REVIEWS

pality in science edited by Marcel C. La Follette. The MIT Press, Cambridge lassachusetts, U.S.A., 1982, Pp. 250, \$ 12.50 (Asia price $\$ 14.40$).
rpper's remark that 'the mind comprehends a thing the more correctly the closer tut thing approaches toward pure quantity as its origin' or Kelvin's belief that 'if ynerting cannot be quantitatively measured it cannot be understood' rationalises mans urge to assess quality in terms of quantity, magnitude and number. Impossible buongh it may look at the first sight, it is no more so than Newton's master-stroke pat took such abstruse terms as force, work and energy, redefined them in terms of a ferquations and brought order in previous confusions.

Spsematic attempts to quantify the quality in science or the subject of scientometrics jirardy a decade old. However, basic science has had its own quality control for myg. This internal check on quality based on peer review has enabled science to wout out the mundane and the ephemeral. It is but rarely that a Labachevsky or a Madel is brought back from oblivion to immortality. Otherwise a creative scientist wike his colleague in humanities stands a better chance of enjoying the fruit of his bhour within his life time. This better fate of being recognised early is the outcome divery rigorous intrinsic assessment based on peer teview. However, in advanced manties like USA such internal quality control applies only to five per cent of total cesifc work. How about the rest, especially the applied science which consumes (x orewhelmingly large proportion of the total $R \& D$ expenses?

De book under review is the outcome of an attempt to define suitable quantitative mintia for the quality of applied science. It deals mostly with the problems of external arsment, cr , in other words, the assessment of science by the society at large. it quastions of priorities and goals, of fundings and control, of progress and values raised and discussed threadbare. The book contains broad spectrum of views. wile on the one har.d Prewith wants the 'attentive public' (eighteen per cent of adolt population in USA) to act as scier.ce lobby to extract more funds, to set
priorities and goals and to resolve the conflict between science findings and sad values, Yankelovich, on the other hand, is for dem cratisation of the samer . .t wants the majority of the populace to actively discuss the entire gamut of min scientific persuits. Here is Morison attempting to give numerical marks (magoinud) to the quality of various science projects, as well as Mazlish trying to make quaniublier assessment using historical analogies or employing case studies to answer 'befion during-after' questions. And there is Weingart tracing the erosion of the powt of scientist in framing science policy. Contributions from a couple of politiciay add to the flavour of this assorted dish.

This book is relevant only in technologically advanced societies where fandsic progress in science has also brought in its wake sufficiently matching potential fa mischief to merit a relook into the quality control of science. In most of the drex loping countries science is in a nascent stage and its impact on society could be blissfully ignored. Countries like India form yet another category. It has a laty science base and yet that base enjoys a ' benign negligence' from society comprid to the intense public scrutiny their western colleagues are subjected to by the 'atherin public'. Bereft as it is of the external assessment, the internal assessment of scima is also not much in evidence thus making it a haven for mediocrity and a hersa for technocrats in government $\mathrm{R} \& \mathrm{D}$ laboratories (and these are the agmios which spend almost the entire national budget on science $R \& D$) who suffit wo threat of accountability. To them the present volume only increases their list of boos for casual reading. "Well, thought provoking but not much of relevance," would be their comment.
Department of Chemical Engineering
Indian Institute of Science
Bangalore 560012 . A. K. Mưarrvi

Quest-An autobiography by Leopold Infeld. Chelsea Publishing Company, Na York, 1980, Pp. 361, \$ 14.95.

