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ABSTRACT

This work is a sequel to a previous paper where a new set of equations for
one-dimensional motion in Radiation-Gas-Dynamics (RGD) has been derived,
These equations are valid for an arbitrary but constant value of opacity and for al}
values of g, the ratio of the gas pressure to the total pressure, and they clearly show
the existence of radiation induced waves, which have been called * precursor
radiation’ by Lick and Moote. In this paper non-linear waves, with special
reference to the formation of shock waves in stellar medium, are discussed by a
general method developed by Whitham. § 2 contains a general discussion of the
eauations of motion. The interactions of waves of different orders are discussed
and damping distances, decay times and diffusion coefficients are determined. The
terms giving rise to the fifth, fourth and third order waves are found out and it ig
shown that the equations with third order terms can be used as approximate
equations in RGD, when one is interested in changes in flow and physical parameters
over distances which are large compared to the mean free path of radiation, i.e.
“flow in large ™. The formation of shock waves from a given compression wave
is discussed by the method of characteristics and it has been found that a
discontinuous front is formed only if the initial disturbance is sufficiently strong.
Simple waves and Rankine-Hugoniot conditions for shock waves are also
considered. It is found that the Rankine-Hugoniot conditions, derived by Sachs
2pply only to shock waves in ** flow in large*’. Formation of shock waves in
spherical, cylindrical and plane motion is also considered and the results obtoined
by Pack are rederived by a very simple alternative method,

1. INTRODUCTION

The present work is concerned with the waves in Radiation
_Gas-Dynamics (RGD) with special reference to formation of shock waves
In very t_xot neutral gaseous medium. Due to the dependence on direction o
R‘GD .is c¢xtremely complicated and not much progress has been made in this
direction. But one-dimensional waves in RGD can be easily discussed and
we 8!‘]&1] limit ourselves only to the one-dimensjonal motion. It is true that

radiation-hydrostatics * attracted attention almost bfty years ago and the
effect of radiation on the equilibrium of stars has been discussed in detail but

& s . .
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only recently some work has been done in RGD. 1In*

various steady state approximations (eg. Eddington’s a imat]
Rosseland’s diffusion approximation) to the radiative transfz‘:rixm?apon and
made and 'lhcy are taken as basic equations even in RGD for di%;qlldiuon were
in a mcdlu_m, where radiation pressure is comparable to ll::cuss hS e
The expressions for the radiation pressure and radiation foxor ga; prr_.as'sur'e.
terms of specific intensity, contain ¢, the speed of light in thiy m:(iil_sm, in
denominators and hence when these quantities are comparable to ::m, n
pressure and gas internal energy density we cannet neglect the time dcri:ug-m
in the radiative transfer equation through it comes with a factor t/c "I};c
neglect of the time derivative in radiative transfer equation suppresses on;: mod:
of wave propagation excited by the radiation.

‘radiation-hvdrostatics *°

For the reasons given above, the exact nature of shock wave in RGD is
not fully understood, as it is evident from the various assumptions made in
the investigations of Sachs®, Prokof’ev’, Elliot®, Marshak®, Sen and Guess!®
Wang'' and Bhatnagar aud Sachdev'®, The successful attempts to analys;
shock waves 1n more general terms with neglect of radiation pressare appear
to have been initiated by Zel’dovich'? who proved the existence of a sharp
discontinuity in shock wave structure for strong shocks. This work is
followed by another approximate but very interesting work by Raizer?, The
papers by Vincenti and Baldwin'* and Heaslet and Baldwin" are also worth
mentioning, The first one contains a detailed discussion of small amplitude
waves in RGD and in the second Zel’dovich’s assertions are supported by

theoretical work and numerical computations.

Based on Zel’dovich’s qualitative picture of the structure of a strong
shock, we have determined in a previous paper’ the distributions of various
flow and physical parameters with optical thickness measured from the sharp
discontinuity The present work is a sequel to amother paper’ of ours,
hereafter referred as paper I, containing a derivation of equations for one-
dimensional motion in RGD and a discussion of small amplitude waves.
The new set of equations, derived there, is valid for a mcdiun} with arbitrary
but constant opacity and even when the radiation pressure 1s com?afable to
gas pressure. It is hyperbolic in nature with distinct characteristics and

finite values of characteristic speeds.

AND THE ACOUSTIC EQUATION

the equations which we have derived
Under the assumptions :

2. EQUATIONS OF MOTION

We shall reproduce here some of
in Paper I for sake of ready reference.

(i) the volume absoprtion coefficient « is constant,

(ii) the medium is grey and the source function B is given by -
2.1

Be(o/w) T o
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where T is the temperature and ¢ is Stefan constant, and
(iii) the specific intensity 1 of radiation is taken according to the
following scheme
I=1, for0<cu<sl

where u is the consine of the argle which I makes with positive direction of

X-axis,
the equations for one dimentional radiation-gas-dynamics are

dp dp Ay
— tu—+p—==90,
> ax Pax [2.2]
3 3 3
— +u— Ju+—(Pc+pr) =0,
P(at ax) ax Pa) 23]
d B ( E; du AF
—+u—  Ec+—}+ Z8 Yo,
P(a‘ m)‘ G p) (PG + pr) x+ax 0, [24]
| §81
p 2 \I( 4(
0% & a3 3x ¢ a1 o 0? [25]
A A A
—V- Ly
~11]-
| i
LI .,
¢ o Ty ToF0 [2.6]
A
MEET)
d
an Eg =3 px. [2.7]

H::ni; is radiation pressure, Ey radiation energy density, F radiation flux,
:nd - tyh.cu par.tncle velocity in positive direction of x-axis, pg gas pressure
¢ 1¢ gas internal energy density. Under the assumption (ii), [2.6] is a

general relation betweep
and : :
necessary to derive it. o # and assumptions (i) and (i) are not

Usin -
and y thcgraﬁ? [fPG/(y'— 1) pl and pg - Rp T, where R is the gas constant
0 oI specific heats, we cap derive from these equations
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— —— - .
T PR ’
e +4ly_1 D 3
2 w2 \po + pr)-T Pot Y p“( +u—~)p+(3?——4} 2 w2 Yoasly-1)2=0.
i X p A At dx dt  Ox dX
. M _ B
BR———— 1V - [2.3]
' The equation for small perturbations, defined by

