left\{\mathbf{X}_{3}, \mathbf{X}_{4}\right\} \\
\text { or }\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\} \rightarrow\left\{\mathbf{X}_{3}, \mathbf{X}_{5}\right\} \\
\text { or }\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\} \rightarrow\left\{\mathbf{X}_{\mathbf{4}}, \mathbf{X}_{5}\right\} \tag{0.}\\
\text { or }\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\} \rightarrow\left\{\mathbf{X}_{3}, \mathbf{X}_{4}, \mathbf{X}_{5}\right\} .
\end{array}
$$

Fig. 2. Karnaugh map corresponding to fig. 1.

In view of Result 1 of section :- we have from (3.2)

$$
\begin{align*}
& H\left(\bar{x}_{1} \bar{X}_{2} X_{3}\right)=0 \\
& \text { or } H\left(\bar{X}_{1} \bar{X}_{2} X_{4}\right)=0 \\
& \text { or } H\left(\bar{X}_{1} \bar{X}_{2} X_{5}\right)=0 \\
& \text { or } H\left(\bar{X}_{1} \bar{X}_{2} X_{3}\right)=0 \text { and } H\left(\bar{X}_{1} \bar{X}_{2} X_{4}\right)=0 \\
& \text { or } H\left(\bar{X}_{1} \bar{X}_{2} X_{3}\right)=0 \text { and } H\left(\bar{X}_{1} \bar{X}_{2} X_{5}\right)=0 \\
& \text { or } H\left(\bar{X}_{1} \bar{X}_{2} x_{4}\right)=0 \text { and } H\left(\bar{X}_{2} \bar{X}_{2} X_{5}\right)=0 \\
& \text { or } H\left(\overline{X_{1}} \bar{X}_{2} X_{3}\right)=0 \text { and } H\left(\bar{X}_{1} \bar{X}_{2} X_{4}\right)=0 \text { and } H\left(\bar{X}_{1} \bar{X}_{2} X_{5}\right)=0 . \tag{3.3}
\end{align*}
$$

Now in view of Resuh 2 of section 2 . if (3.3) has to be true, it is compulsory that

$$
\begin{equation*}
H\left(\bar{X}_{1} \bar{X}_{2} X_{3} X_{4} X_{5}\right)=0 \tag{3.4}
\end{equation*}
$$

The boolean function associated with this entropy equation is

$$
\begin{equation*}
\bar{X}_{1} \bar{X}_{2} X_{8} X_{8} X_{5} \tag{3.5}
\end{equation*}
$$

Thus we have established tat the p-dependency constraint (3.1) is represented by the boolean function ($\mathbf{3}-\mathbf{5}$. Thees in general, the boolean function corresponding to the p-dependency constrain at

$$
\left\{X_{1}, X_{2} \ldots X_{i}: \stackrel{ \pm}{\rightarrow}\left\{Y_{2}, Y_{2}, \ldots, Y_{m}\right\}\right.
$$

is given by

$$
\bar{X}_{1} \bar{X}_{2} \ldots \bar{X}_{k} \quad Y_{1} y_{\underline{2}} \ldots \boldsymbol{I}_{\mathbf{m}}
$$

A very special case of the F-deperdency constraint occurs when a set of attributes determines every other curter in the relation. the so-called total dependency defined by Nambiar. Thess if $\mathbf{I}_{\mathbf{1}} \mathbf{I}_{\mathbf{Z}} \mathbf{X}_{3}$ determine every other attribute in a relation, the corresponding boolean function is $\bar{X}_{2} \bar{X}_{2} \bar{X}_{3}$. Note that the interpretation of the boolean function $X_{1} X_{2} X_{2} X_{4}$ is that as beast one of these four columns in the relation is a constant.
4. Illustrative exam pies

In this section we tort on d indurative examples involving p-dependencies and is $a n$ aside point to an interesting result concerning prime implicants.
Example 4.1:
Consider the dependencies
$\mid A^{2} \rightarrow\{B . C\}$
and

$$
\{\mathbf{A}, \mathbf{B}\} \xrightarrow{p} \mathbf{C} .
$$

The boolean function representing these p-dependency constraints is given by

$$
\bar{A} B C+\bar{A} \bar{B} C
$$

It can be easily seen by drawing the Karnaugh map for this function the (4.) prime implicant is

$$
\vec{A} C
$$

implying

$$
A \rightarrow C .
$$

Thus the given two p-dependencies (4.1) together imply the functional depandery (4.3). This fact can easily be deduced by straightforward arguments for simple example.