This is the second edition of the absorbing autobiography of a great scientist widid first appeared in 1941. The present edition carries an epilogue which is taken from an article published by Infeld in 1965 in the Bulletin of Atomic Scientists and expliibi why he left Canada after having settled there.
very turbulent life and his narration is extremely captivating, Buab a Jew in a leather merchant's family in Cracow ghetto of Poland, he gives 8 in of a ghetto life-how so-called patriotic Polish youth beat Jews beavisi wh are hated and treated as enemies of the country. Infeld had a very bardiril
with luck and rare determination on his part he studied and became a scientist mial physicist). But he had to go through the military service of the Austrian . Afer this service he looked forward to the future for a quiet academic life. whereame a victim of anti-semitic and reactionary forces. His personal taste of bis beauliully described.
Hoot two (Escape) he deals wilh his slow alienation and eventual escape from ted 10 Engand and then to USA and Canada. This also has the most poignant pulof his relationship with his first wife Halina-her illness and death. The death frimar makes Infeld extremely disturbed and he is on the verge of emotional and syl traxdown.
区r wscripion of Cambridge life and scientists, particularly that of PAM, Dirac axd authentic. It was here that Infeld came in contact with Max Born, another wind iciin of anti-semitism. Here, they collaborated (after a quarrel) and wided their famous work which is known as Born-Infeld Unitary Field Theory. ghidy yeturned to Poland as a successful Physicist-but the growing anti-semitism an big anay again and this time to America.
Ir most notable contact that Infeld established here is with Einstein in Princeton. 3 stanted a fairly durable collaboration first on the best selling exposition-The aximin of Phsics (1938)-a classic. Finally he got a distinguished job in Canada mand maried second time to an American woman, named Helen and had two imblom children. His description of Einstein is again very authentic-the Tadlded delachment of Einstein from everything wordy-except his deep involvezuin iis scientifc pursuit. As Infeld remarks 'scientists have their prejudices, "umsscial wiews and different ethical standards'. There were scientists who supported thy ind fiked experiments. Yet there were others-aloof, gentle and men such as Bate Bobr and Dirac. After a fairly placid and comfortable academic life in andere he occupied a very eminent position-he was caught in a serious controshtravse of an article he published. He was accused of being a communist and tide wa 'trator'. The epilogue is a defiance of his position.
ITy mat back to Poland and he became the Director of an institute and remained seill his death. To sum up, Infeld's autobiography is remarkable in many ways. smid and engrossing-whether he is dealing with ghetto life, anti-semitism, corrupt Ollfo or describing notable scientists like Einstein and Dirac. The narration is 2maing because of its dramatic quality and sincere and honest account of human 4y ad greatness told in a forceful style.
Therienere mijoyed reading it the second time and recommends it strongly to tos and haymer.. Orders to Allicd Publishers Pvt. Ltd., New Delhi 110002.

One of the most vigorously pursued activitics in Particle Physics for the last trodive or so has been the idea of unification of basic forces of nature. With hes sumand Salam-Weinberg-Glashow unified theory for clectromagnetic and weak ineradin the hope is stronger that a unified picture of all the basic forces is within ourred The volume under review summarises the present state of art in this area. m_{h} importantly, the situation with regard to proton decay experiments, pioneredty Indo-Japanese team at the Kolar mines, have been reported in seven papais it Kolar experiment has claimed some candidate events. Only one candidate eratis. been seen by Mont-Blanc experiment which was reported at the XXII hetmuin Conference on High Energy Physics at Paris in July last year. There hare bant positive reports from other experiments so far.

Besides proton decay experiments, the status of the CERN experimens fo io measurement of neutrino mass by radiative electron captive has been corard tot Rujula. The neutrino-oscillation experiments at accelerators, covered bry hax Chen, do not show any $v_{\mu} \rightarrow v_{0}$ or $v_{s} \rightarrow v_{\mu}$ appearance modes, nor any $v_{t}+r_{i, k}$ appearance mode. Also the lowest experimental upper limits on the neution form tritium decay have been discussed by Simpson. In addition to decaing puie the baryon number violation predicted by grand unified theories can be studididy spontaneous conversion of a neutron to an antineutron. The experiments lodiegin this effect, performed at the Los Alamos National Laboratory (USA), hare ben rywit by H . Anderson.

The one monopole candidate with Dirac value of magnetic charge $2 \mathrm{eg}=\mathrm{k}, \mathrm{k}$ been reported by Blas Cabrera. The experiment has been discussed by himings detail. Unfortunately, it is an only one event claim with no corroboration fand other source. It is difficult to judge if this single event finally turns out tw ${ }^{\text {t }}$ genuine monopole. A possible origin of the monopole flux due to a slow ermparis from the Sun has been discussed by Sheldon Glashow.