S wu—=0, p =p—pos Po=Po=Pa » F =F-0 . Pr=Pr—DRo »

about a constant equilibrium state

T=Ty,, F=0, pr - pro = (40/3¢) T3 , (see Paper 1)

u=0, Pc=Pco »
1 3 az_-‘_:z-az ..a_’;_agoi .?...]¢
1 | Z\52 3 ax?/\af ax?] at

P
> 2 2 2 2
30, 6a\[d _ 2 3 \[S _ .2 3 )]
+K—T+ 0)(3:’ a2 NI T ok ¢
2

C
2 2 3
2, G \( 2 _ gl 25 )=|e=0: [2.9]
N [3( T )(a:’ e ax’) ar]‘b
where ¢ i8 defined by
: 2.10)
""'%?‘ ’ PE?"‘P:?""'PD’;:: [
X
| 3
18 l6(y=VeaT f2.11]
[2.12]
2
Qp == s
T PG/P z [2.13]
gt 1y +4 (v - 1) pe/pe} a7
-3 -y Vet 16(v=1) 52 [2.14]
as = —{1-12(y -1 1 g+ 12(y -1 B
[2.15]
2 2 A,i«/(A%-tta_%_g_g_%-oB;)
10y K20 = --——-----""‘2 B, i
{2.16}

8 = p/l(4e[3)T" + pa) '
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403 a%o Gio y a1
4, = alii___z_ﬁ__._a + 6 . + 6 £- + aio [2]7]
i 3(?—- l)ac ¢ ¢
Bln3aj‘?+.§f_- [218]
c C

In the equation [2.9] the quantities ayy as, ar}d asp appear with a second
suffix O to represent the values of a;, as, and as In constant state,

The left hand expression of the hyperbolic diflerential equation [2.9]
which is symmetric in space coordinate is grouped in three square brackers,

each containing a homogeneous differential operator of orders five, four and

three respectively. If we denote these operators by Ps, Py P, {2.9) can be

written as
Ps¢p+ Pygp+Pygp=0. [2.19]

As in paper 1, we define the solutions {rf;} satisfying P,¢p=0 (n=5, 4, 3) as
n-th order waves.
The characteristics of [2 9] are

dx[dt = +¢[+/3, | [2.20}
dx[dt = + as [2 21]
and dx[dt = 0 [2.22]

and thus these are the only curves in x-z plane across which discontinuities
in the flow quantities and their derivatives can exist. The range of influence
and domain of dependence are bounded by the outermost characteristics
12.20]. A disturbance, created in a region, Is initially divided into three
groups. The first group corresponding to characteristics [2.‘2(;] travels with
speeds comparable to ¢ and forms * radiation induced wave.”” The second
group, co::rcsponding to [2.21] travels with spced a5y and forms * modified
Eas-dynan}lc waves.” The third group, corresponding to [2.22] may be called

convective waves ”’ and these can give rise to contact surfaces. But as
these waves propagate the dispersion and damping change completely their
nature. From [2.15], [2.17] and [2.18] we can write

2 -
2 2 C d a?’ 4 o
Q100 Q20 == 29 g S0 dio a0
2(3‘]120/C+6(I)[c 1 c* {3(.?_1)(102'*-67“'*'6?}
s o {Eiq-i--a% (— 2 aYo 19 afo 1112]
o ¢ \3(y-1)a cfh*a(}'_z)"é_) | [223]
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When radiation pressure is comparable to
s gas pressure, |2.11] show
abJc=0[12(y — 1) a] and it is possible to expand 12:11] shows that

4 2

@0 Arg 2 aS, a2 \) 172
e + e — PN o - 10

{cz ¢* (3(}’—1)0 63+12ﬁ(}' 2.)0)}

in ascending powers of a%o/c? provided the speed of light in the medium is
large compared to the isothermal sound speed ayq. Retaining only the terms
up to first power of ayo/c® one obtains from [2.21]

b o2 ¢ _af;,/c + (50l {[ath/3 (y -V Palv3a? fe+6aly-1))
g cio- - - S
: 3 am/c-rZa

[2.24]

and a0 =87 . [2.25]

In [2.24] we can further neglect the second term in the numerator on the
right hand side to get

nl 2

¢ _aple _e _6{y-1)1-pF) | 2.26
3 af0/c+2tx 3 6(y—=1)(1=Fo)+Bo [2.2]

2
dXj0 =

Therefore, when pro=0 (pco) and Grp < < ¢’, one of the speeds of propaga-
tion of fourth order waves is isothermal sound speed, as in the case of

vanishing radiation pressure, ie. ppo < <Pgo. The equation [29] can be
written as

3(3 ¢ 32) a2 )2 a? )“tf:
S _«c el S L
c\arr 3 ax*/\af? axt/ at

2 2 2
] 3 afﬂ az T 0 E__ — ﬂ2 .._a._..
( i 6{1)(3;5 --(Im—‘"—"axz Bl‘ T0 axz ¢

c c

2 2 2 \s
2 aGpalfd 2 3 P =0 [2.27]
+3 (u +-—-{r;—)(a—‘z 850 ax‘)ar

~where a,q is given by [2.26].

With L as a characteristic
dimensional quantities

length in the flow field we definc the non-
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so that equation [2.27] becomes
t \2[3a% o 3\ d° a4 32 );_b]
(_) ['Icf'"_aif— axz) a2 aZ, ox® /st
l (331900%‘2+ _ﬂ_!"_o 32_ _ Eio._iz_ _E_!_z-- az _;_
ez L« ¢ J\at® afy 3x’/\at?  ax’
2 2 2 2 \a=
aro8jo\f @so O P¢J
| B, av et Y 2.28
+[ ( T )(ét’ aro ax’)at [2.28]

It has been shown in paper I, that when pg and pp are of the same
order of magnitude the neglect of the term (l/c) (aﬂa:) in the radiative
transfer equation leads to solutions significantly different from those obtained

by retaining this term.

3. INTERACTION OF WAVES OF DIFFERENT ORDERS

As pointed out in paper T fifth, fourth and third order waves dominate
in a signalling problem at various times. Therefore. a consideration of
interaction of waves of differsnt orders is important. The phrase “interaction
of fifth and fourth order waves® will be used for the modifications in the
fifth order waves due to the presence of the fourth order operator and vice-
versa. In general such a division of a differential equation (2.27) into the
three groups does not imply that any wave motion can also be dividsd into
three groups (such a division of waves is however possible for a signalling
problem), but this is just a mathematical approach to the basic understanding
?f the waves and as it is evident from the investigations of Whitham, it helps
in approximating the full differential equations by lowest order terms. We
shall closely follow Whitham's approach in this investigation.

