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Abstract 

The use of Havelock's expansion of water wave potential in the study of wave motion set UD due to small 
rolliod uscillar~ms of e thin vencdl plarc submerged In dcep unter gjves rlse to a sinpu!ai inrcgml equarion 
ivolvine a conbmalioo of loeari~hmic and Cd~ch,  .II.DC lemcl ic a d ~ ~ h l e  i n l e ~ a l  Itr solulion is ohtainrd in . .. 
a straightforward manner, wherein the Plemelj farmula is suitably utilized in the analysis. The amplitude of 
wave motion at large distances from the plate and the velocity potential are obtained explicitly for this 
problem. 
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1. Introduction 

The wave motion due to small rolling oscillations of a thin vertical plate partially 
immersed in deep water was studied long hack by ~ r s e l l ' .  He used Havelock's expansion 
of water wave potential to reduce the problem to the solution of the following singular 
integral equation of the first kind: 

where 

1 1  
~ ( x , t ) = ~ l n  n-f + + - ,  + x - t  x + t  

K is a positive constant, L is (a,  -) and 

Here fo(t) is the known horizontal component of velocity on the plate and g(t) is the 
unknown horizontal component of velocity across the gap and is such that it has 
integrable singularity at t = a. This integral equation was then reduced to another integral 
equation with Cauchy-type kernel whose solution was known. Utilizing the solution of 
this integral equation, the amplitude of wave motion at large distances from the plate was 
obtained. Later, ~vans '  used a tailored version of Green's integral theorem to obtain the 
amplitude at infinity of the wave motion set up due to a general motion of a partially 
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immersed thin vertical plate. Using this idea of Evans, Manda13 obtained the amplitude at 
infinity of the wave motion generated due to small oscillations of a vertical platc 
submerged in deep water. He deduced, as a special case, the results for rolling oscillations 
of the plate. 'The expressions for the velocity potential were not obtained explicitly both 
by ~vans '  and by ~ a n d a l ? .  Recently, Banerjea and Manda14 obtained the closed-form 
solution of the problem of generation of water waves due to rolling of a vertical plate 
either partially immersed or completely submerged in deep water. They used Green's 
integral lheorem to reduce the problem to a singular integral equation with a Cauchy 
kernel, whose solution was obtained by standard techniques. Explicit expression were 
obtained for the amplitude of wave motion at large distances from the plate. The more 
general ~roblem of diffraction of water waves by a thin vertical plate submerged in deep 
water and performing small rolling oscillations with frequency equal to the frequency of 
the normally incident train of plane waves was studied by ~vans' .  He used the complex- 
variable theory and introduced the so-called reduced potential which satisfies a Kiemanw 
Hilbert boundary value problem. The solution of this Ricmann-Hilbert problem and the 
Plemelj formula were then utilized to obtain the general solution. 

It may be noted that for the submerged-plate problem the integral equation obtained 
by Banerjea and ~ a n d a l ~  was somewhat similar to eqn (1) with L = (a, b), with g(i) 
denoting the difference of potential across the plate, which as such vanishes at the end 
points a and b. This property of g(t) vanishing at the end points was exploited to reduce 
the integral equation to another singular integral equation of the first kind with a Cauchy- 
type kernel, whose solution was immediate. However, in the present paper, the 
application of Havelock's expansion of water wave potential to this submerged-plate 
problem leads to an integral equation similar to eqn (I), with the modification that L now 
consists of a double interval (0, a) and (b, m), where b - a is the vertical length of the 
submerged plate and g(t) denotes the unknown horizontal component of velocity above 
and below the plate and satisfies the requirement that it has integrable singularities at a 
and b. This requirement on g(t) creates hindrance in the possible reduction of the integral 
eqn (1) (with I,  consisting of a double interval) to a singular integral equation of the first 
kind with a Cauchy-type kernel. As such, special attention is needed to study the integral 
eqn (I)  in a double interval. 

Recently, Banerjea and Manda16 obtained the closed-form solution of the integral 
equation 

g(t) G(x, i) di = e(x), n E L (4) 

when L consists of a double interval (0, a) and (b, -), e(x) is prescribed and the unknown 
function g(t) 1s such that it has integrable singularities at t = a and t = b. Therefore, when 
L conslsts of (0, a) and (b, m), the solution of eqn (1) can be obtained from the solution 
of eqn (4) by taking 