For the last few years, there has been much interest in extending the grand wifiur ideas to incorporate supersymmetry. This is essential to ensure stability of te this mass scales that appear in the conventional versions of grand unification modes. is a solution to the gauge-hierarchy problem of Gildener. This theoretical deremp in the context of grand unification has been very popular for the last two !ar ${ }^{4 x}$ has been revicwed in six papers in the present volume. The most imporan prow in this area, that of supersymmetry breaking has been covered by Steren liad He has obtained cosmological bounds on the supersymmetry breaking sala and discussed the role of gravity in this context.
pretall, this volume presents a clear picture of both theoretical and experimental wot that has been done in the area of grand unification theories up to the time of

Romesh K. Kaul
theorics: Fundamental interactions and rigorous results editcd by P. Dita, Georgegcl, R. Purice. Birkhauser Verlag, P.O. Box 34, CH-4010, Basel, sinurdand, 1982, Pp. $369, \mathrm{~S}$. Fr. 50. Indian orders to Allied Publishers Pvt. Ltd., is Delli 110002 .

Fis roume contains the proceedings of the 1981 Summer School of Theoretical misi, Poiana Brasov, Romania. In the continuing search for the appropriate ymurical framework in which to describe the fundamental interactions among the igale consituents of matter, it now seems that both the strong and the electroweak memy be formulated as quantum gauge field theories. However it is also clear 4he mitially assumed gauge symmetry has to be spontaneously broken, to accord a the facts. Gauge symmetry and spontaneous breakdown have led, in combiim 10 the circumstance that already at the classical level cne deals with Lagrangian athories with unusual solutions characterised by novel topological properties, and axtions to many areas of modern mathematics. Keeping these developments in ath the organizers of this School have cencentrated on fcur major themes: Gauge mux of fundamental interactions; Geometry of classical Yang-Mills fields; Methods monstructive field theory; and related topics. Most of the contributions are俎 texhical and use mathematics of a kind unlikely to be familiar to a physicist riaconventional training. On the other hand, the treatments are, by and large, rmfiently comprehensive and self-contained to enable one to learn the subject nalis volume. Thus these proceedings are not in the class of, for instance, the meds, Cargese, Erice and Les Houches Summer School series. The reader must und be somewhat familiar with recent developments in particle theory to derive some thfom this volume. Having said this about the flavour of the contents of this mik the particularly valuable contributions may be pointed out. The account by CTaylor of the Standard Electroweak Theory-the Weinberg-Salam model-is Wizuished by its critical approach emphasizing sevcral 'scandalous' features which "inde to ignore because of the success of the theory. The lectures by D. I. Olive 'The stuccure of self-dual monopoles'-are a very lucid account of the author's Find iesearch work on classical spherically symmetric solutions of spontaneoulsy Thing gavge field theories. They bring cut the perhaps surprising connections of 4 bic to Lax pair equations and the Toda molecule. S. Ferrara gives a brief and - midrodedection to supersymmetry - a principle uniting bosons and fermions into andiplet. He describes the supersymmetry algebra and the superspace formalism aspects of self-dual solutions to gauge field equations. The former -a thand mathematician-introduces us to the Penrose transform, a new weapon in the erw matician's armoury to handle special types of partial differential equation in dimensions. In the section on constructive field theory, K. Osterwalder eina, well-organized account of the aims of axiomatic quantum field theory and of rata results in constructive quantum field theory for scalar fields. Especially the fiblu the Euclidean formulation and to classical statistical mechanics are broughn E. Seiler's lectures deal with the case of Fermi fields. Finally under Related Tope one must mention the brief account of Geometric Quantization by D. J. Sim emphasizing the key steps in the mathematician's attempt to put the beriad procedure of canonical quantization on a firm foundation.

Centre for Theoretical Studies
N. Mixtu

Indian Institute cf Science
Bangalore 560012.

Fusion (Science, Politics and the invention of a New Energy Source) by Joan lia Bromberg. The MIT Press, Cambridge, Massachusetts, Pp. 344, \$ 34.50.

