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Abstract

Concept of p-dependency. a generalization of the notion of functional dependency, is introduced .
It is established that every boolean function represents some p-dependency in relational database
theory, in contrast to the situation with respect to functional dependency constraint. In the latter
ase, it is to be noted that a funstional dependency is representcd by a boolean term having only
one uncomplemented variable. A one-to-one correspondence between the set of boolean functions
ad the set of p-dependency constraints is shown. Functional dependency naturally turns out to
be a special case of p-dependency.
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I, Introduction

Many constraints like functional dependency, multivalued dependency, join dependency,
*nd boolean dependency have been studied in relational database theory=%. Tt is
known that every functional dependency can be represented by a boolean function?,
bt the boolean functions corresponding to functional dependencics form only a
bclass of boolean functions. In other words. every boolean function does not

Niecnd :
“essarlly correspond to a functional dependency.

ﬂﬂehc;:llls- Paper, we introduce a generalization of the functional dependency cqnstrm:t l
Do lu p-dependency. The generalized notion of p-dependency has an tmpor dﬂ\
aPery that every boolean function will represent some p-dependency. Thus we
- Jeen able 1o cstablish here a one-to-one corrcspondence between the set of
. lhﬁa.r;ufunr:tioms and the set of p-dependencies. To be specific, a b:oolean funcil(l):.
o ::lof products form. in which every term has only ?nc variable 1.1}1;u¢orl11 fnd
eVery b presents some functional dependency and vice versda-. On the o_t er he |
Polean. function (of whatsoever form) corresponds to som: p-dependency.
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Section 2 is devoted to preliminaries comprising the definitions
cmployed in this paper. In scction 3, we review briefly the yge 0{ band Togi
lo denote functional dependencies with a view to cxplain our melhoﬂﬁuleau th,
We then establish how boolean algebra s used inthe case of p-dependen of Do
This will justify our main claim in this paper that cvery boolean funet

FY Cﬁnstmnh
: - ,
some p-dependency constraint. N rep

Some illustrative examples are included in section 4. From the cxa
the differences between a set of strict p-dependencies and a set Containin
one pure functional dependenFy. This leads us to the following resylt ing ;;olm
algebra. In a boolean function, expressed as a sum of products, if e Pfg.dlﬂh
term is such that at least two of its variables are uncomplemented, thep o pﬁm
implicant of this function can hf.we only onc variable uncomplemented. seuiomm;-
summarizes some of the conclusions.

Mples, we gy

2. Preliminaries : Notations and definitions

As we are discussing some fundamental concepts, 1t is worthwhile that we formlz
our rotations and definitions, so that proper foundation for the understandine o
the subject 1s built. A relation R on the collection {X;, X,, ..., X;} of atinbus
is a subset of the cartesian product D, X D, X ... X D,, where D;1s called
domain of the attribute X,. The relation is denotcd by R (X, X, ..., X). ABC
X, Y, Z, with or without subscripts are used to represent individual attribuis,
U, V, W are used for representing subsets of attributes : e.g., U = {X, X: X} I¥
elements of the relation are called ruples and specifically n-tuples if the relation 8
known to contain exactly n attributes. The n-tuples of R (X, Xz ---» Xl 21 e
nated as (xp, Xp, ..., X,). If u represents a tuple in a relation R(U)andAs¥
attribute in U, then #[X] represents the clement corresponding to X in the '“pk:
Similarly, if V is a subset of U, then u[V] is the tuple containing the clemt$
corresponding to V. u (V) is called the projection of w on V. R |V], the projec
of R on V i1s defined by :

R [V1&{u[V]:ueR).

v ) - . . " ;dfﬂﬂaﬂ]
If R(X,,X,,..., X,)is a relation, then U is said to determine V or'¥ I8 ﬁ;ly delet
dependent on U, written as U — V (read as U determines V or U funcil‘:?also hate

mines V) if every pair of tuples of R which have the same projection 0% onal &P
the same projection on V. ““ U determines V> is referred to as a funcli
dency constraint. e
hat
. . . . ) . o . Jovs ﬂ[ “hﬂ
While investigating the basic notions of relational databases, 1t 1817 ""i“‘:s and 0¥
elements of the attribute domains are. Let us assume that they are Intege ,