(a) Interaction of fifth and fourth order waves. When the third order
terms are neglected, the equation (2.27) becomes

2
(3 _E NP, 3 \ag
clar 3 2 \S279%0 3 ):
3X &t dx“ / at

ajo  2a\[ a2 2 2 2
4+ 3( 20,29 e 2 0 o 2 O
(cz + c)(étz ng';f é—r-;_;-um —-——axz ¢ =0, [3_]]

4 various wave motions can be found using the
ave motion with velocity o the derivati d
Y- ; _ erivatives a/ ! ap

( /5-") of any quantity are approximately equal. Accordingly, for the
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fifth order radiation induced waves we can substitute 3/3t = — (c[4/3) 3/3x%

in equation [3.1] except for the terms forming the f
. . act
Thus, in the neighbourhood of the curye dx/g(dt)____c/i/t;r /3t + (e[4/3) a]ax.

At /a c g ‘
*T(T?“"_ ? -!-rrc?——-i'_o

or, omitting the factor 3*/3x* from ths operator,

A¢h ¢ 3¢
+ - -
ar A3 axtace=0 [3.2]

with the general solution

X

¢ =file-(e/v3) e, [3.3]

where f; is an arbitrary function of its argument. Thus this wave is
exponentially damped, the exponential damping distance being

ds, cl 4’3 = l/(‘\/:’i'ﬂ ). [3.4]

Similarly, for the fifth order modified gas dynamic waves we substitute
(3/31) = — a5 (3/> x) in [3.1] and obtain

3 2 2 2
a—2+ﬂsﬁ-ﬁ+am ﬁogfﬂ‘iﬁ“o- [3.5]
lod § QX 2 dso

The exponential damping distance, in this case, 13

2as [3.6]
¢l - e — '
4 afa (0.30 o a:':"o,

d;,
[3.7]

hat ds, /43 =1/4/3 (mean free path of
he fifth order modified gas

When ppo=0 (PGO)r alzu/c - () (a) and hence ds, a,0 =0 (dsof(! C) .

From [3.4] and [3.7] it is evident t
of radiation) and d,,asy <<ds, ¢/ v/3 5O that t

dynamic waves are damped very rapidly. |
It is interesting to put 3/3 ¢ =0 in [3.1] except in the factor 3/3t of the

[ ] > L} ] "
fifth order operator, in order to investigate th? i convccu;;t\:i:;\;cs corres
ponding to the characteristic dx[/dt=0. 1p this case onc

: _® 3.
?2_’_01’0:10 ‘p:_u [ 3]
ol a50 s
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with ggneral solutions 2, b,
¢ =/ (x) Exp. [— #a"éo I} [3-9]

where f> (x) is an arbitrary function of x. Therefore, due to radiation, the
discontinuity in contact surfaces is exponentially damped, with “ decay time *

ﬂszn .
TS»0™ "2 2 [3'10]
410 950

These results are in agreement with the results of paper I, where 3
solution for a signalling problem is given. For a signalling problem, in which
there is a uniform region at rest for # <o and a disturbance is created at
some point of it at t=(, the convective waves will be absent. But in ap
initial value problem with variable initial density distribution, these waves
must be present and they will be rapidly damped, because Ts, o 15 SmMall,

For the fourth order radiation induced waves, [3.1] may be approximated
by using 3/31 = —ae (3/3x) in all terms except the factor 3/2 ¢ +q,, (3/3 x)
in the fourth order operator, This gives, neglecting a%g/cz In comparison to
unity,

3¢ d¢p ¢ >’
¢ - P [3.11]

=== 1o ==

3¢ d3x 3 (akfc+2a)° ax®

which represents diffusion of waves with diffusion coefficiant

k4l aig = E - * [3 12
3 (alo/c +2a)? 12

The numerical value of k¢, a1o 18 Of order of cfa-

The fourth‘ orc{cr modified gas dynamic waves are also found to be
governed by a diffusion equation of form [3.11] with diffusion coefficient

2 2
. 50 - ato

To get ] '
get an idea of the magnitude of ks, ar, We take a typical astrophysical

situation with 7, = 105°
Ty =10 "%, and pgy = o (PGo). In this case we find

2 2
Qso — ary 3 Gfo
"_"'"'_"'"c 0 (10 ), -;— == 0 ((I)

even though afo/c® = 0 (107), We also notice that

‘ lo »
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(b) Inrercfcrfon of fourth and third order waves. When the fifth order
operator is omitted, the differential equation [2..7] takes the form

3 (ai o2 5 B \2 32
2 2 1
2, G« o » 3\ d¢
+ 3la + —_— =0l ——. ) — (- 14
( ¢ )(31’2 * ax’) d1 [3.14]

As in the previous case, the fourth order waves will be exponentially
damped and the third order waves will diffuse. We can easily show that the
damping distances of the fourth order waves and the diffusion coefficients of
the third order waves are

2 _\/(a?o,(“) ‘\/(a%/{‘ + g_a)

C—— . . 3.15
4 10 ~/3 (a$00/c+a2) [ ]
2 aTto ﬂfn
dysog_ == ——5 i ; [3.16]
Nore 3 a {afD/c +a) (ﬂﬁo = ﬂ'zru)
X B 9%0 (ﬂg-n —'ﬂ'zrg) _ [3.17]
790 6a ado (dofc +a)
2 o
a
and k3, 0 = T -

3a ﬂ?m (5‘?0/6‘ + II)

- . . 2 7.2 .
In the derivation of these expressions, terms containing ato/c” are neglected in
comparison with terms of order unity.

Under astrophysical conditions with pro =0 ( pgu) we potice that

dy 0o =0(1/a) , [3.19]
dy, o =0(c/a aro) . [3.20]
ks, :o =0 (cfa) , [3.21]

k:: =0 {(c/a) . [3.22]

(¢) Interaction of fifth and third order waves. The neglect of fourth

order operator, reduces equation [2.27] to

2 3 a2 \/[a? d° \ 3¢
3 .?._.f__al-i-‘(é—i-agu——;‘)““
2 3 23x
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rator 33 ¢ is a common factor of the left hand side of [3.23]

The Otl;cc third order operator does not affect the fifth order convective

anci l;e::; vice versa. These waves, in the absence of fourth order operator,
wave '

move with the fluid particles without attenuation and dispersion.
For any other fifth order wave, the equation [3.23] can be approximated by

where m (¢ 0) is a fifth order characteristic speed and » is another non-zero
constant. In this case we substitute ¢ = &“***) and obtain

kfw=1[m ~(n[m) 1/e’® - [3.24]

Thus the wave number & is a real function of w and there is no attenuvation or
amplification of fifth order waves due to the third order operator. Again

[3.24] gives
d (k) 2n1 [3.25]
dw \ w m o’

and since the fifth order waves are high frequency waves, this means that

there is insigificant dispersion in these waves.

