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ABSTRACT 

This work is a sequel to a previous paper where a new set of equations for 
one-dimensional motion in Radiation-Gas-Dynamics (RGD) has been derived. 
These equations are valid for an arbitrary but constant value of opacity and for all 
values of /3, the ratio of the gas pressure to the total pressure, and they clearly show 
the existence of radiation induced waves, which have been called "precursor 
radiation " by Lick and Moore. In this paper non-linear waves, with special 
refeience to the formation of shock waves in stellar medium, are discussed by a 
general method developed by Whitham. § 2 contains a general discussion of the 
equations of motion. The interactions of waves of different orders are discussed 
and damping distances, decay times and diffusion coefficients are determined . The 
terms giving rise to the fifth, fourth and third order waves are found out and it is 
shown that the equations with third order terms can be used as approximate 
equations in RGD, when one is interested in changes in flow and physical parameters 
over distances which are large compared to the mean free path of radiation, i.e. " flow in large". The formation of shock waves from a given compression wave 
is discussed by the method of characteristics and it has been found that a 
discontinuous front is formed only if the initial disturbance is sufficiently strong. 
Simple waves and Rankine-Hugoniot conditions for shock waves are also 
considered. It is found that the Rankine-Hugoniot conditions, derived by Sachs 
apply only to shock waves in 

" flow in large ". Formation of shock waves in 
spherical, cylindrical and plane motion is also considered and the results obtoined 
by Pack are rederived by a very simple alternative method. 

I. INTRODUCTION 

The present work is concerned with the waves in Radiation 
Gas-Dynamics (ROD) with special reference to formation of shock waves 
in very hot neutral gaseous medium. Due to the dependence on direction of 
the specific intensity of radiation, the problem of three dimensional waves in 
RGD is extremely complicated and not much progress has been made in this 
direction. But one-dimensional waves in RGD can be easily discussed and 
we shall limit ourselves only to the one-dimensional motion. It is true that "radiation-hydrostati cs 

 " attracted attention almost fifty years ago and the 
effect of radiation on the equilibrium of stars has been discussed in detail but 

* This investigation has been undertaken under a scheme sponsored by the Research 
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only recently some work has been done in RGD. In "radiation-hvdrostatics" 
various steady state approximations (e g. Eddington's approximation and 
Rosseland's diffusion approximation) to the radiative transfer equation were 
made and they are taken as basic equations even in ROD for discussing waves 
in a medium, where radiation pressure is comparable to the gas pressure. 
The expressions for the radiation pressure and radiation energy density, in 
terms of specific intensity, contain c, the speed of light in the medium, in 
denominators and hence when these quantities are comparable to the gas 
pressure and gas internal energy density we cannot neglect the time derivative 
in the radiative transfer equation through it comes with a factor 1/c. The 
neglect of the time derivative in radiative transfer equation suppresses one mode 
of wave propagation excited by the radiation. 

For the reasons given above, the exact nature of shock wave in RGD is 
not fully understood, as it is evident from the various assumptions made in 
the investigations of Sachs 6, Prokorev7, Elliot, Marshak9, Sen and Guessw, 
Wang" and Bhatnagar aud Sachdev 16. The successful attempts to analyse 
shock waves in more general terms with neglect of radiation pressare appear 
to have been initiated by Zerdovich 12  who proved the existence of a sharp 
discontinuity in shock wave structure for strong shocks. This work is 
followed by another approximate but very interesting work by Raizer n. The 
papers by Vincenti and Baldwin" and Heaslet and Baldwin" are also worth 
mentioning. The first one contains a detailed discussion of small amplitude 
waves in RGD and in the second Zedovich's assertions are supported by 
theoretical work and numerical computations. 

Based on Zenovich's qualitative picture of the structure of a strong 
shock, we have determined in a previous paper s  the distributions of various 

flow and physical parameters with optical thickness measured from the sharp 
discontinuity 	The present work is a sequel to another paper 2  of ours, 

hereafter referred as paper I, containing a derivation of equations for one- 
dimensional motion in RGD and a discussion of small amplitude waves. 
The new set of equations, derived there, is valid for a medium with arbitrary 

but constant opacity and even when the radiation pressure is comparable to 
gas pressure. It is hyperbolic in nature with distinct characteristics and 

finite values of characteristic speeds. 

2. EQUATIONS OF MOTION AND THE ACOUSTIC EQUATION 

We shall reproduce here some of the equations which we have derived 

in Paper I for sake of ready reference. Under the assumptions : 

(i) the volume absoprtion coefficient a is constant, 

00 the medium is grey and the source function 
B is given by 

B s(crin) T1 	
[2.1] 
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where T is the temperature and a is Stefan constant, and 

00 the specific intensity I of radiation is taken according to the 
following scheme 

for 0 <ME  I 

	

rail 	for -- 1 _45. iu < 0 

where ati is the consine of the argle which / makes with positive direction of 

x-axis, 

the equations for one dinnentional radiation-gas-dynamics are 
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Here PR  is radiation pressure, ER radiation energy density, 
p density, u particle velocity in positive direction of x-axis, 

this rine. :••• 	 • 
—aaaa.JU Liw 543 itti.crual energy density. 	Under the assumption 
general relation between PR  and F and assumptions (i) and 
necessary to derive it. 

Pa gas pressure 
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F radiation flux, 

Using EG em[pG1(y —1) p] and pG.RpT, where R is the gas 
and y the ratio of specific heats, we cap derive from these equations 
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The equation for small perturbations, defined by 
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In the equation [2.9] the quantities a m . 	/250  and 	aso 	appear with a 	second 
suffix 0 to represent the values of al , a5 , and as  in constant state. 

The left hand expression of the hyperbolic differential equation [2.9] 
which is symmetric in space coordinate is grouped in three square brackets, 
each containing a homogeneous differential operator of orders five, four and 
three respectively, if we denote these operators by 135, P4 P3 (2.9) can be 
written as 

Ps + P4 + P3 # = O. 	 [2.19] 

As in paper I, we define the solutions fol satisfying Pn  p = 0 (a fa= 5, 4, 3) as 
n-th order waves. 