Since the year 1946 a new source of energy has been in the making world orr it the initial phases, the research in this area of nuclear fusion was a closely guvid secret. Every scientist and every group leader was of the view in those fast the success of nucelar fusion was round the corner. The progress, of this pranith research, in the absence of mass contact with the scientific community, ws dan The fusion scientists of 50 's were severely handicapped because of this phenorat However, they were themselves to be blamed. They were so egotistic that they tiond the final glory will slip away if results were made public.
This book is a story of the fusion research. It could not have been toll in 3 anta way. It brings out the human failings on the one hand and undue concern for tor national prestige on the other. Until the early seventies the programmes real modirid the mind of funding agencies' peers had been to outbeat the British and the Rulimily If a ripple of British or Russian success story had found its way into the wlald Washington, it immediately resulted in more Dollars for the American laborume research in the three countries followed their own independent path ing very sure of its own line of thought and action. Not only tas a laboratory in U.S.A. doing its own independent research on the plasm ${ }^{3}$ matime their choosing, thought that only they had the final answer. Because of budgetary provisions it led to severe inter-laboratory rivalries. The autbor an incident when the British-American scientist Tuck and the grand old

W(5) ${ }^{2}$ physics) Layman Spitzer were madc to talk to each other in a formal meeting wort out their scientific differences. Each one of them knew their limitations, yet no es said so in public. The laboratories were often found over ambitious in their sobilities in order to keep their respective scientists busy with work. As yet there as 0 strong central controllirg agency in Washington to curb this trend. This is pot to say that there were no down-to-earth scientists who did not share the views of deir leaders. These scientists were later to prove to the community that it always fid to indulge in honest assessment of their cwn work.
The derclopment of plasma devices did rot wait for the basic physics of plasmas to roorer itself. To emphasize the point even today some of the vital aspects of the prsics of confinement has eluded understanding. From the physicists' point of view untey to the fusion is diffusion and instabilities and the consequent confinement time ud the densities involved through the Lawson criterion. The engineering problems drorking reactor had remained in the background until the relative success of ORAMAKS, the contribution of Russians. In a rare meeting of minds of the mipdist system with that of the leftists, the Americans were convinced of the success (n the relative success) of the TOKAMAKS. In a short span of four months Princewis Stellarator was converted into a TOKAMAK device with an on-line computer dish the Russians did not possess. The Princeton group under Gotleib, Spitzer and Sin mere about to overtake every one else with a mass of data for the theoreticians bexplain and understand. Success was round the corner. Because of pressure fom the Congress Coppi's team at MIT, Clarke at Oak Ridge and Drummond's moup at Austin, Texas, joined the TOKAMAK band wagon. It was in Texas TOXAMAK that the turbulent nature of plasmas was to be exploited for the purpose theating the plasmas. Mirror machines had been under great pressure right through bis period. But these survived at Livermore under Post and at Oak Ridge under Carke. However, other devices like Astron were not to survive. Termination ef Afron even resulted in the tragic demise of its leader.

Eren though independence of the major laboratories was eroded during the reign d Airch and Dean in Washington, it helped in producing results which further sothed in obtaining more money from the Congress. No money worth any mention kne from the private industry except the Texas Fusion Foundation.

> Someshere on the line after declassification phase, the University research in Nhmas got a big boost through the championship of persens like Reseublath-the Po. It contributed in a big measure to the understanding of plasmas. Plasma ence is now passing through the happiest times from the point of view of funding "nell as understanding of the subject.
> The book is written for every one to read without any background in plasmas. The
athar has done a remarkable job of it. The story of fusion has been told in a way

I found on page 242 electron written as election and on page 253 (at the botton) the sentence is incomplete. On page 251, third paragraph, 9th line, the figure of $\$ 1$
million is certainly a technical terms on Magnetic Fusion is given for easy reference. The subject maturn is thoroughly documented either through personal interviews or by refering to the reports, books and journals. A thorough work indeed! My congratulations to the author on such a successful work in print.

Department of Physics
Indian Institute of Science
Som Krsbhas
Bangalore 560012.

Revealing the universe edited by James Cornell and Alan P. Lightman. The Mr Press, Cambridge, Massachusetts, 1982, Pp. xiv + 247, \$ 17.50 (Asia $\$ 20.15$).

This book concerns the universe, its origin, structure and perhaps the future. The physics of the universe must involve a close interaction between observation and theoretical analysis. Without this close connection experimentalists will pile a mais of observational data without providing insight into the workings of the unieres. Theory, without the support of empirical and observational data, will become ide speculation.