Approximating [3.23] in the neighbourhood of dx/dt - ag by using
3/dx = — (1fase) 3/3 t except in the factor 3fa t + (aso) 3/5 x and substituting
¢ = &'*"¥) in the result we obtain

klw=1las+ A &® , [3.26]

where A is a non-zero constant. Here again we find that k is a real function

of w so that there is no attenuation and amplification of the third order
waves. Also

dfdw (kfw) =2 4 o [3.27]

and since the third order waves are low frequency waves [3 27] means that
there is no significant dispersion in these waves dye to the fifth order operator.

It is easy to trace the terms ig equation [2.2] —[2 8] which give rise to
operators of different orders in [29]. The continuity and momentum
cquations are taken as they are in all the three Cases and the difference arises
On account of the occurrance of different terms in the energy and radiative
transfer equations in these Operators.  We have marked the combinations in
[28], [2.5] and [2.6] by V. 1V and Il according as they appear in fifth order
or fourth order or third order operators.  Since we shall discuss the third

order waves In detail in the following we collect here the terms in the energy
and radiative trapsfer equations detcrming these. These are
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(;r— + u —z-x)(PG +PR) -2fo ¥ 4—(—? :—l)pR (P— + u-a-) P
p ot ex
+(3y-—4)(-§;+u-§;)pg=0. [3.25)
0=4na (3B/2x) +3a2F [3.29]
o ¢ (2pr/ox) +a F = 0. [3.30]

We shall call these equations along with the continuity and momentum
equations as set IIl.  Now we ask the following question * Is it possible to
approximate the set of full equations [2:2] - [2:8] by the set III and if $0
under what circumstances?”” The answer to the first part is in affirmative.
To answer to the second part we bave to examine the non-dimensional equation
[2:28). This equation shows that the third order opcrator becomes more and
more dominant with decreasing values of 1/aZ which is the ratio of the mean
free path of radiation to a characteristic length in the flow field. In equatien
[2-28], the fifth and fourth order terms contain square and first power of
1/aL respectively as factors. Thus we have two different situations when
1/cL is small. (i) 1/aL is small so that the fifth order terms can be
neglected but not so small that the fourth order terms can also be neglected.
Such a flow may be called * Rosseland flow ™ since in this case 3F/d3x is
retained in [2-8] while equations [2-5] and [2-6] reduce to

-
0 i i S 22 -_a—-F+3a’F [3.31]
3xX ¢ ot
and J—?—E+CM+GF=O [3.32]
c ol oX

giving Rosseland diffusion approximation to radiative tran§fcr equation when
the terms containing 1/c are neglected. (ii) 1/aL is sufficiently small so that
both the fourth and fifth order terms can be neglected. We define such a
flow to be “flow in large . Thus the set 1Il can be used when we are

interested in changes in flow and physical paramcftcrs over f!istanccshvcry
large compared to the mean free path of radiation in the medium. Whena

characteristic length, say the distances between two points P and Q, of the flow

. field is much larger than the mean free path of radiation, and flux from P 1s

almost absorbed before reaching Q and the motion of the mcfhum takes plac;
without any heat exchange between points whosF rznutual d:stnncr; a:;mnucle
larger than the mean free path of radiation. This 1 not the only ’. lhgse
where a set of differential equations is approximated by rctamn:igoc:ln y e
terms which lead to the lowest order .operator. In magactohydrodysamics,
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qmotion of infinite conductivity is made to achieve such a gbfﬂ: In 2ero-
ey assumptions of zero viscosity and zero heat conductivity remove
the higher order terms. It is surprising to note that in all these three cases

the approximate equations represent isentropic flow. Whatcver may be the
opacif)?orq medium, it should be regarded as one with low opacity if the

chaneces in flow and physical parameters are t_o be considered across dis_tances‘
ovcr;hich a ray of radiation is no? sugn:ﬁcgntly abs?rbed; o.thcr.wxsc the
medium should be regarded as Optlca!ly }thk. While considering the
structure of a shock wave, the interest lies in the changes_ across the shock
region and we cannot presuppose the width C'}f th? shock region to be much
Jarger than the mean free path of radiau?n in order 19 glpply Rosseland
diffusion approximation. It is worthy of notice that M.asam':'.‘ work on the
propagation of shock waves is based on the cquations in set IIL. He
considers the propagation of shock waves in hot and massive stars defined by
Boury’s'® models where a is of the order of unity in C.G.S. system and £ can
be taken to be radius of the star, Actually for temperatures of the order of
10° °K, the set IIl can be used when 1/oL < 10°°. Thus the present
analySis, while pointing out its limitations, gives a theoretical supyort to

dynamics, the

Masani's work.
The discussion of the interaction of waves in this section has been done

in somewhat arbitrary fashion. While discussing the efiect of fifih and fourth
order opsrators on the third order waves one should proceced ina more logical
scquence starting with a solution of the lowest order eqmation and building
up the effect of the higher order terms as perturbations. Here we shall take
the signalling problem, discussed in reference 2, and find out asymptotic
solution for large aL. This will clearly show the diffusive effzct of higher

order terms in the *“flow in large "
We wish to solve the equation [2:28] for x > 0. t > 0 with the following

initial and boundary conditions :
At t=0, $=5t=ﬂ?tt‘¢ttt"?tttt"0 for x> 0 [3*33]
At x=0, (Cgp/ox) =(aL)3 for t=0

- () for t <0

(3¢/3t) = —(aL) ¢ for t >0
= {) for t <0

[3.34]

B=ar g and pye=poalyc are the velocity and total pressure respectively
Imposed on x=0 for t>0 in an otherwise undisturbed medium, ¢, being
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the solution is found to be
LS 1 -
R L 3 & dp [3.36]

where [' is the path such that Rep =constant and i
i [ 4 : = t t
singularities and o the right of the all

P=Ae* 4A 0T [3.37]
S -gg + «/Eﬁ -4 b% psi-.s- L
Y1y Yamt = e S ]
[ 25, ; [3.38]
- BRE BRI gy
P Ay —v2) p ("/2 -yl)
 JRRp I A M [3.40]
1 ({"(L): 50 ({1 L} 10 » '
3 =-1- l+3_a.§9 p’ + ] (_2+1)(3—ﬁ9+6 _I_PZ
> (al)? c? (L) 7\ ¢ c
+3(1 +ajp/c)agp [3.41]
b; = : . p2+—-—1—-(§-3j—9+f)—]—p+3(l+ﬂ) [3.42]
(aL)® c? (a L)\ ¢ ¢ c
and {; -l ‘s Bgg - Aso s C= . . [3.43]
arto G710 aro i