The characteristics of [2 9] are 

dxidt ±eIV3, 	 [2.20] 

dxlcit 	±a5o 	 [2 21] 

and 	 dX /dr 1:2  0 	 [2 22] 

and thus these are the only curves in x-t plane across which discontinuities 
in the flow quantities and their derivatives can exist. The range of influence 
and domain of dependence are bounded by the outermost characteristics 
12.201 A disturbance, created in a region, is initially divided into three 
groups. The first group corresponding to characteristics [2.21] travels with 
speeds comparable to c and forms " radiation induced wave." The second 
group, corresponding to [2.21] travels with speed 050  and forms " modified 
gas-dynamic waves." The third group, corresponding to [2.221 may be called 
" convective waves " and these can give rise to contact surfaces. But as 
these waves propagate the dispersion and damping change completely their 
nature. From [2.15], [2.17] and [2.18] we can write 
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where terms of order (a rolc)4  are negleckd. 
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When radiation pressure is comparable to gas pressure, [2.111 shows that 
4/c a 0 [[2 (y 1)a] and it is possible to expand 

,2 	 6 
010 	 2 )11/2 

ale iato " T 0 	2 
ct  

in ascending powers of 4042  provided the speed of light in the medium is 
large compared to the isothermal sound speed a ro . Retaining only the terms 
up to first power of 027-042  one obtains from [2.2_1 ] 
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In [224] we can further neglect the second term in the numerator on the 
right hand side to get 

2 	C2 (4o/c   
CLIO = 	 CEN 	 •    

 • 

3 aLic- + 2a 	3 6 (y - 	- go) + flo 
[2.26] 

Therefore, when pRo  as 0 (pG0) and 11 27. 0  < < c2, one of the speeds of 

tion of fourth order waves is isothermal sound speed, as in the 

vanishing radiation pressure, i - e. PRO < < PGo. The equation [2 9] 

written as 
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where a 10  is given by [2.26]. 

With L as a characteristic length in the flow field we 

dimensional quantities 
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so that equation [2.27] becomes 
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It has been shown in paper I, that when Po and PR are of the same 
order of magnitude the neglect of the term WO (?..//t) in the radiative 
transfer equation leads to solutions significantly different from those obtained 
by retaining this term. 

3. INTER ACTION OF WAVES OF DIFFERENT ORDERS 

As pointed out in paper I fifth, fourth and third order waves dominate 
in a signalling problem at various times. Therefore, a consideration of 
interaction of waves of different orders is important. The phrase " interaction 
of fifth and fourth order waves" will be used for the modifications in the 
fifth order waves due to the presence of the fourth order operator and vice- 
versa. In general such a division of a differential equation (2.27) into the 
three groups does not imply that any wave motion can also be divided into 
three groups (such a division of waves is however possible for a signalling 
problem), but this is just a mathematical approach to the basic understanding 
of the waves and as it is evident from the investigations of Whitham, it helps 
in approximating the full differential equations by lowest order terms. We 
shall closely follow Whitham's approach in this investigation. 

(a) Interaction of fifth and fourth order waves. When the third order 
terms are neglected, the equation (2.27) becomes 
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fifth order radiation induced waves we can substitute qt — (e/ V3) q3x in equation [3.1] except for the terms forming the factor ajar (c/V3) 6/ax. Thus, in the neighbourhood of the curve dx/(dt)a 
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where 	ft 	is 	an 	arbitrary 	function 	of 	its 	argument. 	Thus 	this 	wave is 
exponentially damped, the exponential damping distance being 
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Similarly, for the fifth order modified gas dynamic waves we substitute 
t) = —a50 (/; x) in [3.1] and obtain 
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The exponential damping distance, in this case, is 
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From [3.4] and 13.1 it is evident that ds , c iv 3 011V3 (mean free path of 

of radiation) and (1) ,a50  « d5 , c j v3  so that the fifth order modified gas 

dynamic waves are damped very rapidly. 

It is interesting to put 6/6 t 
0 in [3.1] except in the factor a/3 t of the 

fifth order operator, in order to investigate the " convective waves" corres- 

ponding to the characteristic dxidt -DO. in this case one obtains 
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with goneral solutions 
2 	2 } 
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where f2  (x) is an arbitrary 	function of x. 	Therefore, due to 	radiation, the 
discontinuity in contact surfaces is exponentially damped, with "decay time" 

2 
C150 
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These results are in agreement with the results of paper 1, where a 
solution for a signalling problem is given. For a signalling problem, in which 
there is a uniform region at rest for t < o and a disturbance is created at 
some point of it at t 0, the convective waves will be absent. But in an 
initial value problem with variable initial density distribution, these waves 
must be present and they will be rapidly damped, because 75 9  0 is small. 

For the fourth order radiation induced waves, [3.1] may be approximated 
by using 6/ t tas —010 (6/6 x) in all terms except the factor oft t 	m  
in the fourth order operator. This gives, neglecting 4 0/c2  in comparison to 
unity, 
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The fourth order modified gas dynamic waves are also found to be 
governed by a diffusion equation of form [3.11] with diffusion coefficient 
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(b) Interaction of fourth and third order waves. When the fifth order 
operator is omitted, the differential equation [2.-71 takes the form 

/ -2 	 2 / 2 	 2 \ 3  ( ai° + 2 cc)(- 9 	6  )(--% 	)95 c 	c 	6 	6 X2  al 	x 

( 
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As in the previous case, the fourth order waves will be exponentially 
damped and the third order waves will diffuse. We can easily show that the 
damping distances of the fourth order waves and the diffusion coefficients of 
the third order waves are 
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In the derivation of these expressions, terms containing 4 43/c2  are neglected in 

comparison with terms of order unity. 