2 probability distribution corresponding to a given relation R (Xi, ¥» "
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ign cquél probabilities for all the tuples In R and designate the resulting distri-
a G as p(Xys Xy - o» X,). If the number of elements in R is N, then the value of
blzv o ey Xn) will be 1/N for _all Fhe tuples appearing in R and will be equal to
fer‘ol}o; all the tuples not appearing in R. In essence, we have generated a set of n
random yariables cforres,pondlﬂg to attrlbutf:s X1 X, -0, X,.  Without causing confu-
sion We shall designate these random varlal:f]cs alsoﬁ b_y the ?ymbols b ST —
Once we have constru?ted these random variables, it is possible to talk about the
entropies associated wEIp them. For the cntropy of a random variable X, we make
wce of the usual definition of entropy® :

H(X)4 — 2 Plog: s (2.1)
k=1
where p, i the probatility of the rardom variable X taking thc A-th value. We
chall meed the distribution p (xy, Xy, ..., X,) and its marginal distributions ; it should
be clearly understood that these marginal distributions are not necessarily the distri-
butions of the corresponding projections.

Making use of the emtropy function H(X;, X,, ..., X)) 1t is possible to define an
additive set function with 1ts domain as boolcan functicns of the boolean variables
X, Xe..., X,. Assuming that it will not cause any confusion, we use the symbol
H for the new additive set function also. Consider the set £ containing the 2"
moterms formed out of the variables X;, X., ..., X,. Every subsct of £ corres-
pends to a boolean function of the variables X;, X,, ..., X,, viz., the sum of the
minterms contained in the subset. The collection which has these subsets or equi-
valently these functions as elements is obviously an additive class of sets (alternatively

called as g-algebra, or g-field). Sce Munroe? for the definition of additive class. We
then define H by

HX; + X + ... + X)AHX, Xoy o5 Xi) (2.2)
and

HNY, ... Y, 2,Z,... 2.0 2 H{Y, +C)

i=]
"< 5

4 ,
-+ 2 H(Y4+Y,+Y3+C)

f,f.k=}
<<k

+(-DTHY, + Y. +... + 7,4 C)

- H(C) (2.3)
I-LSL‘_-...q
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Lol

where
C= zl +ZB + 0 Zn-r

The valuc corresponding to the minterm X; X, ... X, can be taken as
arc no more variables under consideration than X;, X,, ..., X, or if this ic
case, the value can bc chosen as a mon-ncgative number as requireq onnot b
non-ncgative number is specified, the total entropy can be written as e fhy

2810 ]f t

HX; +Xs +..)=HX, + X, +... +X)) + H(X; X,... X)

‘ L]

(24

In passing we note that a paralicl for the formulae (2.3)-(2.4) exists in the theory
of probability wherein we have cxactly the same formulae if H is replage by te
probability £ and X;’s, Y;’s and Z,’s arc the events.

We now quote two important results which we shall mvoke in establishing gy
main contribution in this paper. These results are proved elsewhere's$,

Result 1 : The functional dependency
{X1: X, X5} = X,
holds if and only if the entropy

H(fligk_,;;x‘) = 0

A similar result is true for any other functional dependency stat:ment.

Result 2 : In a relation R(X,, X,, ..., X,), H(X;X,) = 0 if and only if the eptropy
of every term appearing in the mintetm cxpansion cf X, X, is zero, ie., 30 Ut

; ~ : : - aliy.
of variables cun be concatenated to the preduct X, X, without disturbing the ¢qi™™

- _ : ional de
A stmilar result holds for any entropy equation corresponding to functional G
dencics.

fis 2 > standiilﬂ
Now we state the definition of our generalized concept of p-dependem’,l (p

. e VO
for * partial’). If R(X,X,, ..., X,) is a relation, then U is said to p-dete™™

‘ : . o gt least
V is p-dependent on U, written as U > V, if U functionally determnes ¢
of the attribtues of V. For example,

(X1 Xo} = (X5 X4 Xs)
means
(X, X} - X,
or {X;.X,}- X,



BOOLEAN ALGEBRA IN RELATIONAL DATABASES 223

or Xy Xef = Xs
or {Xp, Xa} - (X5 X4
or X Xo} > X5, Xs}
Xy, Xo} > {Xoe Xs}
or 1Xp, Xol = 1Xs, Xy, Xk
In other words, (X, X} functionally determines at least one of the non-null subscts
of X; Xo Xsh

or

3. Justification of boolean algebra to represent p-dependency constraints

In order to explain the basis of our use of boolean algebra to represent p-dependency
constraints and also for the sake of completencss we explain first how boolean algebra
is utilized in the case of functional dependencics.

