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Abstract 

Stress disrributions in the neighbourhood of a penny-shaped crack in an elastic medium under torsion and 
having variable elastic coefficients have been determined and the stress intensity factor and the energy of the 
crack calculated. Two cases are considered: (a) elastic material is isotropic and nonhomogeneous, and (b) 
material is transversely isotropic and nonhomogeneous. Numerical results showing the stress distribution in 
the medium have been presented fur nonhomogeneous as well a, the associated homogrneous media to assesa 
the effect of nonhomageneity on stresses. Some of the numerical results have been compared with works of 
similar nature. 

Keywords: Isotropic material, transversely isotropic material, nonhomogeneous medium, penny-shaped crack, 
stress intensity factor, crack energy. 

1. Introduction 

The presence of a crack in an elastic medium affects the stress distribution in the medium. 
When a crack appears in a stressed medium, the associated disturbance may be studied in 
two separate regions, viz., the near-field region or the local region near the edge of the 
crack and the far-field region or the region close to the wave front propagating away from 
the crack. In fracture mechanics, the singular character of the stresses near the periphery 
of the crack plays an important role in predicting the failure of the solid. In addition to 
the stresses in the vicinity of the crack, other quantities of physical interest are the stress 
intensity factor and the energy of the crack. sack1 has shown that the presence of a crack 
in an isotropic solid under uniform torsion alters the free energy of the solid. Bassani and 
Q U ~  estimated the low-yielding plastic zones surrounding the crack tips of a Griffith crack 
at the interface of two distinct anisotropic media. 

In a recent study, Choudhury and ~ a i t ~ ~  observed that the energy of a xack in torsion 
in a transversely isotropic material could be less or greater than that in an isotropic 
medium, depending upon the magnitude of the rigidity modulus of the medium. 
Following the same line of study, Chaudhuri and sen4 investigated the problem in a 
nonhomogeneous transversely isotropic medium with exponentially varying elastic 
coefficients. The motivation behimd such a consideration is quite natural from the fact that 
the assumption of homogeneity of the medium does not seem to be very adequate always. 
Experimental results also confirm5 the variation of elastic coefficients with position. 
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Variations of elastic coefficients in more than one direction have also been observed in 
the literature. singb6 solved the Reissner-Sagoci problem in elasticity considering 
shearing modulus as a function of r and z .  Dhaliwal and singh7 determined the state of 
stress in an infinite nonhomogeneous elastic medium containing a Griffith crack under a 
shear force, the material nonhomogeneity being assumed in quite general forms: 
p = po p(x)  yb )  and P =  p(r) y (2). Chaudhuri and ~a~~ discussed the stress 
distribution in a nonhomogeneous isotropic mcdium with a penny-shaped flaw 
considering shear modulus as a function of r and z .  Several distinct models are also 
noticeable in the literature to discuss nonhomogeneity in the elasticity problem. As a 
matter of fact, the earth crust itself is nonhomogeneous. Hencc, the investigation of these 
problems in a nonhomogeneous medium would be very interesting and realistic as well. 
As the dependence of elastic parameters with position may be arbitrary, investigators 
usually think of certain models with specific variations in elastic coefficients keeping in 
mind that the goveming differential equations can be handled effectively with the existing 
mathematical tools. The applicability of such a rather simplified model can he confirmed 
only by experimental results. Anyway, these models indicate how elastic behaviours are 
affected by nonhomogeneity of the medium. 

In this paper our objective is to study the elastic behaviours in a nonhomogeneous 
isotropic and in transversely isotropic media under torsion in the presence of a crack. In 
both the cases, the goveming equations of the mixed boundary value problem have been 
reduced to Fredholm's integral equations. These equations are to be solved numerically to 
find the near-field solution for the stresses, surface displacements, stress intensity factor 
and the energy of the crack. It is also observed that the results of the associated 
homogeneous cases may easily be recovered from our results by letting the 
nonhomogeneity parameter zero. Some numerical results have also been presented 
graphically to get an idea about the effect of nonhomogeneity. 