Under astrophysical conditions with pRo  mo 0 (Pm) we notice that 
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(c) Interaction of fifth and third order waves. 
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' 
•  3 ( 6 2  C2  62 	%(a2 	2  a 

6 x 
)ao 

-a-

-76 x 	a5°  2  a t 

[120] 

[3.21] 

[3.22] 

The neglect of fourth 

± 3  (a 2 40 a X ?2 
ago — 

2 62  ) 	um 0  

C 	C.t2 	a X2  6 
[3.23] 



158 	 PHOOLAN PRASAD 

The operator 6/6t is a common factor of' the left hand side of [3.231 
and hence the third order operator does not affect the fifth order convective 
waves and vice versa. These waves, in the absence of fourth order operator, 
move with the fluid particles without attenuation and dispersion. 

For any other fifth order wave, the equation [3.23] can be approximated by 

6 	) 

	

+ m - 	 +n0=30 
Gt 	ox 

where m 	o) is a fifth order characteristic speed and n is another non-zero 
constant. In this case we substitute cp ei( " 1.1")  and obtain 

	

kl 	11m —(n/m) 110) 2  • 	 [3.21 

Thus the wave number k is a real function of co and there is no attenuation or 
amplification of fifth order waves due to the third order operator. Again 
[3.24] gives 

d tie \ a 2n 1 

	

do) 	m w 

and since the fifth order waves are high frequency waves, this means that 
there is insigificant dispersion in these waves. 

Approximating [3.23] in the neighbourhood of dx/dt a aso  by using afa x — (i/on) a/3 t except in the factor a/a r + (a.) 	x and substituting e"tekx)  in the result we obtain 

kip,' =Ila n + A 0.J 2  , 	 [3.26] 

where A is a non-zero constant. Here 
of co so that there is no attenuation 
waves. Also 

again we find that k is a real function 
and amplification of the third order 

did ta (WO Se  2 A to 
	

[3.2'1 
and since the 

third order waves are low frequency waves [3 21 means that 
there is no significant disperscon in these waves due to the fifth order operator. 

It is easy to trace the terms in equation [2.2] —[2 8] which give rise to 
Operators of different orders in [2 9]. 	The continuity and momentum equations are taken as they are in 

all the three cases and the difference arises 
on account of the occurrance of different terms in the energy and radiative 
transfer equations in these operators. We have marked the combinations in 
[a 8], [2.5] and [2.6] by V. IV and III according as they appear in fifth order or fourth order or third order operators. 	Since we shall discuss the third 
order waves in detail in the following we collect here the terms in the energy and 

radiative transfer equations determing these. These are 

[3.251 
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We shall call these equations along with the continuity and momentum 
equations as set III. Now we ask the following question " Is it possible to 
approximate the set of full equations [2•2] [2•8] by the set III and if so 
under what circumstances?" The answer to the first part is in affirmative. 
To answer to the second part we have to examine the non-dimensional equation 
[2-28]. This equation shows that the third order operator becomes more and 
more dominant with decreasing values of 1/aL which is the ratio of the mean 
free path of radiation to a characteristic length in the flow field. In equatien 
[2.28], the fifth and fourth order terms contain square and first power of 
1/aL respectively as factors. Thus we have two different situations when 
1/aL is small. (1) lIaL is small so that the fifth order terms can be 
neglected but not so small that the fourth order terms can also be neglected. 
Such a flow may be called " Rosseland flow " since in this case oFfax is 
retained in [2-8] while equations [2.5] and [2•61 reduce to 

?II 6a 6F 	2 
0=4 ,rra 	+— —+ 3a F 	 [3.31] 

ax c of 

1 N?  ani 	 + c 	+a F=O 	 [3.32] 
cZI ox 

giving Rosseland diffusion approximation to radiative transfer equation when 

the terms containing 	are neglected. (ii) 1/aL is sufficiently small so that 
both the fourth and fifth order terms can be neglected. We define such a 
flow to be "flow in large ". Thus the set ILL can be used when we are 
Interested in changes in flow and physical parameters over distances very 

large compared to the mean free path of radiation in the medium. When a 
characteristic length, say the distances between two points P and 0, of the flow 

field is much larger than the mean free path of radiation, and flux from P is 

almost absorbed before reaching Q and the motion of the medium takes place 
without any heat exchange between points whose mutual distance are much 
larger than the mean free path of radiation. This is not the only example 

where a set of differential equations is approximated by retaining only those 

terms which lead to the lowest order 
'operator. In magactohydrodynamics, 
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the assumption of infinite conductivity is made to achieve such a val. In eero- 
dynamics. the assumptions of zero viscosity and zero heat conductivity remove 
the higher order terms. It is surprising to note that in all these three cases 
the approximate equations represent isentropic flow. Whatever may be the 
opacity of a medium, it should be regarded as one with low opacity if the 
changes in flow and physical parameters are to be considered across distances 
over which a ray of rmliation is not significantly absorbed ; otherwise the 
medium should be regarded as optically thick. While considering the 
structure of a shock wave, the interest lies in the changes across the shock 
region and we cannot presuppose the width of the shock region to be much 
larger than the mean free path of radiation in order to apply Rosseland 
diffusion approximation. It is worthy of notice that Masani's 21  work on the 
propagation of shock waves is based on the equations in set Ili. He 
considers the propagation of shock waves in hot and massive stars defined by 
Boury's" models where a is of the order of unity in C.G.S. system and L can 
be taken to be radius of the star. Actually for temperatures of the order of' 
106 °K, the set In can be used when liaL 	10 -5. Thus the present 
analysis, while pointing out its limitations, gives a theoretical supcort to 
Masani's work. 

The discussion of the interaction of waves in this section has been done 
in somewhat arbitrary fashion. While discussing the effect of fifi.h and fourth 
order operators on the third order waves one should proceed in a more logical 
sequence starting with a solution of the lowest order equation and building 
up the effect of the higher order terms as perturbations. Here we shall take 
the signalling problem, discussed in reference 2, and find out asymptotic 
solution for large aL. This will clearly show the diffusive effect of higher 
order terms in the "flow in large". 