The transition from functional dependencies to boolean algebra is accomplished s
follows. First, given functional dependencies are transformed to correspording entropy
equations using Result 1 of section 2. Then, the entropy statements can be represented
in 2 Venn diagram. Venn diagram representation is then converted to the corres-
ponding Karmaugh map which in turn gives the boolean furction for the functional
dependercies with which we started. Take, for example, the functional dependencies

A- B
and

B- C

\':;here A, B, C are three attributes. The corresponding entropy statements are
gven by

H(AB) =0
and

H(BC) = 0.

Fig, |
v 1, Velln :
diagram torresponding to the entropy equations.
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The Venn diagram that depi‘cts thesc entropy equations is given ig fig. 1; 4,

ponding portions of the diagram are_hatched. I_p view of Result Zjof s
entropy of each hatched portion, H (ABC), H(ABC), H(ABQ), H(ABCTLTHM
rately zero. From the Venn diagram, one can see that H (4 C) = ¢ This’ S ey
equation yields the functional dependency cqnstraint, ViZ, A C which hasmuh
truc in view of the transitivity Jaw when applied to the given functigna l:lfrpendm'bc
4— B and B— C. Since there always exists a Karnaugh map Cﬁrrespg,}di:nq
cvery Venn diagram, we can draw a Karnaugh map to represent whatever jg dzpigm
by thc Venn diagram. Let us cater 1 or zero in the Karnaugh Map accorg Clg
the entropy of the corresponding portion of the Venn diagram is zrg of 1

The Karnaugh map corresponding to fig. 1 is given in fig. 2.

M &
Ol-z21p,

It is casy to see that the prime implicants of this function are 4B, BC, and j(
expected and the function 1tself can be written as

AB + BC + AC.
Let us now proceed to establish how boolean algebra is utilized in the case of
p-dependency constraints. For definiteness and simplicity we shall restrict ourselws

to five attributes X, X,, X;, X,. X;. But our proof is qutte genecral and therdoe

applics to any p-dependency constraint involving any number of attributes. Consid
the p-dependency constraint :

{X;, X} _1; (X3, X4, X5} (3.0
By dcfinition of p-dependency given in scction 2, (3-1) implies

(X Xu} = X

or {X;, X} — X,

or {X;,X,} =X,

or {X;, X,} - {X;, X}

or {Xy, X,}— (X, X}

or {X;, X} - X Xs)

or {X, X;}— {X;, X,, X;}.

Fi1G. 2. Karnaugh map corresponding to fig. 1.
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225
o view of Result 1 of secticm - we have from (3.2)
H(X XAy =0
o H@ XX =0
or H (XA X) =0
o H(ETX9) =0 and H(X.X) =0
o H(GXy) =0 and H(GX.X) =0
or HQ1X:X) =0 and H (XLX.X5) = 0
or H(GX.X) =0 and H(X,X.X,) = 0 and H (X, X,X;) = 0. (3.3)
Xow in view of Result 2 of secoon 2. if (3.3) has to be true, it is compulsory that
HX XXX X)) =0 (3.4)
The boolean funciiom assocziad with this entropy cquation is
XXX X | (3.5)

This we have estzblished thar the p-dependency constraint (3.1) is represented by
the boolean function (3-31. Thms. mm gereral, the boolean function corresponding to
the p-dependency CormsSirarmi
I -
. O VNN VERREY | YO AR
5 given by

fl.f_ — .i:; }'1)': <= - r“"

A very special case of the p-deperdency constraint occurs when a set of attritbutes
determines everv other 2uribwae im the relation. the so-called total dependency defined

by NambiaP, Thes if X;. X.. X, determine every other attribute in a relation, the