However, exploiting this special form of e(x), here we solve the integral eqn (1) for 
the aroresaid double interval directly, as this facilitates the simplification of the various 
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integrals involved in the later part of the analysis. The solution is obtained in a 
straightforward manner by utilizing the solution of the integral equation with Cauchy 
kernel in (0, .-.) and (a, b). The solution in (a, b) is well known'in the literature7 and the 
solution in (0, 00)  is obtained by function-theoretic method by using the Plemelj formula. 
Finally, the solution of (1) for L = (0, a) + (b, -) is used to solve the rolling problem in 
closed form. Explicit expression for the amplitude of the wave motion at large distances 
from the plate is derived. This result agrees fully with that of Banerjea and ~ a n d a l ~  but 
differs by the constant N(a)yo /A0 (see eqns (56) and (53)) from the result for the rolling 
problem deduced from ~vans' .  However, a calculation reveals that the constant A in eqn 
(22) of ~vans '  is actually complex, and not real, as mentioned there. This is evident if one 
equates the value of the stream function ~ ( 0 ,  y) on the plate deduced from the expression 
of the complex potential o(z) given by eqn (22) of EvansS with eqn (16); there a nonzero 
value of the imaginary part of A is found. If this is taken into account in Evanss, then the 
expression of the wave amplitude for the rolling problem deduced from there coincides 
with the result obtained here. Also, the expression for the wave amplitude due to rolling 
of a partially immersed plate (cf. ~ r s e l l '  and Evans2) can be deduced from the present 
result after taking appropriate limit. 

2. Statement and formulation of the problem 

We consider a thin rigid vertical plate x = 0, a < y  < b, submerged in deep water 
occupying the region y 2 0, with y = 0 as the mean free syface. The plate is hinged at 
(0, s) (a < s < b) and is forced to perform simple harmonic oscillations of amplitude Bo 
about its mean vertical position. Assuming the motion to be irrotational, it can be 
described by a velocity potential Re[#(& y) exp(-iot)], a being the circular frequency, 
where # satisfies the following conditions: 

V2$ = 0 in the fluid region; 

the linearized free surface condition 

a# K#+-=O on y = 0 ,  
J Y  

where K = 02ig ,  g being the acceleration due to gravity; the condition on the plate, 

where 

h ( y )  = i d d y  - s); 
the edge condition, 

r'" V# is bounded as r + 0, 

r being the distance from the two sharp edges (0, a) and (0, b) of the plate; 
the bottom condition. 
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V g 4 0  as y + - ;  

and the radiation condition, 

Aexp(-Ky+&) asx-+=, 

Bexp(-Ky-&) asx-+-=, 

where A and B are the amplitudes (unknown) of the wave motion at large distances 
(positive and negative infinity, respectively) from the plate. 

3. Reduction of the problem to an integral equation and its solution 

Let 

then 

where h ( y )  is given by eqn (71, and g(y) is unknown for y E L, L being the double 
interval (0, a) and (b, a). Moreover, by virtue of eqn (9), 

Using Havelock's expansion of water wave potential, a suitable representation of 
@(x,  y) satisfying eqns ( 5 ) ,  (6), (10) and (1 I) is given by 

A exp(-Ky + iKx) + g ~ ( k )  ~ ( k ,  y) exp(-kx) dk, a > 0, 
N ,  Y) = (15) 

B exp(-Ky - iKx) + l:~(k) ~ ( k ,  y) exp(k)dk, x < 0, 

where 

M(k, y) = k cos ky - K sin ky. (16) 
Utilizing eqn (15) in eqn (12) and using Havelock's expansion theorem, we find 
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An integral equation for g b )  is obtained from the fact that $(x, y) is continuous below 
and above the plate so that 

Applying the operator dldy + K to eqn (19), we obtain 

which is an integral equation in g(u), u E L 

Let us now define 

0 for u E L, 
H(u) = 

h(u) for a < u < b, 

where h(u) is unknown and noting eqn (14) we see that 

Then eqn (20) becomes 

Writing 

eqn (23) reduces to 

Substituting $= t andu2= v, eqn (25) becomes 
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Let us define a sectionally analytic function 

so that D(z) is analytic in the complex z-plane cut along 0 to - and lQ(z)( < ==. By using 
the Plemelj formula it is easy to show that 

Equation (29) is a Riemann-Hilbert problem whose solution is given by Muskelishvili8: 

where S is an arbitrary constant. Applying the Plemelj-Sokhotskii formula, we find from 
(30) that 

which on using eqn (27)  gives 

Using eqn (24)  we now obtain 

However, in eqns (32) and (31), H(t) involves the unknown function h(t). An integral 
equation for h(t) is found from the fact that 

F(x) =fo(x), a < x < b, 

so that 

where C is an arbitrary constant. This gives 
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where W = n(KC - S) can be regarded as an arbitrary constant and 

m(x)=ia0, -+ ( l - f i )x - s  (4' (34) 

An integral equation for h(x) is then obtained as 

df = w + nm(x), a < x < b. (35) 

The solution of eqn (35) satisfying eqn (22) is given by Banerjea and ~ a n d a f :  

where d 2  is an arbitrary constant and 

Rz(u) = {(u2 - a2) (b2 - u~)}~'. 