We wish to solve the equation 12•281 for it > 0, t > 0 with the following 
initial and boundary conditions: 

At t= , 4; a 0— t ct— tt a ttt tma tttt 0 for x > 0 	 [3.33] 
At x xi= 0 , ;FHA) (a L) 	for t 0 

	

0 	for t < 0 
[3.34] (cibiot) — (aL); for t 0 

	

go 0 	for t < 0 
atc aro  p and Po  c = P o  oh —E are the velocity and total pressure respectively imposed on X Mt  0 for t U in an otherwise undisturbed medium. 95, being a potential function, is taken to be continuous at X Cla  0 9 t 0 

Using the Laplace trasforrn 

e t dt 
• [3.35] 
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the solution is found to be 

n 	 tit  ; en  dp 
27r 	 [3.361 

A. 

where r is the path such that Re p 12:0 constant and to the right of the all 
singularities and 

c= A e 1  + z e 7 : le 5 

Y 1 I V 	2  ± VP  4 b2  3 	Il2 
2 	2 p 
2 

[3.31 

P 8 -4- v2  E 	 P 13 4-  7 1 c A I  =  , _ - _ 	, 	A _ _ e — - -__ -,--.. - 
P -  ky 1 - Y2) 	

2 
P
f 

(72 - Yz) 

1 	2 	12 „ 
-6 1= 	, as° P + 	 dilo , 

(aL) 	(a L) 

.2  1 	 3  2 2 
-8 	1  (I + 	) P 3  + 

(a1 
	LiGtio  + 0( 6) — 2 r - I  P2  (aLY 	c- 	 , c 	c 

, 
+3(1 + a ic) ago  p 

bai_ a  1  	3 	2 	1 (3 a2 	 2 

2 	+ 	—T 
tan c2 	6a 	

+ f) p + 3( 1Ip) 
L) C 

[3.39] 

[3.40] 

[3.41] 

[3.421 

and a- 	aio , 
aso 

aso 	c  = 	 [3.43] 
TO 	a10 	aTo 

Assuming IfeL to be small one can appropriate y i  , 72 A 1 , A2 by 

expzending these functions in ascending powers of 11aL 	It is fourad that 

- el siaLP "  -(e2/VaL) P3j2 4-  • • • 
	 [3.44] 

1 	e, a SO 2 
y 2 ct 	 p 	p 	- • 	V 

"so 	2 (a L) 
[3.41 

- 

E laS0 [ E 1150  E3 /2(0 	p + • • • 
A 1 	_ 

e l  Vat, I - lke i  aso ilanp" + • • • 

{Tim, vast)} p 112  + • • • 	I 
A 2 — 

1— 11/(etaSO Alan} P 112 + • • - P2  

1 
3f2 [ 3 .46] 

[3 A7] 
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where the constants e l  , e, . e 3  etc., are very complicated 

, as° c and a n)  . But neglecting terms or order 1/c 2  with 
with terms of order unity, it is found that 

ei (asnialo)[3  + 3 (41/c)} 112  , 

functions of 
comparison 

e2 (ato — 1) 2101{240(3 ± 34/0112} 	
[3.48] .  

2la 2 aw se  —   
and 	 e3 	6 	 • 

2 
aS0 (3  + 3 aide) 

One can write [3.361 as i5 	1 + -02 [3.49] 

where 
1 

27,1 

Ifix+pft 
A i  e dp [3.50] 

and 
72 x+pt 

02 	_II  A2 e 	dp [3. 5 !] 

The characteristics of the third order operator are dxfdt --= o and 
dx/dt aft ±si so . The first corresponds to the convective waves, while last two to 
isentropic waves. In the present signalling problem convective waves are 
absent due to uniform initial tate but there is diffusion from the disturbance 
at the wall at x a- 0 and this diffusion is represented by 0 1 . In this case it is 
sufficient to retain only the most dominant terms in Vi and A 1  so that 

fl — cis 
01 —  

2i tiv a  
I 'so 	;a1 — Pt. ---iii- en - t 1 Varix p /11) dp  

L r, p 

and this leads to 

„ 	2 A/it L t 1

1. 	
12 

—tp— Elaso) 

+ 3afoic) aso 
exp (3 + 3 a 2  /c) — 	10 	assn 	,1 x2 ) 

A " 2 	 kai-ei 
esio 	 t 

(aL) x e rfc jf 	4-  galro/0 aso 	x li  
2a 	v aL 

t 

a 
where 	 2 e rfc {y} = —z--.11  et' dT . 

NA% y  

[3.521 
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This clearly shows the diffusive effect of the fourth and fifth order 
terms on the third order convective wave, But it is important to realise that 
-95 1  is not significant for a signalling problem since its effect is confined to a 
region close to the wall at x 0. The third order isentropic wave is 
represented by -02  and this is the most important term. We can write 

Th 	I 	; rive, irca) pli2  1 t r  („) 
[3.53] 

	

2 
#rri r 1— Ofiaso isAMP 112  P4  e 	P  

where g (P)  1— 	-) 	
2 ( 

P 	C311" 	2  a 	t P 	 [3.54) a50  t1  

The method of steep2st descent used by Lick 4, can t e employed here 
also to evaluate 95 2  when I x— a so  t 1 is small. 	It is found that 

i)2 	(t XiaSO)  (01) H (t xlaso) 

faio  — asO 	Old} 112 t[ / [(ago — 	 rl  li—asot 
e tii 	2, 	— asotiVeLl.  