Assuming 1/aL to be small one can appropriate ;1,:;2, A,, A; by
exp.nding these functions in ascending powers of 1/aL. Itis four.d that

> = — & VL p" = (&:[VaL) PP 4 - - - [3.44]
i 1 &Haso 2, ... [3.45)
ra= —350p+2[ﬂ[4)p

E—:/ﬂso-i'[:ﬂsofs/?{i[,)]p.;_ . v _%-2_' [3.46]
f;ﬁ/;z,{l- ll(f:ﬂsu‘\/ﬂL)p“z-i- .o} P

K o =

I LG54 TA)1 e g X [3.47)
ke {lf(EnﬂsM/a)} p okl

A; =
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where the constants &, & . & etc., are very compliczated functions of
o0, Aso s € and a,. But neglecting terms or order 1/¢® with comparison
’

with terms of order unity, it 1s found that
£, = (aso/a10)[3 +3 (a?y/c)]''?,

£, = (330 — 1) 250/ {2230 (3 + 3ato/c)"'*} [3.48]

ajp (a5 ~ 1)

and s a (3 +3 aio/c) .
One can write [3.36] as = @; + &2 [3.49]
— 1 :y-nx'f-ﬂt ‘
where O - —‘[ A e dp [3.50]
2mi
r
o | y1 x+pt
and G = — f Are dp [3.51]
211 r

The characteristics of the third order operator are dx/dt—0 and
dx[dt = t+aso. The first corresponds to the convective waves, while last two to
iseatropic waves. In the present signalling problem ecomvective waves are
absent due to uniform initial state but there is diffusion from the disturbance
at the wall at x = 0 and this ditfusion is represented by 5, . In this case it is
sufficient to retain only the most dominant terms in :y-l and A; so that

i ! E" :/350 . e g
N S e L T
and this leads to
Py = — (ﬁ" efaso) [ 2 V"L_t:___a,_lo__ exp { _Q_i- 3 afufc‘ agn (al,) _x_’_
Vﬂ(B + 33120/0) 8s0 4 afo t
e (CIL) Xerfc Jufﬁ)/c)jﬂ ‘\/—- _)_(=}
22, vVt [3.52]
where Y, N s
erfc{y} -—‘\/_ J. e 7 d‘T.
e
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This clearly shows the diffusive effect of the fourth and fifth order

terms on the third order convective wave, But it is important to realise that

b, is not significant for a signalling problem since its effect is confined to a
region close to the w?l!. 8t X=0. The third order isentropic wave is
represented by ¢, and this is the most important term. We can write

P = __}_J. :‘@151‘\/&) p'’ 1
2xi . T\ 112
r 1=1/(£1a50 VaL)p'? p

; e *® dp [3.53]

p £ia X
thrc ) 4 (p e (l p— .__) + 3 <50 A 2, .
) ago t g 2(a L) ¢ d 3.54]

The method of steep:st descent used by Lick®, can te employed here
also to evaluate ¢, when |x —agot| is small. It is found that

¢2= — € (t—x/aso) (aL) H (t—x/asc)

< B {sdolx - aset] /[(a3 - l)x]}"’[ o lx—ast] o felx—astlVal
' 1 — {jx —asot| / [(a5o — 1) x]} " (aL) as0 “ag { £ }
i ¢ (x — agot¥¥(al)
—c;(aLx)"? exp { - -;‘-—'-‘T;P-- } ] [3.55]
where H (t - x/aso) =0 when t < x/aso

-] when t > X/ﬂsu:

[ 23 ]”’ (3 + 3 af/c)'"” aso
Cl = T

2(a— 1) 210
2 12
aso — | _ 40 .
and C; = [2 = 33;0] 20 (3 + 385 o)

This solution is valid for small values of |x — asot|, ie. near the wave
front x =ag,t and under present approximation

e — B {ak |x-astl / [(a%—1)xl}
1— ¥ {|x—ast]|/ [(a%—1)xL}

should be taken to be ¢ and in fact this has alrcac!y been don; 1; :}l::t ﬁorz:
term of ¢,. However, we have retained this term in order to sho

— — — & » . on
of the two boundary values € and g the effect f’f B is small in e;znza:;:vc
with that of ¢ on the “flow in large.” This solution repres

isti iffusi f higher
moving with third order characteristic speed ago and diffusive effects of high
order terms in it.
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4. VARIATION OF THE FIRST DERIVATIVES ALONG CHARACTERISTIC LINES

Non-linear wave propagation : |

A general property of the characteristics of'a system of dltferent?a]
equations is 1hat the varjations along thesc curves 1n the nth 'ordc_r partial
derivatives of the dependent variables can be completely determined 1f_a11 the
lower order derivatives are given on them (see Courant a.nd Hillbgnzn,
page 618). In this section, the variaitons of the first order partial derivatives

are determined along the characteristic

dx[dt = c[+/3 [4.1]
and dx/dt = as Fu [4.2]

It is to be noted that in RGD [4.1], [4.2] and (dx/d!) = u are the only curves
across which a discontinuity in certain derivatives of dependent variables can

exist.

Consider discontinuities in the first derivatives of the flow quantitics
propagating along the characteristics [4.1]. As [4.1] is one of the outermost
characteristics, the flow ahead of it remains undisturbed and it is convenient
te take the flow ahead to be of constant state given by T =T, PG = Pco,
pR—pRgE(40/3C) To4, u—O, F=0 and P =pP0.

The equation of the characteristic can be written as 7 — [4/3/c]x-=0,
and the flow quantities behind it can be expanded as

PG =Pco + PGt (x)1-+ =
Pr=pro+pri{x)r+ - ,
p=potp(x)r+ - - ’

Um0+ o (x)r+ « - - , [4.3]
and F"‘0+F|(x)1'+ -
where T =t - [V/3]c] x- [4.4]

Then pg, (x), Pri (x) etc., give the magnitudes of the discontinuities in

:-deri?alivcs. Substituting [4.3] in [2.!]—[&.3], 12 5]—[2.6] and [2 8] and
¢quating the various powers of r it is found that

d F, (x) [ v 3-af (a2 - 0%,)
—— = | /3 101950 — @10)

dx - 2(y—1) (1 - 3a§0/c2)] Fi(x), [43]
por(x) = Y300 oo | [4.6]
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r () e
. % U] = e 27 h e [+.7]
V3
P () - 5 R ), &
(el aiy

TI (x) R Po C3 (l -3 ﬂ%;;/fz) Fl (x) [('9]
a.ad pri (x) =[1/c /3] F, (x): [4.10]

From [4.56] and {4.10]
Paci d 750 . PR (X) . [4.11]

- (1-3 ash/c?)