Now, for a < x  < b, we have from eqns (13), (32) and (30) that 

The u-integral ranging over (0, x) can be subdivided into (0, a) and (a, x) for a < x  < b. 
The integral over (0, a) can be simplified by using h(t) from (36). The integral over (a, x) 
for a < x < b can also be simplified by noting (33). This finally gives 

where C i s  defined by eqn (33): 

Rl(u) = {(d - u2)(b2 - d)}'", 

Equation (38) now implies that the expression in the square bracket vanishes. That is, 

j:exp(~u)~,(u) du - C- ~ ( a )  = 0. (42) 
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Thus, eqn (42) gives C in terms of Wand d2. Finally, using eqns (32), (36), (37), (42) 
and (39)-(42), the explicit solution to eqn (20) is given by 

where 

It may be noted from eqn (43) that the solution of the integral equation (20) contains hvo 
arbitrary constants Wand d2. 

4. Solution of the problem 

To determine the unknown constants, F(y) is substituted in eqn (19). A considerable 
manipulation is involved in simplifying the various integrais on the right-hand side of eqn 
(19). We thus obtain 

[I - fi3 (u) exp(-Ku) du eq(-Ky) = 0 for y < a, I (46) 

[n - J>3 (U){~XP(-KUI -exp(~u)} exp(-W = o for y > b, (47) 

where 

2 
-W(d2-u2)+z~(a ,b ,~)] ,  (48) 

R2(u) and F(a, b, u) are defined by eqns (37) and (40), respectively. Equations (46) and 
(47) imply that 
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where 

Equation (50) gives a relation between W, % and A. A second relation is obtained by 
using g(y) from eqn (43) in eqn (17), which is given by 

Thus, from eqns (50) and (53), we get 

where 
Al=al-pl - iy , ,  A D = & - P o - i n .  (56) 

Thus, eqn (55) gives another relation between Wand dZ. Finally, eom eqns (17) and (18), 

Equation (57) gives the wave amplitude at infinity. The velocity potential is now 
obtained by using eqns (57) and (58) in eqn (15). These results can be identified with 
those obtained in Banerjea and ~andal ' .  However, if one deduces the expression for 
amplitude at infmity of the wave motion generated due to rolling of a submerged plate 
from Evans5, then the result coincides with eqn (57) except for the term N(a) in the 
expression for S(k) (see eqn (54)). This difference apparently occurs due to the fact that 
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the constant A appearing in the expression for the complex potential o(z)  in eqn (22) of 
~vans '  1s actually complex, and not real, as has been assumed there. This is evident if one 
equates the value of thc stream function ~ ( 0 ,  y) on the plate deduced from w(z) given in 
eqn (22) with eqn (16) of ~vans' .  Then it is found that 

I ,  ( A )  = o0 - - ac exp(Ka) 1 
With this change, ihe results derived from ~ v a n s '  now agree with eqn (57). Also, making 
p (= ulb) i 0 in eqn (57), one obtains the wave amplitude due to rolling of a partially 
immersed vertical plate (see ~ r s e l l ' ) .  

5. Discussion 

An integral equation formulation based on Havelock's expansion of water wave potential 
is used to reinvestigate the wave motion due to rolling of a thin vertical plate submerged 
in deep water. The integral equation which arises in the problem is of the first kind in 
double interval, having a kernel with logarithmic and Cauchy-type singularity. This 
integral equation is solved in a straightforward manner utilizing the Plemelj formula and 
the solution of an appropriate Riemann-Hilbert problem. This solution is then used to 
determine the velocity potential and the amplitude of the radiated waves at infinity. To 
the best of our knowledge, this integral equation has not been studied earlier in the 
literature for closed-form solution and for its application to water waves. 

It may be mentioned herc that in his analysis, EvansS introduced the so-called reduced 
potential in terms of the complex potential which satisfies a Riemann-Hilbert boundary 
value problem of the complex-variable theory, whose solution was obtained by standard 
technique. The solution of this Riemann-Hilbert problem was used to determine the 
complex potential from which the amplitude of the radiated waves at infinity was 
obtained using the Plemelj formula at some stage of the analysis. The amplitude of the 
wave motion obtained in the present paper agrees with that obtained by Banerjea and 
~ a n d a l ~  and also with the result deduced from EvansS after introducing the modification 
stated earlier. 
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