This book provides a collection of articles by very eminent and practicing scientiss on a number of topics. These are : Historical tension between astronomical theng and observation, Einstein's perception of space and time, The evolution of the sobt system, The puzzle of the sun's corona, Cosmic power house : quasars and blackhols, The age and structure of the universe and finally the three unanswerd question in astronomy.

Each topic is covered by a theoretician and an experimental observationalis. Thus the interconnection is maintained throughout and the reader is cxposed to both theoretical and experimental aspects of the subject discussed. This is irdeed a grat virtue. Furthermore, the topics are brought to the most exciting current status of the knowledge unravelled.

This book is no doubt a valuable contribution to the man's understanding of the universe.

It is strongly recommended to scientists interested in this field.

[^0]methods in linear transport theory by H. G. Kaper, C. G. Lekkerkerker fon Hejmanek, Birkhauser Verlag, Basel, Switzerland, 1982, Pp. 345, S. Fr. 52.
\#is 3 menograph of 345 pages devoted entirely to the time-independent and timewerdent linear transport theory with special reference to neutron transport in prators. It is adaressed to applied mathematicians and makes extensive use of linear prasar thecry and functional analysis. The for mulation of the problem as well as prament is at a rather abstract level and physicists in general may find it rathe ${ }_{r}$ undo appreciate the full power of the for malism. Personally, I would have liked to as ione discussion of the elegant method of invariant imbedding as developed in the gurtit of radiative transfer. Recommended for libraries serving chemical engireers, mpled mathematicians and physicists.

N. Kumar

myick Department
Institute of Science
maylare 560012.
simetic applied mathematics (Volume 1 in the International Series in Nonlinear vilematics: Theory, Methods and Applications) by David Greenspan. Pergamon hass Lid., Headington Hill Hall, Oxford OX3 OBW, England, 1980, Pp. 165, \$ 11.25.

In utle of this book does not contain a typographical error ; the author uses the udd ailhmetic as an adjective, to indicate that everything in the book involves only rimetical operations, and no calculus. The author's approach is well stated in if Preface : " \cdots we will develop a computer, rather than a continuum, approach odedeterministic theories of particle mechanics.... At those points where Newton, limiz. and Einstein found it necessary to apply the analytical power of the calculus, *hall, instead, apply the computational power of modern digital computers.... *implicity of our approach will yield simple models of complex physical phenomena ad slvable dynamical equations for both linear and non-linear behaviour. The no we pay for such mathematical simplicity is that we must do our arithmetic at speds." (Note that the author's 'continuum mechanics' is not the mechanics (onninuous media, but particle mechanics using differential equations.)
If tfect the author handles difference equations rather than differential equations Mit must be emphasized that he is not writing merely finite difference approximins to those differential equations. For example, in discussing falling bodies, the Whaity at time t_{K},

$$
\begin{aligned}
& \quad y_{1}=v\left(t_{1}\right), \\
& \text { Sutined through the average }
\end{aligned}
$$

$$
\frac{v_{k+1}+v_{k}}{2}=\frac{x_{k+1}-x_{k}}{\Delta t}
$$

but the acceleration at time t_{k} is defined not analogously, being taken instead a

$$
a_{k}=\frac{v_{k+1}-v_{k}}{\Delta t}
$$

Similarly. Newton's law of gravitation takes on a somewhat unfamiliar form; example, the component in the direction x of the force between two bodies at dirton r_{k} at time t_{k} is given by

$$
F_{k, 0}=-\frac{G m_{1} m_{2}\left(x_{k+1}+x_{k}\right)}{\left.r_{k} r_{k^{\prime}-1}\left(r_{k}+r_{k}\right)_{1}\right)}
$$

It is ti ue that these expressions tend in the limit as $\Delta t \rightarrow 0$ to the familiar, clasiad expressions. However, there are other expressions with the same property, and 4 e author does not explain in sufficient detail why he picks the ones he doss. Wh unifying idea that determines the choice appears to be the potential, in the sure that it has the simple form

$$
V_{k}=-G m_{1} m_{2} / r_{k}
$$

While it is fascinating to see how many of the phenomena that we are familiar mid through the use of differential equations (this includes planetary motions, heat coudr. tion, elastic vibrations, etc.) yield very suggestive results using the appropriate parite arithmetic, it is only for simple forces such as gravity that the continuous and dr arithmetic approach yield exactly the same dynamical behaviour. In genera the wo approaches yield results which differ by terms of order $(\Delta t)^{3}$ for both position ard velocity (p. 31). I am not sure therefore how deep studies of this kind can be that to be ; in particular, it is difficult to see how the 'arithmetic' approach can diplare the 'continuous' approach of Newton et al.