In the right hand expression of [4.5], the second term in the square
brackets can be neglected in comparison with the first. This equation shows
that the non-linearity of the equations of motion does not contribute anything
to the radiation induced waves and whatever may be the initial value of F,,
it ultimately =0 as t—> o». Thus the discontinuities in the first derivatives
of the flow quantities in radiation induced waves are exponentially damped
and formation of a front, carrying discontinuitics in the flow quantities
themselves, is not possible from a continuous flow. From the expressions
[46] —[4.11], it follows that the quantities Pgy, ¥, py and T, are small
compared with F, and pg, as it should be in radiation induced waves,

Now consider discontinuities in the first derivatives of the flow quantities
propagating along characteristic [4.2). In general, the flow aheat_! of this
curve will be disturbed by radiation induced waves. But we have just szen

that for radiation induced waves #;, pGi,» pi» T, are small co.mparcd to
pr; and F, and hence the main eifects can be seen for the special case in
which u=0 and pg, p, T are constant ahead of [4.2]. Now the equations

[2.5], [2.3] and [2.8] give
22 3 3% 6a 3 _3a:) Fel, [4.12)

and 3 (y — 1) 2pgfot + (¥ — 1) (3F[2x) = . [414]
Elimination of pg between [2.6], [4.13] and [4.14] gives -
4.15

3' Fla x* =0
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d (l/c) (GF/R-I) + 0 Fe=0- [4.16]
an
The flux F satisfics an over-determined sysiem of two partial differential

i 6] is not independent of
i ely [4.12] and [4.15]. Equation [41 |
E:;qtlzz;il‘;?ldn[‘:‘:l[sl}f [NOW let us consider a particular solution F=0 of [4.]5]

and [4.16). In this case, from [4.14] (>pr/3?) =0 and from [4.13] PR = con-
stant. Thus the assumption made just now leads to a paruculta_r solulfon'
F <0 and pgr =constant ahead of [4.2]. N?w the flow quantities behind
characteristic [4.2], which now may bc. written as - x[ass =0, can be
expanded in the form [4.3] where the relation [4.4] is to be replaced by

T=I—X/a5o'

Substituting in [2.1]—[2.3], [2.5]—[2.6] and [2.8] and equating various
powers of 7 it can be shown that

2 2 2
duy (x)/dx = — 200 %0~ 10, 0y L ¥ 21 20 [4.17]
2 dsg asg 2 azg

p1 (x) = (po/ase) u (x), [4.18]
Po1(x) = py aspu (x) [4.19]
and F, (x) =pr;(x) =0, [4.20]

where alofc® is neglected in comparison with terms of order unity. The
equation [4.20] implies that whatever may be the nature of discontinuities in
the time derivatives of u, pg, p the time derivatives of F and pgp are always
continuous. The first term in the right hand side of [4.17] corresponds 1o
small amplitude waves governed by linear equation. This term represents
the exponential damping of u; and the damping distance agrees with that

given by [36]. The second term results from the non-linearity of equations.
The solution of [4.17] is

1
o bt~ ey , 4.21
| [A+(1/U, - B/4)e™ [4.21]

2 2
wiiere A4=20 Go-an [4.22]

A —

3
2 asg asp

B_Y*1
2a§0

and U, is the v?lu.c of u, at some point, S8y x = 0. Since we are moving
along a characteristic dx/dt 50> 0, x>0 in [4.21].
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When Uy < 0, 1/U, -~Bf4 < —BJ4 but |1/U,~B/4| > B/A so that

u, remains negative for all finire values of :
: X > 0 and roonoto i
from Uy to G as x varies from 0 to oo nically increases

When 0 < U; < 4/B, u; (x)
increases from 0 to co.

V-Vhen‘ U, > z{/B, 1/U, - B4 <0 and u; monotonically increases from
U, to infinity as x increases from 0 to X, given by

X=(1/4) In {U,/(U, - A[B))- [4.23]

monotonically decreases from Uyto 0as x

Now u; < 0 corresponds to an expansion wave, while u; > 0 to a compression
wave. Therefore, as in ordinary gas-dynamics, expansion wave never leads
to the breakdown of continuity of the flow. But for a compression wave
the situation is completely different. 1In ordinary gas-dynamics a compression
wave always leads to the formation of a shock front, whereas in RGD a
compression wave leads to the formation of a shock front if and only if

2
Ul > i [ alﬁ (ﬂ§0 s ‘!‘%ﬂ) -

B (y+1)ag

[4.24]

The numerical value of the expression on the right hand side when 7= 10°
and pro = 0 (pgo) will be of the order of 10'°«. This is an important result
as it tells us that a shock front can be formed only if the initial disturbance
producing the compression wave, is sufficiently strong. This also explains
why Zel’dovich' and Heaslet and Baldwin'® find a discontinuity in pg. p, T, u
in the structure of only strong shock waves, Again, if a shock front is
formed, the discontinuity will be only in pg, p, 4, T and notin pg and F, as
shown by equations [4.17] —[4 20]. This result is also in agreement with the
results of the authors cited above. The above result also gives a theoretical
support to the basic assumptions made in a previous paper’ on the structure

of a shock wave with radiation.

5 SIMPLE WAVES AND SHOCK WAVES IN RGD

At the end of § 3 the conditions, under which the equations of

motion in RGD can be approximated by the sct 111, have been stated. Tn
this approximation, as it can be scen from equations [3.29]. [3.30] and [2.7],

radiation pressure and radiation euergy density are replaced by their values in
thermodynamic equilibrium

pr = (4 [3c) T4, Eg=(40/c) T4- [5.1]

: . the flux term as if the motion is
The equation of epergy does not contain e [2.2]’ [23] i

isentropic in large. Using [5.1] we can write the cquatl
[3.28] as .
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M ulle sy, [5.2]

Pl AX QX

du o4 123p g [5.3]

ot dx p OX

3 3 ,f 3 a)

s —jp—a<l — 4+ u— = 5.4
and (a:+uax)p S(at X 3 [ ]
where P=pc +Pr’ [5.5]

ac is given by [2.14] in terms of 8 and B is rclated to the density p and total
pressure p by

{1 ~ ;Q) p" 4o
T [5.]