[( 	/ 	 c 	 

	

1— {ix — as° tl 1 [(aL — 1) x]} I t 2 	 2a 	 XIll 

— c2 (aL 4 112  exp 	(x asve.t
2 (aL)} 
	

[3. 5 51 

where 
	

H (t — xiaso) eg 0 when t < xiaso 

es 1 when t > x/aso  , 

2  
Cl 	

1:2 (3 4.  3 a210/0112 
aso  Ilso ,I=1  

	

{ 2 (al o  — I) 	aio 

and 
[ az°.  11/2 

C2 a= 	3 2 n lista 

an)  
2 	. 

aS0 	+ 3  aio c)
1/2 

 

This solution is valid for small values of Ix— * so t!, i es near the wave 

front x = aso  t and under present approximation 

— V { a 2, 0 1 x aso t / Vido  — 1) xi} 
1— V 11x— aso t / [(silo — 

should be taken to be se and in fact this has already been done in the first 

term of 0 2 . However, we have retained this term in order to show that out 

of the two boundary values —E and -A the effect of g is small in comparison 

with that of ; on the "flow in large." This solution represents a wave 

moving with third order characteristic speed a so  and diffusive effects of higher 

order terms in it. 
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4. VARIATION OF THE FIRST DERIVATIVES ALONG CHARACTERISTIC LINES 

Non-linear wave propagation : 
A general property of the characteristics of a system of differential 

equations is that the variations along these curves in the nth order partial 
derivatives of the dependent variables can be completely determined if all the 
lower order derivatives are given on them (see Courant and Hilbere° 
page 618). In this section, the variaiions of the first order partial derivatives 
are determined along the characteristic 

and 

It is to be noted that in ROD 
across which a discontinuity in 
exist. 

dx idt =ix c iV3 
	

[4.11 

dx/dt s as  + u. 	 (4.21 

[4.1], [4.2] and (cixidt).=u are the only curves 
certain derivatives of dependent variables can 

Consider discontinuities in the first derivatives of the flow quantitics 
propagating along the characteristics [4.1). As [4.1] is one of the outermost 
characteristics, the flow ahead of it remains undisturbed and it is convenient 
to take the flow ahead to be of constant state given by To To , Po n =i-Go 
PR iwPRO ra(4cri3c) T04, u s 0, F=O and p po . 

The equation of the characteristic can be written as t [4/3/c] x 
and the flow quantities behind it can be expanded as 

Po = PG0 + Pot (x) ± • • g  

PR =PRO+ PRI (X) er + • • • 

P po + pi (x) T + • • • 

/4 ma 	14 I (X) T + • • • 	 [4.3] 

and 	 FistO+Fi (x)7+ C • - 

where 	
Teta [V3/Ct] XS 	 [4. 

Then Poi (41 Pitt (x) etc., give the magnitudes 
t-derivatives. 	Substituting [4.1 in [2.1] 
equating the various powers of fr it is found that 

of the discontinuities in 
12 - 12.61 and [2 8] and 

dFi (x)
a 	v3. a 	V3•40 (a 0  40)  

dx 	 2 6, — 1) c3  (I — 3 4, ) 
[4.5) 

V3•02  
PG1 (x) 	 5° —I—   C (1 — 3 a 	F1 (X)50/c2) 	• 

[4.6] 
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tit (x) , 
c Po  k a 3 ULM Fi (X) 	

[ 4  • 

N/3 
(x) 

C — 3 4Ic2) 	 [4.8] 

T1  (xi Ma  AtTiro 	3 0 ..ioic2)  F1(x) 	
[I•91 

a.id 	Pat (X) e= WC V31 F1 (x)• 	 [4.10] 

From [4.6] and ,4.101 

34  
Poi c

2  (1 — 3 a'0 / C 2) PRI  (X)  5 	
[4.11] 

In the right hand expression of [4.51, the second term in the square 
brackets can be neglected in comparison with the first. This equation shows 
that the non-linearity of the equations of motion does not contribute anything 
to the radiation induced waves and whatever may be the initial value of F 1 , 
it ultimately 	0 as t—÷- co. Thus the discontinuities in the first derivatives 
of the flow quantities in radiation induced waves are exponentially damped 
and formation of a front, carrying discontinuities in the flow quantities 
themselves, is not possible from a continuous flow. From the expressions 
[4 el —[4.1 1], it follows that the quantities P01 ui  , p i  and T1  arc small 
compared with F1  and pat  as it should be in radiation induced waves. 

Now consider discontinuities in the first derivatives of the flow quantities 
propagating along characteristic [4.2]. In general, the flow ahead of this 
curve will be disturbed by radiation induced waves. But we have just seen 
that for radiation induced waves /4 1 , poi  , Pi'  7'1  are small compared to 

p Ri  and F1  and hence the main effects can be seen for the special case in 
which u F.:- 0 and PG • p, T are constant ahead of [4.2]. Now the equations 

[2.1, [2.3] and [2.8] give 

i 2  a  3 62  6n 
— — — 3a 2) F= 0 , 	 [4.12] 

k 6.7c2 	e2  6/ 2 	e et 

-(' , p ik lx irs 0 	 [4.13] 

and 	 3  (y — 1 ) :)PRiat + (y — I) (Fiax) ca 0. 	 (4 14) 

Elimination of p a  between [2.6}, [4. 13] and [4.14] gives 

62  FA 2  --tJ 0 	 [4.151 
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and 	 (1/0 (3F/H) +a Fs0- 	 [4.16] 

The flux F satisfies an over-determined system of two partial differential 
equation namely [4.12} and [4.15]. Equation [4 161 is not independent of 

[4.12] and [4.151. Now let us consider a particular solution F-=- 0 of [4.15] 
and [4.16). In this case, from [4.14] ( --\p R iat) •••• 0 and from [4.13]pR  ART con- 
stant. Thus the assumption made just now leads to a particular solution 

F ic20 and p it  t• constant ahead of [4.21. Now the flow quantities behind 
characteristic [4.21, which now may be written as t — xiaso  r 0, can be 
expanded in the form [4.3] where the relation [4.4] is to be replaced by 

T I — Xiaso • 

Substituting in [2.11—[2.3], [2.5]—[2.6j and [2.8] and equating various 
powers of '7 it can be shown that 

2 

du i  COldx — al°  
2a50 

P1 (x) (Pdaso) 

pc i  (x) a Po an th 

and 	 (x) =pRi  (x) 

2 	2 
C" 	WIG  (X) ± -y41 1471.  (Z), 	[4.11 

2 aSo 

u 1 	, 	 [4.18] 

[4.19] 

O s 	 [4.20] 

where al oic2  is neglected in comparison with terms of order unity. The 
equation [4.20] implies that whatever may be the nature of discontinuities in 
the time derivatives of u, Po , p the time derivatives of F and PR are always 
continuous. The first term in the right hand side of [4.11 corresponds to 
small amplitude waves governed by linear equation. This term represents 
the exponential darnpLng of u 1  and the damping distance agrees with that 
given by [3 6]. The second term results from the non-linearity of equations. 
The solution of [4.17] is 

1 
BIA+(11C11—BIA)edx1 	

[4.21] 

2 	2  where 	 ac aso
n2  

- "TO n > a 	 [4.221 2 a 	algo  

and U1  is the value of' u 1  at some point, say x 0. Since we are moving along a characteristic dxforit a50 > 0, x 0 in [4.21]. 
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When U, < 0, 1/U1  —B/A < —B/A but j1/U1 — B/A1 > B/A so that 

Ill remains negative for all finite values of x > 0 and monotonically increases 
from C/1  to as x varies from 0 to oo. 