2. Formulation of the problem 

Let there be a penny-shaped crack of radius a in an infinite elastic medium of a 
nonhomogeneous material. We shall suppose that the crack is opened by an 'all-round' 
torsion in the medium. In reality we may think of a crack on a plane normal to the axis of 
a cylinder whose radius and height are very large compared to the size of the crack and 
which 1s under the action of torsion. We may also think of a crack on a diametrical plane 
of a very large sphere under torsion. We shall assume the plane of the crack to be z = 0 
and use cylindrical coordinates (r,  0, z) to specify the position of a point in the medium. 
Further, we shall assume nonhomogeneity of the medium in the form 

for an isotropic medium, and 

for a transversely isotropic medium, a and ( > 0) being real constants. 
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From the symmetry of the applied force and also from the symmetry of the material 
nonhomogeneity with respect to the plane z =  0, it would be sufficient to consider the 
solution of the problem for the half-space z 2 0 only. Since the problem is axisymmetric 
in nature, the displacement components u, , u, vanish everywhere, and the only nonzero 
displacement component u, will be independent of 8. 

The equation of equilibrium, which is not automatically satisfied, is 

Let us set 

The boundary conditions for the problem are 

S being the applied torque. 

Now, as the stress components depend on the medium concerned, and our objective is 
to study the elastic behaviour in nonhomogeneous isotropic and in transversely isotropic 
half-spaces, we categorize our discussion as Case A and Case B, respectively. 

Case A: Isotropic medium 

The nonzero components of stress are 

The nonhomogeneity of the medium is given by 

,u =Po  (1 + Pll)S 17 20. ( 5 )  

Using (4), (5) and ( 2 )  in (I), the governing differential equation is obtained as 

aZu t au aZu up au -+ +-+--=o. 
a t 2  6 %  5= avz 1+pva (6) 

Thus, the solution of the problem requires the solution of eqn (6), subject to boundary 
conditions (3). 
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Case B: Transversely isotropic medium 

In this case the stress-displacement relations are given by 

where Cqq and Csa are elastic coefficients such that 

where Ci (i = 4, 6 )  are real constants. The governing differential equation in this case 
becomes 

where 

p2=c&/c&. 
Our problem in this case is to solve eqn ( 9 )  subject to boundary conditions (3). 

3. Solution of the problem 

Case A:  We take the solution of eqn ( 6 )  in the form 

u = ~ ( 5 ~ 7 )  

where 

J, is a Bessel function of the first kind of order 1 and K, is the modified Bessel function 
of the second kind of order m, and A(A) is an arbitrary function of A. 

~ r o r n e ~ n  (4) using eqns (5) and ( l o ) ,  we have 

and 
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From eqn (12) we fmd that the third condition of eqn (3) will be satisfied if the 
Hankel transform exists at all. The first two boundary conditions of eqn (3) will be 
satisfied ifA(/Z) satisfies the following pair of dual integral equations: 

Assuming B(A) = A(A) K,,, (UP), we get from eqns (14) and (15), 

where 

For solving the dual integral eqns (16) and (17) we shall follow Sneddon9. We assume the 
solution of the system (16) and (17) in the form 

where B(x) is a certain unknown function to be determined. Introducing eqn (19) into eqn 
(17) and changing the order of integration and using the f ~ r m u l a ' ~  

we note that it is identically satisfied. Substituting eqn (19) into eqn (16) and then after 
some manipulation, we arrive at the following Fredholm's integral equation for the 
determination of Hx): 

where the kernel M(x, f) is given by 

For the evaluation of qx )  from the integral eqn (211, the kernel M(i ,  t), as given by 
eqn (22), should be convergent. We note that @(A) + 0 as 1 + and @(A) behaves as A-I 
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for large A. Also, $(A) satisfies the convergence condition as A i 0, So, N2) satisfies all 
the necessary conditions for the convergence of M(x, t). 

Using the result" 

and applying integration by parts, eqn (19) gives 

where prime denotes differentiation with respect to x. By using eqn (24) and the standard 
results" 

and 

the surface displacement u(5, 0) can be expressed from eqn (10) as 

5 e ( ~ ) ( p  - I) + J [ x  e ( x ) i 1  dx 

By using eqns (24) and (25), we get from eqns (12) and (13), 
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To find the stress distribution in the vicinity of the crack, we follow the procedure 
adopted by Sih and ~ r n b l e ~ ' ~ .  We note that the infinite integrals in the preceding 
expressions are convergent everywhere in the medium except at the singular points which 
occupy the crack border. Since the solution near these points is desired, it is necessary to 
evaluate the unbounded portions of these integrals in the neighhourhood of the singular 
points. We note that the integrands are finite and continuous for every value of ;l ( 2 0); 
the divergence of the integrals along the crack horder, 6 = 1, must he due to the behaviour 
at A + -. Hence, the terms that give rise to unbounded stresses correspond to those parts 
of the integrand that are dominant for large & we shall isolate them here. 