At places, in fact, the author claims too much. For example, Section 4.5 dads with laminar and turbulent fluid flows ; and the author traces on the computa the motion of a series of particles (more precisely Lennatd-Jones type molecules) emitrd from a nozzle, with a small random perturbation imposed on the exit velocity. IXx trajectesies of the particles show a certain chactic behaviour, which is fascinatige what one seems to be analysing here is the Liapounov instability of particle movin and not turbulent flow of a fluid : it has not been shown anywhere that the thio related. The author even discovers vortices fiom these trajectories, but doss pl explain how or why such vortices arise-if in fact they do at all-as there appers ${ }^{\circ}$ be no angular momentum, vorticity or diffusion in his model.

There are other places as well where the treatment is not convincing. For cismb the occurrence of shock waves is discussed by considering the motion of a p moving ' at a very high rate of speed' (sic) in a cylinder head. Although do
metry is at first discussed in terms of a tube which is 100 units long, 10 units high, etc., all of a sudden results appear at time $t=0 \cdot 1$ seconds: it is not clear bow physical units suddenly materialized in the problem. A rather unrealistic reflecfion strategy is used for particles that encounter the surface of the cylinder or the piston. and the reader is confused about what exactly in the model causes shock mares.
The book includes discussion on a variety of other problems, some in a cursory ary ; but four chapters deal with relativistic mechanics.

In summary, a large number of phenomena can be quickly and vividly illustrated on a computer using the author's simple difference equations. In an age when computers ar getting cheaper and commoner all the time, the author's 'arithmetic' suggests derllent ways of introducing students to the complex and fascinating behaviour chibited by even simple dynamical systems. But considerable caution is necessary in relating directly the behaviour so computed to complex natural phenomena.

Hrospace Engineering Department
Roddam Narasimha
Indian Institute of Science
Bangalare 560012 .

Itate lectures on theta I (Piogress in Mathematics, Vol. 28) by D. Mumford. Brichauser Verlag, P.O. Box 34, CH-4010 Basel, Switzerland, 1983, Pp. 235, S.Fr. 54. Indian orders to Allied Publishers Pvt. Ltd., New Delhi 110002.

Writen by one of the greatest mathematicians of our time, this highly laudable book wnains the first two chapters of an intended survey (with four chapters) of the theory ditheta functions; it is based on the author's lectures at the Tata Institute of Fundamatal Research during 1978-79 and subsequently a.t Harvard and Montreal. While Rraze's Lehrbuch der Thetafunktionen and the Krazer-Wirtinger Enzyklopaedie aricle are well-known and time-honoured source books for theta functions, the main wislence theorems on theta functions were deeply investigated, in the late forties, by Conforto, Siegel and Weil giving natural proofs. A completely algebraic and elegant thery of theta functions (in any characteristic $\neq 2$) was developed, in the sixties by the author, in the same direction as Weil's purely algebraic theory of abelian functions. Using theta constants and derivatives skilfully, Siegel established that a finite set thereof would be used to separate points on the quotient variety of Siegel's (g, g) upper halfsace by a modular group ; the author's algebraic theory however avoided invoking divatives for this purpose (even for characteristic 0). Ten years after Igusa's excelbook on 'Theta functions' appeared, we are fortunate to have this beautiful monograph on theta functions in several variables, which includes the most recent ifults and is also pleasant to read. Heat equation and representations of the Heisenberg group), considers Riemamis theta functions $\theta(z, \tau)$ with the variants in great detail and explains their use in in. bedding the torus $C /(\mathbf{Z}+\boldsymbol{Z} . \tau)$ in complex projective 3 -space and the realisation of the equations for the resulting curve; a very interesting presentation of Riemann theta relations (being undoubtedly some of the most significant from the verithbly ' labyrinth' of theta relations) is also provided. The functional equation for θ unde the action of the elliptic modular group is then discussed carefully and the realization therefrom of the moduli space of 1 -dimensional tori as an algebraic curve is give Jacobi's famous identity on the z-derivative of θ follows this, together with appications of theta series to aithmetic: combinatorial identities from the product expansion for θ, Jacobi's formula for the number of ways of expressing a natural number as a sum of 4 squares of integers and Hecke theory connecting modilat forms with Dirichlet series.