The equations [5.2] —[5.4] can be replaced by an equivalent system of
three characteristic equations

dp+a,gpdu=0 on dX/df—H'*'aS: [57]
dp—-ﬂgp du=0 on dx/dt=u-a_g [5.8]
and dp—asdp=0 on dx/dt=u. [5.9]

For the discussion of forward facing simple wave running into a region
of constant state (see Courant and Friedrich'’), the two relations [5 8] and
[5.9] are taken to be valid throughout the fow field, so that

P

P-Ptr'-j as dp [5*10]

Po

and P
u—fasdp/p. [5.11]

£9

Now the expression [2.14] is written as

as=I"(p/p) [5.12]

where I‘-E_:}_Z)Bz“n(?"‘l)ﬁ*‘ﬁ(?—l)

L2y D g+ 16(y 1) (5.13]

{l-lz(y-—l)}.ﬁm(y—u
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invo]vt:s B, which is a complicated function of p and p as shown by [3

In ordinary gas dynamics I" =y, which is a constant and equations [5 }I(O] \6]
[5.11] can be at once integrated. However, [5. 0] with [56], [512] dng
[5.13] ¢xpresses p in terms of p and [5.11] expresses u in tcrm; of aon
characteristic dx/dt =« + a5 all the three equations [35,7] —[5.9] are vafid ang

hence p, p, u are constant along this characteristi
‘ . 1Ic. Thus the velocit
propagation of the wave is u + as. From [5.6], [5.10] —[5.13] it is foundyth(a):

2

8 T wsas) =5 (8) + 4 (5) [5.14]
where ¢ () and ¢ (B) are functions of 8 only, given by
$(8) =T (1+7) [5.15]
and
J'p _{4 3)(-3n) 80 - pilf1 - 120y - 1); 824+ 24(y - NB-16(y = 1]

T @-pi-n2G-ig+12(y - )P
[5.16]

It can be shown that for 0< B< land 1<sy<2, ¢(8)+H(B)is always
positive, so that in this case

(d/dp) (v +as5)>0

and the propagation speed u + as is a monotonic increasing function of p and
hance of p. Therefore the wave region of higher density and pressure moves
with higher velocity and a compression simple wave ultimately ends in a
discontinuous flow. The appearance of discontinuity in the third order
simple wave ultimately ends in a discontinuous flow. The appearance of
discontinuity in the third order simple wave means that the approximate
equations are not valid now and the neglected higher order terms, introducing
diffusion in these waves, are crucial. However, as Whitham pointed out in
the case of bores, the higher order terms need not be included cx'plic.:isly.
The solution by third order terms can be saved by introducing discontinuities,
satisfying * Rankine-Hugoniote conditions * for the sct III. Such discontinu-
ities, still called shock waves, will be different from shock waves in RGD in
which the radiation flux, radiation pressure and radiation energy drfnsity will
be continuous, The Rankine-Hugoniot conditions for the third order

{erms are

py g = patig = m (say) [5.17]

2
PGy +Pr1 1 Pi H‘I' -pG2 ¥ PrR2T P23 [5-13]
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and
Egy + ERI/PI + }f”f +(u,/m) (PGI +PR1)

= Egy + Em/pz + -%' “g + (“2/’") (PG;: +PR2) [5.19]

where pr and Egr are given by [5.1], suffixes 1 and 2 refer to quantities on
the two sides of the shock and u;, u, are velocities relative to t_hc shock fron‘t;,
Thus the Rankine-Hugoniot conditions [5.17]—.[5 19], ﬁrst‘defwcd by Sachs®,
apply only to the reduced set I1I i.e., for flow in large. Flrfdmg‘str:lcturc ofa
shock in RGD means joining the parameters on tﬁhc two sides °1 ar}d ‘50
(supposed to be at infinity on both sifies) by' solut_lons of the full ec-quatilons of
RGD and the structure may contain a discontinuous front satisfying the

Rapking-Hugoniot conditions

pyliy= pglig=m, [5.20]
Pos+ pats=Pcu+ patis [5.21]
and
1
Eg; +-l- i+ BLG3 4 (Eg +pr)
2 m P3
1
mEot—u2+ 2% 1 (Bq 4pp) [5.22]
2 m P4

for full differential equations in RGD, where suffixes 3 and 4 refer to states on
the two sides of the shock and Eg. pg are the non-equilibrium values of
Eg, pr on the both sides of shock. It is important to note that in both

sets [5.17] —[5.19] and [5.20}- [5.22] the radiation flux does not give any
contribution.

Now we shall come back to the discussion of simple waves. The
function ¢ (B) in [5.14] is due to the dependence of I" on B and hence on p.
The numerical values of ¢(B) and ¢ (8) are given in Table I for y =3 and
this table shows that ¥ (3) can be neglected in comparison with ¢(ﬁ)
Therefore for y = 3, I" can be taken to be constant and the discussion of

simple waves in RGD becomes exactly the same as that for a polytropic gas
given by Courant and Friedrich!’.

6. FORMATION OF SHOCK WAVES IN SPHERICAL, CYLINDRICAL
AND PLANE MorTIiON

The propagation of g
been studied extensively with
mass from the stars,

paerical shock waves in stellar envelopes has
a view to study the phenomena of ejection of
The general investigation of formation of shock waves
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d L TABLE I

i

. B $ (B) 5 (f)
0.0 3.111 0 00000
0.1 3.173 —0.00021
0.2 3.238 — 0.00086
0.3 3.307 — 0.00199
0.4 3.379 — 0.00368
0.5 3.459 — 0.00606
0.6 3.549 — 0.00941
0.7 3656 - 0.01429
0.8 3.794 —0.02173
0.9 4.005 —0.03194

1.00 4.444 — 0 00000

in plane, cylindrical and spherical motion in RGD will be considered here.
For one dimensional motion, this problem has already been considered in §4
with full equations of RGD and it has been found that even for plane motion,
shock wave is formed only if the initial disturbance is very strong. Therefore,
it is assumed here that the changes in flow quantities over small distancss
(e.g , distances comparable to mean free path of radiation) are not important
and our interest lies in *‘ flow in large®. This assumption can be made for
discussing waves in hot and massive stars such as defined by Boury's' models.
This problem has ailso beco investigated by Pack 2 in the absence of radiation
but here we shall include radiation terms and show that his results can be
immediately obtained by a very simple alternative method. The equation of

continuity is
ot ax X X

where @ =0, 1, 2 for plane, cylindrical and spherical motion and x represents
radial distance when « =1, 2. The equations of momentum an.d encrgy are
[53] and [5.4] with relations [5.6] and [5.12] in physical variables. From

these equations we can obtain

~ ﬂpagu [62]
d 3 a,{_§_+(u+a5)_—}u+ -0 .
{at-l-(u-{-as)ax}p-l-,os Y - p

2
= GPG&H . 63]
wd (24 a2 o g [t wmed e
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Let us consider a forward facing wave (diverging wave for a =1,2)

‘ i = and u=0. Then, since
:no into a uniform state given by p=po, p = po '
:E:!}:I;it of the disturbance must be bounded by dx/dt =u+ as = ag, there

exist discontinuities in the first derivatives of the flow quantities across the
characteristic x — aso? =0 with a proper choice of the origin of 7. We can

expand the flow quantities behind this characteristic as
p=potp(x)7+ -,
p=pot+pr{xX)r+ 0+, [6.4)

u-0+u.(x)'r+ ' v

with 7 =1t—X[as.