When 0 < Ul  < AlB, u 1  (x) monotonically decreases from 1/ 1  to 0 as x increases from 0 to 00. 

When CJI  > A/B, 1/U1  — BiA < 0 and u l  monotonically increases from 
U1  to infinity as x increases from 0 to X, given by 

X =5 (1/A) In 	B)I • 	 14. 231 
Now zi t  < 0 corresponds to an expansion wave, while :4 1  > 0 to a compression 
wave. Therefore, as in ordinary gas-dynamics, expansion wave never leads 
to the breakdown of continuity of the flow. But for a compression wave 
the situation is completely different. In ordinary gas-dynamics a compression 
wave always leads to the formation of a shock front, whereas in RGD a 
compression wave leads to the formation of a shock front if and only if 

A clio 	— oh) > — 
(Y + I) °so 

[4.24] 

The numerical value of the expression on the right hand side when To  = 106  
and pRo a 0 (pG0) will be of the order of 1016  a. This is an important result 
as it tells us that a shock front can be formed only if the initial disturbance 
producing the compression wave, is sufficiently strong. This also explains 
why Zelidovichu  and Heaslet and Baldwin' s  find a discontinuity in pc , p, T, u 
in the structure of only strong shock waves. Again, if a shock front is 
formed, the discontinuity will be only in p c, p, u, T and not in pa  and F, as 
shown by equations [4.171-14 20]. This result is also in agreement with the 
results of the authors cited above. The above result also gives a theoretical 
support to the basic assumptions mule in a previous paper 3  on the structure 

of a shock wave with radiation. 

5. SIMPLE WAVES AND SHOCK WAVES IN RGD 

At the end of § 3 the conditions, under which the equations of 

motion in RGD can be approximated by the set III, have been stated. In 

this approximation, as it can be seen from equations [3.29], [3.301 and [2,71 
radiation pressure and radiation energy density are replaced by their values in 

thermodynamic equilibrium 

PR -1.( 4013 c) T 4 	ER n  O ff  IC ) T4 	
[5.1] 

The equation of energy does not contain the flux term as if the motion is 
isentropic in large. Using [5.1] we can write the equations [2.2], [2 3] and 

(3.28) as 	 • 
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u 	p  6u = • 	
[5.2] 

'Ll) X 

6u 	6u 	1 6p n  
u 	 [5.3] 

at 	dx p x 

)p a2s( 6  + u and 	 [5.1 
ox 	6t 	6x - 

where 	 P = PG + PR . 	 [5.5] 

as  is given by [2.14] in terms of /3 and /3 is related to the density p and total 
pressure p by 

p4 _ 40 

0 3 	. 3 c R4 	
[5.6] 

The equations [5.21—[5.4] can be replaced by an equivalent system of 
three characteristic equations 

dp a s  p du = 0 on dxidt a  14 4-  OS I 	 [5 7] 

dp — a s  p du a 0 on dxfdt = u as 	 [5.8] 

and 	 dp tieg d p 0 on dx/dt u. 	 [5.9] 

For the discussion of forward facing simple wave running into a region 
of constant state (see Courant and Friedrich"), the two relations [5 8] and 
[5.9] are taken to be valid throughout the flow field, so that 

	

P Po 2- 	d p 	 [5.10] 
Po 

and 

14 sat 	asdpip. 

Po 

Now the expression [2.141 is written as 

a r(pip) 

— 3y)132 — 12 (y l) + 16 (y — 1) where 
ft 12 (7 -- 	+ 12 (y 1) 

[5.12] 

[5.13] 
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involves th  which is a complicated function of p and p as shown by ri.61 In ordinary gas dynamics 	y, which is a constant and equations r5 to] and 
[5.11] can be at once integrated. However, [5. O] with [5 c], [s 121 and 
[5.13] expresses p in terms of p and [5.1I] expresses u in terms of p 	On characteristic dx1d1=-14 +a s  all the three equations [5.7] — [5.9] are valid and 
hence p, p, u are constant along this characteristic. Thus the velocity of 
propagation of the wave is u a s . From [5.6], [5.101-15.13] it is found that 

2os  p2  d 
- — (u+as) (1) (1(0 + (19) 	 [5.14] p d p 

where 0 (S) and çb (S) are functions of p only, given by 

(g) r 	 [5.15] 

and 

(4-3g)[{1 —12(y— 1)}f3-t 12(y - 1)1 2  
[5.161 

It can be shown that for 0 tts pc 1 and lyc2, 	(fl)-- (f) is alwa5s 
positive, so that in this case 

(discip)(u +0 5) > 0 

and the propagation speed u +as is a monotonic increasing function of p and 

hence of p. Therefore the wave region of higher density and pressure moves 
with higher velocity and a compression simple wave ultimately ends in a 
discontinuous flow. The appearance of discontinuity in the third order 
simple wave ultimately ends in a discontinuous flow. The appearance of 
discontinuity in the third order simple wave means that the approximate 
equations are not valid now and the neglected higher order terms, introducing 
diffusion in these waves, are crucial. However, as Whitham pointed out in 
the case of bores, the higher order terms need not be included explicitly. 
The solution by third order terms can be saved by introducing discontinuities, 
satisfying "Rankine-Hugoniote conditions" for the set Iii. Such discontinu- 
ities, still called shock waves, will be different from shock waves in RGD in 

which the radiation flux, radiation pressure and radiation energy density will 
be continuous. 	The Rankine-Hugoniot conditions for the third order 

terms are 

Pi ui  p 2  u2  M (say) 	 [5.11 

Pot +PR1 4 Pi 14 "`P02 f PR2+ p2ui 	 [5.18) 
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an" 