Chapter II entitled ' Basic results on theta functions in several variabies' gira generalizations of the geometric results of Chapter I. Theta functions are used io imbed g-dimensional tori X in projective space and when X arises from a compat Riemann surface R of genus g, θ is related to the function theory on R. The fuus. tional equation for theta functions and Riemarn's theta formulae are then establisted, leading to a determination of the defining equations for X as an algebraic rarity Using quadratic forms and pluric-harmonic polynomials, theta functions give rise to a host of modular forms.

The second volume will deal with Jacobian (and, in particular, hyperelliptic) theta functions and the representation-theoretic and algebro-geometric aspects of the thent.

School of Mathematics
S. Raghivis

Tata Institute of Fundamental Research
Bombay 400005.
Mathematics for the analysis of algorithms (Second Edition) by Daniel H. Greneand Donald E. Knuth, Birkhauser, Verlag Basel, 1982, Pp. 123, S.Fr. 24. Indian orders 10 Allied, Publishers Pvt Ltd., New Delhi 110002.

This book, co-authored by the well-known mathematician-cum-ccmputer scientist D. E. Knuth, on the application of some (relatively) advanced mathematics to the analysis of algorithms, is remarkable in many ways. One finds it a real experiand to read the book from the first page to the last, savoring at each step the masterly wis in which binomial identities, operator methods and asymptotic techniques are erpbl. ted to study algorithms. The presentation of the material, though terse, is stimuluing to any mathematically-minded reader. The book can be read with little specifir knowledge about computers or computational complexity.

Bifore going into the contents of the book, it is necessary to have an idea of the pimil concept in computer science-the concept of an algorithm.
Analgorithm, as commonly understood, is a recipe or specific set of rules or directions for performing a task. (When the task is to be done on a computer, we say we have malgorithm for solving a problem when we can write a computer program that solves it) While studying an algorithm the basic questions to be answered are: What tasks an or cannot be performed by an algorithm when implemented on a computer mith limited resources? What is the computational complexity of the algorithm? The general theory of algorithms is concerned with the properties (like complexity) of agorithms, not with the theory of specific algorithms. As is well known, before attempting a computer run of a program, one would like to have (i) estimates of the storage or run-time for execution of the program in order to avoid aborted runs; and (ii) a quantitative standard for comparing the metits of algorithms, when many are availbble to solve the same problem.

The book under consideration deals, not with the general theory of algorithms, but nith the mathematical basis for the analysis of specific algorithms. Actually, it is ia mathematical look at the synthesis-emphasizing the mathematical perspective, but using motivation and examples fiom computer science '. In this sense, it is quite distinct from the currently available books on computer mathematics. Of course, a considerable part of the material is drawn from D. E. Knuth's The art of computer programming, Vol. 3 (Addison-Wesley, 1973), and from research papers scattered in the literature. The authors' attempt to bring, in their inimitable way, apparently dierse but somewhat familiar results together is praiseworthy.

The first chapter, which is the summary of an attempt to discover a coherent scheme in binomial identities, presents inverse relations, operator calculus and hypergeometric series.

The next chapter deals with recurrence relations (finite and infinite history) having constant and variable coefficients. There is a neat description of the use of generating furctions in solving linear, constant coefficient recurrence relations. Interesting examples are given to illustrate the solution of nonlinear recurrence relations (involring the evaluation of max and min) which require 'conjecture and insight rather than routine tools'. It is a surprise that Shimon Even's book Algorithmic combimatorics (Macmillan Company, New York, 1973) is not referred here.