“mesponding boolean fincwien s X1 Y, X,. Note that the interpretation of the boolean

etion X,X,X,X, is that 21 Meast one of thesc four columns in the relation is a
“mstant,

i, Mostrative exa phes

n this Section

% we work om rwe illustrative examples involving p-dependencies and

M 2side _ , il
%ide point 10 am imerestime result concerning prime tmplicants.

le 4.1. i
Hai 4:]' Consider tas zdependencies
A-—-i'fBC}



and

(A, B} > C.
The boolean function representing these p-dependency constraingg e
ABC + ABC.
It_can'be f:*asily seen by drawing the Karnaugh map for this functigp i [y
prime implicant 1s o
AC
implying
A~ C. "

Thus the given two p-dependencies (4.1) together imply the functional depandesy
(4.3). This fact can ecasily be deduced by straightforward arguments fo &

simple example.

' ()
Q%nw |

Example 4.2 : Consider the strict p-dependencies
A
A - {B, C}
B {D, E}

and

CS (D, EL (4

All of these are strict p-dependencies in the sense that none of them is 2 functiond
dependency. The boolean function representing (4.4) 1s

ABC + BDE + CDE.
The Karnaugh map of this function is shown in fig. 3. From the map ¥ g

4

ADE, ABC, BDE, CDE

)

FiG, 3, Karnaugh map corresponding to 4.5).
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.me implicants of -(4.5). Thus }he use of boolcan algebra to represent
ﬁmerggncits gives US simplc way to identify an additional p-dependency,  viz.,
spr et
given p-dcpendem_:ies‘ (4.4). .If we do not employ boolean algebra
dvance a long winding qualitative argument to arrive at this result.
preciate that such an argument will be extremely cumbersome if we

jealing with 2 large number .of attrlbut?s, as will be the case in any practical
i . involving databases. This substantiates our claim that use of boolean
:’ngitrl: is a natural method of representing p-deperdercy constraints in relational

ja1abases.

Consideration of our examples leads us to an il:ltcresting result in boolean algebra
gich we wish to state mow. We observc- that 1n example 4.1, the given set of
peendencies  has in 1t one pure flfnctlgnal dependency, viz.,, {A,B}— C. We
Jerved that the given p-dependencies implied a pure functional dependency, viz.,
1» C. In example 4.2, on the other hand, we were given strict p-dependencies (4.4)
wstart with, and none of them was a functional dependency. (There werc more than

ojed bY 1he
il have 10 2
Ont can faﬁlly ap

¢ attribute on the right hand side of the symbol :). Here we note that the given
arct p-dependencies implied another strict p-dependency only, viz., A s {D, E}.

Alittle thought over similar sets of constraints shows that if all the given constraints
i strict p-dependenctes, it is impossible that they together imply a pure functional
kpndency. To convince ourselves that this is really so we observe that in any

. ; : P i
rependency comstraint, the set of attributes on the lcft hard side of — functionally
Wemines at Jeast one of the non-null subsets™of attributes appearing on the right

md side of > . Such being the case, it is impossible that a number of strict
v*“mdencies together can capture one single attribute which will be functionally
%emined by a set of attributes. Thus unless there is at least one pure functional
;dmdfﬂfy constraint in a given set of p-dependency constraints, the given set cannot
Ty 2 pure functional dependency constraint.

lm:h;a;zﬂscquen?g of the result regarding strict p-dependencief stated above, when
presse Z:rely f“ lerms of boolean algebra is as follows : Tf, 1 a boolc_an fm}ctton
% wncom ]a Stm of products, cach term is such that at least two of its vartables
aly Plemented, then no prime implicant of this boolean function can have

.ba&ic dim

U foung of the investigations reportcd in this paper 1s to provide the mathe-
Ida

ions for some of the fupdamental corcepts of relational databases.
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The entropy functions and its generalisation to the additive set fu
found useful for this purpose. We have shown that boolcap
natural approach to the study of p-dependency constraints in relatig
An important fact derived in this paper is that there is one-tq
between sets of p-dependencies and boolean functions,

Mctiong , ,
ve
naj databyg, lheo‘

one °°"cspundfﬂr:
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