Era , 4 ERI/Pi + 14 +(udivn) (Pal +pill) 

Elm+ ER21 122 + 143 + (u2 I rn) (Pc, + pR2) 	 [5.19] 

where PR and ER are given by [5.1], suffixes I and 2 refer to quantities on 

the two sides of the shock and ill, 1/2 are velocities relative to the shock front*. 
Thus the Rankine-Hugoniot conditions [5.17]—[5 19], first derived by Sachs 6, 
apply only to the reduced set III i.e., for flow in large. Finding structure ant 

shock in RGD means joining the parameters on the two sides 1 ' and '2' 
(supposed to be at infinity on both sides) by solutions of the full equations of 

RGD and the structure may contain a discontinuous front satisfying the 

Ranking-Hugoniot conditions 

p3 U3 •20 p4144 ra m, 	 [5.20] 

P G3 + P3 u -32  PG4 + P4 1.4 
	

[5.21] 

and 

113 PG3 	I t 
EG3 - 66 -I- 	 k ER + pit) 3  

2 	m 	p3 

1  . i 2 
= EGA; 	644 r 

2 
1/4 PG4 + 1 (ER + PR) 

171 	P4 
[5.22] 

for full differential equations in .RG D, where suffixes 3 and 4 refer to states on 
the two sides of the shock and ER, p R  are the non-equilibrium values of 
ER, PR on the both sides of shock. It is important to note that in both 
sets [5.17] —[5.19] and [5.20]- [5.22] the radiation flux does not give any 
contribution. 

Now we shall come back to the discussion of simple waves. The 
function cb (13) in [5.14] is due to the dependence of 11  on p and hence on p. 
The numerical values of st,(p) and çb (in are given in Table I for y =-53- and 
this table shows that t,b (g) can be neglected in comparison with 	(i3)• 
Therefore for y 4

, 

11  can be taken to be constant and the discussion of 
simple waves in RG D becomes exactly the same as that for a polytropic gas 
given by Courant and Friedrich". 

6. FORMATION OF SHOCK WAVES IN SPHERICAL, CYLINDRICAL 

AND PLANE MOTION 

The propagation of spherical shock waves in stellar envelopes has 
been studied extensively with a view to study the phenomena of ejection of 
mass from the stars. The general invectigation of formation of shock waves 
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, 

r. -_, 	 TABLE I 

.. 	 P 0(P) 0 (j-;) 

0.0 3.111 o00000 
0.1 3.173 —0.00021 
0.2 3.232 —0.00086 
0.3 3.307 —0.00199 
0.4 3.379 —0.00368 
0.5 3.459 —0.00606 
0.6 3.549 —0.00941 
0.7 3 656 —0.01429 
0.8 3.7)4 —0.02173 
0.9 4.005 — 0.03194 
1.00 4.444 — 0 00000 

in plane, cylindrical and spherical motion in RGD will be considered here. 
For one dimensional motion, this problem has already been considered in §4 
with full equations of RGD and it has been found that even for plane motion, 
shock wave is formed only if the initial disturbance is very strong. Therefore, 
it is assumed here that the changes in flow quantities over small distances 
(e.g. distances comparable to mean free path of radiation) are not important 
and our interest lies in " flow in large". This assumption can be made for 
discussing waves in hot and massive stars such as defined by Soucy's' models. 
This problem has also been investigated by Pack" in the absence of radiation 
but here we shall include radiation terms and show that his results can be 

immediately obtained by a very simple alternative method. The equation of 

continuity is 

6 e+ti al—e+p i6  
d x 	ax x 

[6. 11 

where a 0, 1, 2 for plane, cylindrical and spherical motion and .x represents 

radial distance when a e 1, 2. The equations of momentum and energy are 
[5 3] and [5.4] with relations [5.6] and [5.12] in physical variables. From 

these equations we can obtain 

	

{-6  +(u+ as) —6  p + pas 	+ + as ) 	u + ----il e 0 	[6.2j 

OX 	6 t ax 	x 

3 

	

o • 	 2 n  

+ 	as 	p pas {— and 	 05)-1- + 	-NO • [6.31 

at 	8x 	 434 	 )c) 
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Let us consider a forward facing wave (diverging wave for a .1, 2) 

running into a uniform state given by p =po, p = po  and u= 0. Then, since 

the front of the disturbance must be bounded by dxldt U aSa °SO, there 
exist discontinuities in the first derivatives of the flow quantities across the 

characteristic x aso t 0 with a proper choice of the origin of t. We can 
expand the flow quantities behind this characteristic as 

P ssPo +pi (X) T 4- • • 

P Po .4-  pi CO + • • • 	 [6.4] 

U 0 + Ui (X) T 

with 
	 = 	Xiaso 

Substituting [6.4] in [53],  [561, [5.12], [6.11 and [6.2] and equating 
different powers of Ar it is found that 

dui  a 	D 2 
— = ;- U j, 

dx 2x 	crio 
[6.51 

P1 =c3 poiaso u1 

and 	 Pi e Po aso  

where 	 D (112 i's) t (i90) + çb (Pb)] 

and the suffix 0 represents the values of quantities in the uniform state. 
equations [6.5]—[6.7] are the same as those obtained by Pack. 