Substituting [6.4] in [53], [56], [5.12), [6.1] and [6.2] and equating
difierent powers of = it is found that

p1 = polas u; [6.6]
and P1 = po as 1y [6.7]
where D =(1/2T) [¢ (o) + ¢ (£o)]

and the suffix 0 represents the values of quantities in the uniform state. The
equations [6.5]—[6.7] are the same as those obtained by Pack.

If Uy be the value of u; when x=x, the solution of [6.5] is found

to be
1 x |82 { | 2D 2D
s g . o o —— Xob — ; -x, for a=0,1 |[6.8
P (1’0) Uy (2-«)ad o} (2-a)a% . (6.8]
1 1 D X

and =X | ——— . — lopg f — ;
uy [Ul X9 ﬂgu ‘ -To] kil [6 9]

Same results [6 8] and [6.9] are obtained for a backward facing wave
(cﬁonvcrgent wave for a =1, 2) by proceeding exactly in the same way except
With 7=t 4+ x/a., and substituting {6.4] in [6.3] instead of [6.2].

4y becomes infinite ie., a shock wave is formed at x = y given by

y1 ety -af2 ] "ty + [2_0/{(2_— a) all} Xo
2D/(2 - a) o,

, for .a—O,l [5.10]

2nd y=XoExp. [a0/(DUiwo)] . for a w2, [6.11]
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U, represents the time rate of change of u at the wave front when it is

at x=Xxp and for a forward facing compression wave U, > 0 and for a back-
ward facing compression wave U; < 0.

(4) Effect of change in volume due to cylindrical and spherical motion :

The quantity a%/|U,! D has the dimension of length and we define the
non-dimensional quantitics £ and £, by

--—;f: Y fﬂ" -ag Xg -+ [6.12]
[6.1C] and [6.11] give
1~aj2 -a/2 2—a IU'
3 = &0 [fo v L’:] , for a=0,1 [6.13]
and U] 1)
¢ = & Exp. , for a=2¢ [6,14]
U, &

The graphs of £ versus &, are shown in Fig. 1. Curves in set 1 represent
forward facing wave with U; > 0 and these in set Il backward facing wave
with U, < 0. The curves, for a =0, in both sets are straight lines showing
that breakdown of continuity occurs after the propagation of wave through
a constant distance | £ - .fol =1]. The curves fora=1 and a - 2, in both sets,
asymptotically terd to that for o = 0 as §o—> ==. For a forward facing wave
the distance € - &, travelled before the shock is formed, is greatest fer
spherical motion and lesst for the plane motion and in cases a=1,2;
£_ &—> oo as & —> 0. Thus a forward compression wave, creaied near
origin, ends into a shock wave at a very large but finite distance in cylindrical
and spherical motion, For U; <0 and a=1, [6 13] shows that for £, =1,
U ->oo at £=0; for £ >1 , uy—> oo at points for which £>0 and there
is no positive value of £ where u; —> oo for & <5 In this case the right

hand side of [6.3] vapnishes for x=0. Thus in set 11 ¢ — & curve, for a - 1
is a part of &, axis for 0 < £, <% Thus in cylindrical and spherical motion

converging compression wave ends in discontinuity either at origin or before
reaching it. Putting all the results together we find that a compression wave

always ends in a shock wave of the set IlL.

(B) Effect of variation of Uy on y '
The non-dimensional quantities g and ¥ are introduced by

D
qnland Vlﬂytzxo- (615]

Xo o a0
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Equations [6.10] and [6.11] reduce to
2/12-a
2 V)
and 7 - e’"r . for a = 2. [6.17].

Here V, > 0 corresponds to forward facing compression wave and V; <0
to backward facing compression wave. Fig. 2 gives graphs of 5 versus ¥,

For a =0, 5—V; curve is a rectangular hyperbola with ¥; =0 and
n=1 as its asymptotes. As IV;I-—* oo , the values of /] for a =1 and 2
tend to be those for a =0. For a forward facing compression wave, smaller
the initial value ¥, larger is the value of n in all cases a =0, 1, 2 and for a
fixed value of F;, 5 is least for plane wave and greatest for spherical wave.

For a backward facing compression wave 5 —=> 0 for a=1,2and n = - oo
fora =0as V;,—> - 0.

(C) Effect of Radiation

Here the values of py, pg. xo and U; will be'kcpt fixed and the variation
of y with By will be investigated.

For plane and cylindrical motions, it is convenient to introduce the
non-dimensional quantity

8= {(p/xp)! o2 1} Vs moralre [6.18]

and for spherical motion the quantity

CZ"' (y/xu)t'o Vixolpe , [6.19]

Then [6.10] and [6.11] give us

Go=[(2—a)2) (I's/D) , for a=0.1 [5.20]
and §2=eXp. (f'o/D) , for a=2- [6.2]]

In this case £, and {, are functions of fo only. Their values for different

values of ﬁq are given in Table II which shows that changes in the values of
¢y and &, with Fo are not significapt, Thug

IHnsce

i =
J]
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TABLE II
4

Bu rl_,_ CZ

1 == 0 Q= ] Qg = 2
0-0 1.143 0.5714 3.136
0.1 1.149 0.5746 3.155
0.2 | 1.156 0.5778 3176
0.3 | 1.162 0.5812 3.198
0.4 1.169 0.5849 3.221
0.5 1.178 0.5888 3.247
0.6 1.187 0.5933 3.276
0.7 i 1.197 0.5985 3310
0.8 1.210 0 6052 3.355
0.9 1.229 0.6147 3.419
1.0 1.250 0.6250 3.490
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we come to an important conclusion that if we are interested in the variations
of flow quantities over large distances, such that the equations with third
order terms are sufficient approximations to full equations in RGD, the
radiation does not appreciably affect the formation of a shock wave,
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