Example 4.2: Consider the strict p-dependencies

$$
\begin{aligned}
& \mathbf{A} \xrightarrow{\boldsymbol{D}}\{\mathbf{B}, \mathbf{C}\} \\
& \mathbf{B} \xrightarrow{\mathrm{D}}\{\mathbf{D}, \mathbf{E}\}
\end{aligned}
$$

and

$$
\begin{equation*}
\mathbf{C} \xrightarrow{D}\{\mathbf{D}, \mathbf{E}\} . \tag{4.}
\end{equation*}
$$

All of these are strict p-dependencies in the sense that none of them is a funciumel dependency. The boolean function representing (4.4) is

$$
\begin{equation*}
\bar{A} B C+\bar{B} D E+\bar{C} D E . \tag{4.}
\end{equation*}
$$

The Karnaugh map of this function is shown in fig. 3. From the map we get $\bar{A} D E, \bar{A} B C, \bar{B} D E, \bar{C} D E$

Fig. 3. Karnaugh map corresponding to (4.5).

IS the prime implicants of (4.5). Thus the use of boolean algebra to represent wepredercics gives us a simple way to identify an additional p-dependency, viz.,

$$
\stackrel{D}{A}\{\mathbf{D} \cdot \mathbf{E}\}
$$

implied by the given p-deperdencies (4.4). If we do not employ boolean algebra if will have to advance a long winding qualitative argument to arrive at this result. one can easily appreciate that such an argument will be extremely cumbersome if we if dealing with a large number of attributes, as will be the case in any practical sination involving databases. This substantiates our claim that use of boolean dgebra is a natural method of representing p-deperdercy constraints in relational databases.
Consideration of our examples leads us to an interesting result in boolean algebra wich we wish to state now. We observe that in example 4.1 , the given set of Hependencies has in it one pure functional dependency, viz., $\{\mathbf{A}, \mathbf{B}\} \rightarrow \mathbf{C}$. We doberted that the given p-dependencies implied a pure functional dependency, viz., $\underset{1 \rightarrow C}{ }$. In example 4.2, on the other hand, we were given strict p-dependencies (4.4) wsart with, and none of them was a functional dependency. (There were more than one atribute on the right hand side of the symbol $\xrightarrow[\rightarrow]{p}$). Here we note that the given sinct p-dependencies implied another strict p-dependency only, viz., $\mathbf{A} \xrightarrow{\boldsymbol{D}}\{\mathbf{D}, \mathbf{E}\}$.

Alitle thought over similar sets of constraints shows that if all the given constraints ur strict p-dependencies, it is impossible that they together imply a pure functional dpendency. To convince ourselves that this is really so we observe that in any rependency constraint, the set of attributes on the left hard side of $\xrightarrow[\rightarrow]{p}$ functionally dermines at least one of the non-null subsets of attributes appearing on the right ind side of $\stackrel{p}{\rightarrow}$. Such being the case, it is impossible that a number of strict Hependencies together can capture one single attribute which will be functionally dermined by a set of attributes. Thus unless there is at least one pure functional dependency constraint in a given set of p-dependency constraints, the given set cannot imply a pure functional dependency constraint.

[^1]The entropy functions and its generalisation to the additive set function found useful for this purpose. We have shown that boolcan algebra provides, natural approach to the study of p-dependency constraints in relational database theorg.

References

1. Nambiar, K. K.
2. NambiAr, K. K.
3. Sagiv, Y., Delobel, C. Parker, D. S. and Fagin, R.
4. Fagin, R.
5. Delobel, C. and CASEY, R. G.
6. Khinchin, A. I.
7. Munroe, M. E.

Some fundamental concepts of relational database, J. Compen
Soc. India, June 1978, 8 (2), 41-48.
Some analytical tools for the design of relational dalbase systems, Proc. Sixth Conf. Very Large Data Bases, Montral, pp. 417-428.

An equivalence between relational database dependencis and subclass of propositional logic, JACM, July 1981, 28 (3), 43549

Functional dependencies in a relational database and proxss tional logic, IBM J. Res. Dev., November 1977, 21 (0), 54is

Decomposition of a database and the theory of bookan snititing functions, IBM /. Res. Dev., September 1973, $17(5)$,714.W
Mathematical foundations of information theory, Dorer Multr cations, New York, 1957.
Introduction to measure and integration, Addison-Westy, Reding Mass., 1953.

[^0]: 1LSSc,-4

[^1]: The consequence of the result regarding strict p-dependencies stated above, when Traslated purely in terms of boolean algebra is as follows: If, in a boolean function tipessed as a stm of products, each term is such that at least two of its variables It uncomplemented, then no prime implicant of this boolean function can have only one variable uncomplemented.

 ## ${ }^{5}$ Conclasions

 The basic aim of the investigations reported in this paper is to provide the mathe-
 matical fourdations for some of the fundamental corcepts of relational databases,

