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ABSTRACT 

The time dependent problems of heat transfer in the laminar flow of viscous 
incompressible fluid in cylinder and in the cylindrical annulus when the boundaries 
are kept at temperatures that are functions of time alone are considered taking 
into consideration the source of heat generation, dissipation and the convective 
changes in the temperature. 

INTRODUCTION 

1. Bhatnagar and Tikekar l  have studied the temperature distribution 
in an incompressible viscous fluid flowing in the annulus between two coaxial 
cylinders considering the heat generating source but neglecting the viscous 
dissipation and convective changes in the temperature. Pai 2  has discussed 
the laminar flow problem and the steady state temperature distribution in a 
pipe without considering the heat generating function. Carslaw and Jaeger /  

have discussed the problem of time dependent temperature distribution in a 
circular cylinder without dissipation and heat generation. In this paper, we 
have studied the time dependent problem of heat transfer in the laminar flow 
of viscous incompressible fluid flowing in a doubly infinite circular cylinder 
taking into account, the source of heat generation, convective changes in the 
temperature and dissipation. We have also studied the flow problem and the 
temperature distribution for the same fluid flowing in the annulus between the 
two coaxial cylinders. 
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2. In this section we consider the problem of heat transfer in the 
doubly infinite circular cylinder of radius a for the axisymmetric case. 
Taking the axis of the cylinder as the z-axis and denoting by r the distance 
from this axis, the basic equations of the problem are : 

Continuity Equation: 
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Energy Equation : 
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where ( . :Q/6t) is a function of time alone representing the rate of heat 
generation per unit volume per unit time in the fluid and other notations 
convey their usual meanings. 

Initial Conditions 

T (r, 0) ma Tr 	Q(fJ)rs Q0 . 	 [2. 5] 

Boundary Conditions: 

(i) For the velocity field : no slip condition at r a and finite velocity 
along the axis r = 0 

(ii) For the temperature field : 
T (0, t) -= finite, 

[2.61 T(a, =[l - g (1)1Ti t > 0 

with g (0) =0. 
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Effecting the following transformation : 
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where U is a characteristic velocity, 
above equations and the initial and 

e.g. the velocity along the axis r 0, the 
boundary conditions reduce to: 

Continuity Equatton: 
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Momentum Equations: 
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Energy Equation: 
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where 

pUa ,  Reynolds number, 
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Eckert number, 

Prandtl number. 
[2.12] 

Initial Conditions : 
[233] 

0 (1, 0) s 0, f (0) =, fo 
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Boundary Conditions. 

a som 0, 	0 at 71 	1 and finite at 9 0, 

e (0, di— finite} 	n  
0 (1 1  7.) 	g (t) T>l) . [2.14] 

Taking the velocity field, compatible with the Continuity equation, to be 
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We have2  
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[2.17] where P mor R (?p ilae) in constant. 

Now the cylinder being doubly infinite, 9 becomes independent of e and 
hence the energy equation becomes 
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We now adopt the usual Laplace transform technique assuming that 

	

0 (q, T) and f(r) remain bounded as t 	00. 

Denoting the Laplace transform of X (0 by X 00 and incorporating 
the initial and boundary conditions we get 
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Applying the convolution theorem, we get from [2.19] and [2.21 after 
simplification 
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we obtain from [2.19], an alternative expression for B 67, 
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3. In this section we consider the flow problem and the problem of 
heat tranrfer in the fluid flowing in the annulus between two coaxial cylinders 
with radii R 1  and a (> R I ) for the axisymmetric case. The basic equations 
of the problem are the same as [2.1] to [2.4]. With no slip condition at both 
the boundaries the velocity field is given by 

p 92 p 	p (a2 Rf m  

W  = 4 — 4 4-  4 a 2  in(R l ia) 

We take the initial conditions same as [2.5] in the case of cylinder above 
in § 2, while we choose the following boundary conditions for the tempera- 
ture field : 
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[3.23 
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with e l  (0) 	02 (0) gm 0. 
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The tranformation [2.7] reduce the energy equation and the boundary condi- 

tions as follows : 

Energy Equation: 
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[3.5] 

Taking the Laplace transform, assuming that the temperature and the 
rate of heat generation remain bounded as t 	co and incorporating the 
the initial and boundary conditions we can easily show that 
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Now we can easily check that 
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S3 ( p) has a branch point at p 0 so that we use the usual contour that 
excludes this point along with the entire negative real axis. There are no 
poles within or on this contour. We can easily show that the integral over 
the large and the small circles both vanish and we have 
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where 
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arranged in ascending order of magnitude. 

Thus with the help of [3.7] to [3.22] and with the use Fourier-Bessel 
series for 4 and 92  we get after simplification 
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4. To conclude we note that both in § 2 and §3 the solution exhibits 
separately the contributions of the boundary conditions, heat generation and 
the Eckert and Prandtl numbers Thus given the boundary conditions and the 
rate of heat generation, we can specify the solution completely in each case. 
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