•.• PO 	ea 	a 	a 

[6.61 

[6.7] 

The 

II ut  be the value of th when x i=x0, the solution of [5.5] is found 
to be 

1 ( x y/2  f I 4. 	2D 	x0 1.  . ____2D 
, x, for a =0, 1 [6.8] u ji 	xo 	(U t  (2 — a ) a2so ) 	( 2  — a) a;; 

1 	1 	D , 	x and 	--- apex {---- — to 	} f 	2 2 	g ----- , or a se . 	 [6.9]  u t 	U1  x0  "so 	xo 

Same results [6 8] and [6.9] are obtained for a backward facing wave 
(convergent wave for a W 1 • 2) by proceeding exactly in the same way except 
with T a t 4- xiaso  and substituting [6.4} in [6.3] instead of [6.21 

ui  becomes infinite i.e., a shock wave is formed at x nay given by 
- a/2 	_ co 1 / (I I  4- [2D/ { (2 — a) a2  1} xn YI  . xo 	,......„.._ ...■6.,.■....r +••■■•■■■.7.c SO 	‘.. 9 for 	 a a  0,  1 	[6.10] 241(2 -- a) o; o  

and 	 y en xo  Exp. [a2sof(D Ui  •vo)] , for a m2. 	 [6.11] 



Non-Linear Waves in Radiation-Cas-Dynamic - s 	 173 

U1  represents the time rate of change of ii at the wave front when it is 
at r xo  and for a forward facing compression wave U i  > 0 and for a back- 
ward facing compression wave U 1  <0. 

(A) Effect of change in volume due to cylindrical and spherical motion: 

The quantity 49 3,0 /jU1 l D has the dimension of length and we define the 
non-dimensional quantities e and C o  by 

e  jU s i D 	e 	11.11 1D 
s 	Y 9  S 0 	— 2— X0  • CI so, 	 a sO 

[6.10] and [6.11] give 

2 — a Wit I 	for a  En, 0, 1 
et  0./2 	ej  a/ 2  eo  

2 

and 	 e f o Exp. 0-7-J 	for a 2* 
\u1  eo  

[6.12] 

[6.13] 

[6.14] 

The graphs of e versus eo  are shown in Fig. 1. Curves in set I represent 
forward facing wave with U 1  > 0 and these in set II backward facing wave 
with U l  <0. The curves, for a = 0, in both sets are straight lines showing 
that breakdown of continuity occurs after the propagation of wave through 
a constant distance I e -. eo I -= 1. The curves for a as I and a a 2, in both sets, 
asymptotically ter d to that for a a Q as eo e* 00. For a forward facing wave 
the distance e eo , travelled before the shock is formed, is greatest for 
spherical motion and least for the plane motion and in cases a =1,2; 

Co--> 00 as e,—* 0. Thus a forward compression wave, created near 
origin, ends into a shock wave at a very large but fir ite distance in cylindrical 
and spherical motion. For U 1  <0 and a =1, [6 13] shows that for e0  mrs 

1.41 	ao at 	Ac 0; for eo  > 	, us 	00 at points for which 6 > O and there 

is no positive value of e where u 1 ---> 00 for eo  <4- 	In this case the right 

hand side of [6.81 vanishes for x 0. Thus in set II e Cc curve, for a a1, 

is a part of co  axis for 0 < 	+. Thus in cylindrical and spherical motion 
converging compression wave ends in discontinuity either at origin or before 
reaching it. Putting all the results together we find that a compression wave 
always ends in a shock wave of the set III. 

(B) Effect of variation of U 1  on y: 

The non -

dimensional quantities ti and V 1  are introduced by 

Ut  D xo  
7-1 - and 111 	• 

xo 	• 	aso 
(6 15] 
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Equations [6.101 and [6.111 reduce to 

( 	2 	\2/2—a i  +  

2 	1I 
for a a  

--7  
[6.16

] 

and 
	

a el l Yi 	for a 2. 	 [6.11 •  

Here vi  > 0 corresponds to forward facing compression wave and V I < 0 
to backward facing compression wave. 	Fig. 2 gives graphs of 9 versus T11 . 

For a =0, 	9 - 171  curve is a rectangular hyperbola with 	1/1  = 0 and 
9 — 1 	as 	its asymptotes. 	As 1 VI  I --3P- co , the 	values 	of I for a ir I 	and 2 
tend to be those for a = 0. 	For a forward facing compression wave, smaller 
the initial value 11 larger is the value of i  in all cases 	a — 0, 	I, 2 and for a 
fixed value of 1/1 , 7 	is least for plane wave and greatest for spherical wave. 
For a backward facing compression wave n  -÷ 0 for a a I, 2 and 1 ->.- - ce  
for a — 0 as vi—*-  —0. 

(C) Effect of Radiation: 

Here the values of p 0 , po , xo  and Ui  will be kept fixed and the variation 
of y with Pb  will be investigated. 

For plane and cylindrical motions, it is convenient to introduce the 
non-dimensional quantity 

ti S 
fufroy-a12 	xo Pep° [6.181 

and for spherical motion the quantity 

C 2  67/x0y0 V1 xo/Pa 
[6.19] 

Then [6.10] and [6.11] give us 

CI =-[(2— 42] (ND) , for a am 0, I 	 [i.20] 

and 	 C2 = exp. (fa) , for a e= 2 • 	 [6.21] 

In this case 4 1  and 	are functions of p a  only. Their values for different values of go  are given in Table II which shows that changes in the values of t 1  and 4 2  with Po are not significant. Thus 

usc Li b B' lore 
rill1111111N 11 I 

J37€08 
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TABLE H 

C2 
,Co 

• 0 	a = 1 	a = 2 
- 

0•0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0,7 
0.8 
0.9 
1.0 

1.143 0.5714 3.136 
1.149 0.5746 3.155 
1.156 0.5778 3 176 
1.162 0.5812 3.198 
1.169 0.5849 3.221 
1.178 0.5888 3.247 
1.187 0.5933 3.276 
1.197 0.5985 3 310 
1.210 0 6052 3.355 
1.229 0.6147 3.419 
1.250 0.6250 3.490 

we come to an important conclusion that if we are interested in the variations 
of flow quantities over large distances, such that the equations with third 
order terms are sufficient approximations to full equations in ROD, the 
radiation does not appreciably affect the formation of a shock wave. 
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