By carrying out the expansion for large values of 2. and retaining the lowest-order 
terms, we get, from eqns (27) and (28), 

Using these results, 

j re-aq~l(A<)  sin A dA = 
2 

and 

where < - 1 = 5, cos Y, = t2 cos Y2 - 2. 

By letting Yi + 0, 5 2  + 2, and 11 + 0, we get the stress distribution near the crack 
horder as 

where 

is the stress intensity factor for torsion 

The energy of the crack is given by 
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3.1. Associated homogeneous medium 

In the associated homogeneous medium we have a=  0, i.e., m = 112 from eqn (11). 
Hence, from eqns (1 8) and (21), we get $(A)  = 0 and B(x) = ml4, respectively. So from 
eqns (26), (27), (31) and (32), we get after some calculations 

k = S12 and K = n2~2112p~ ,  
which are the same as those obtained by Sneddon and ~ o w e n ~ r u b ' ~  

Case B 

In this case the solution of eqn (9) may be written as 

S 
u = u(5, q )  = - [(I + /37#'" - 11 + -& (1 + pq), 

2 m G  a 
x j o > ( 4 ~ ,  + Pq) IPP} JI (%) , 

where m is given by eqn (1 1). 

From eqns (7), using eqns (8) and (33), we get 

and 

As in Case A, here also we have a pair of dual integral equations 
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Proceeding similarly as in Case A, viz., expanding eqns (41) and (42) for large 1 and 
retaining the lowest-order terms, we get 

2 s  
a&($. q) = 11(1 + pq)Qi2B(1) h l p  Jl(%)sin 1 3, + +.. , (43) 
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The stress distribution near the crack border is 

where 

is the stress intensity factor for torsion of transversely isotropic nonhomogeneous 
medium. 

In this case the energy of the crack is given by 

3.2. Associated homogeneous medium 

In the associated homogeneous medium we have a = 0, which makes $(A) = 0 and hence 
B(x) = m14. In this case we easily deduce from eqns (40), (41), (45) and (46) that 

$=S/2and ~ , = n ~ S $ 1 1 2 ~ i ,  
which are the same as those obtained by Choudhury and ~ a i t ~ ~ .  

4. Numerical results 

To get some idea about the magnitude of the stresses and also the effect of 
nonhomogeneity in the medium, we have computed the values of ce, (4, q)/S for different 
values of j and q and plotted them graphically (Figs 1 and 2). Figure 1 shows the 
variation of o, IS in Case A for isotropic nonhomogeneous medium, assuming a = 1, 
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FIG. 1. Variation of 00, (5,  q)/S for different values Fro. 2. Variation of 08, (5,  ?)IS far different values of 
of 5 and 7 in case A. 5 and 7 in case 9. 

FIG. 3a. Variaticn of KJS with u in case A. FIG. 3b. Variation of KJS with a in case B 
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FIG 4a. Variation of KJS with a in case A. FIG. 4b. Variation ofK,/S with a in case B. 

FIG. 5a. Variation of )IOU(& ?)IS for different FIG. 5b. Variation of C&u([, O)/S for different 

valzes of 5 in Case A. values of 5 in case B. 

p = 1, while Fig. 2 shows the same in Case B for transversely isotropic nonhomogeneous 
medium, assuming a= 1, P =  1, C& = 0.40, C& = 0.634. In both the figures the curves 
marked H represent the variations in the associated homogeneous medium. The effect of 
nonhomogeneity on stress is quite clear from the graphs. 
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Figures 3 and 4 show the effects of nonhomogeneity on the stress intensity factor in 
Cases A and B for different values of the parameters. It is noticed that the stress intensity 
factor is low for a stirfer material in both the media. ~ r d o g a n ' ~  and Delale and Erdogan15 
have shown that a material may exhibit greater stress intensity factor on the stiffer side in 
case the material nonhomogeneity is along the plane of the crack. However, in our 
problem we observe no such anomaly assuming nonhomogeneity along the depth. 

As regards crack surface displacements (Fig. 5a, b) wc observe significant effect of 
nonhomogeneity. Similar effects were noticed by Erdogan14 and Delale and Erdogan15, 
although the basic problems and the nature of nonhomogeneity are different. 
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