In Chapter 3, the authors consider the application of operator methods to the 'cookie monster' and other p:oblems related to hashing schemes. One learns how the operator methods enable us to bypass trivial details in the study of algorithms. The tro concepts exemplified here are : Eigenoperator and 'induction from the other end', thlatter being innovative.

The last chapter (Chapter 4) describes asymptotic methods for the exact solution in the study of algorithms which are not amenable to coprosestion solutions. The aim of asymptotic analysis is to discover as thorough an asymprak approximation as possible, the tools used being O-notation, bootstrapping fheppot dissecting (applicd chicfly 10 sums ard integrals). Examples from algebra, mumber
theory and probability show the power of the sophisticated techniques used-Riemmer zeta function, Möbius inversion, Darboux's ard saddle point methods.
At many places in the text, stimulating problems are suggested, and challenging ons are posed at the end of the book, as Mid-Term, Final and Qualifying Examinaion. A unique feature of the book is that solutions to these problems are also given,

The bibliography is relevant and up-to-date. There exist very few typographicaleront
To summarize, the book is an extremenly valuable source of inspiration for rexarch workers in the area of computer algorithms.

Electrical Engineering Department
Y. V. VEsmath

Indian Institute of Science
Bangalore 560012.

Topics in differential and integral equations and operator theory (Vol. 7 in 0patim Theory : Advances and Applications) by M. G. Krein, edited by I. Gohberg ; translad from the Russian by A. Jacob. Birkhäuser Verlag, Basel, 1983, Pp. ix +302 , S.f. ith Indian orders to Allied Publishers Pvt. Ltd., New Delhi 110002.

The major part of this volume contains English translation of three important paras of M. G. Krein. It also contains translations of three more of his papers-wtwod which are with I. C. Gohberg and one with F. E. Melik-Adamyan.
The first, of the three papers of M. G. Krein, deals with the theory of cancuid linear differential equations with periodic coefficients. It discusses the question di stability of solutions of linear Hamiltonian systems (bourded solutions emainit bounded under small perturbations). The main ideas used are from the theof d operators in finite and infinite dimensional spaces, ard complex analysis. 7 Tx original paper appeared in 1955. Some recent literaure related to this paper $\begin{gathered}\text { and }\end{gathered}$ found in AMS Translation (2), 1970, 93, 103-176 and in Integral Equations Operator Theory 1982, 5, 718-757.
The second paper is actually the collection of six lectures given by M. G. Krem in the First Summer Math. School, Kanev, in 1963. These lectures basically do with the thoery of spectral shift function, and in wave and scatering operatios. . ${ }^{\text {Dx }}$ are very lucid and self-contained.

The third paper deals with certain nonlinear integral equations which are closely related to the theory of Wiener-Hopf integral equations. This work originally appeared juring 1976-77. This is a sequel to the author's various interesting and significant ontributions to the theory of Wiener-Hopf integral equations. Here, the study of limear Wienter-Hopf integral equations is reduced to that of some nonlinear integral rquations, which originally started with the works of V. A. Ambartsumyan and s. Chandrasekhar in Astrophysics and Radiative Transfer. This paper not only gives a complete mathematical treatment of these works, but also further extends these studies.
The other three papers deal with (i) the theory of certain linear integral equations in arious standard function spaces, (ii) inequalities for the characteristic numbers of inegral equations with smooth kernels and (iii) the theory of S-Matrices of anonical differential equations with summable potential.

Though two of the three major papers of Krein were originally written over two trades age, they hold a significant position in the literature. As is rightly pointed oot in the editorial comments, 'the passage of time has not decreased their value..... these papers contain a wealth of ideas and will serve as a source of stimulation and uppration for exparts and beginners alike'.

All these papers are self-contained, filled with a variety of ideas and information, udd are written in the author's typical lucid style (qualities which have become a trade zurd of all the papers of M. G. Krein).

This volume will, without any doubt, be an excellent addition to any researcher i Differential and Integral Equations and is a must for every library.

Dpartment of Applied Mathematics
R. Vittal Rao

Edian Institute of Science
knealore 560012.

Meaents of the theory of generalized inverses for matrices by Randall E. Cline. Wthauser Verlag, P.O. Box 34, CH-4010 Basel, 1979, S.Fr. 10. Indian orders to Lifed Publishers Pvt. Ltd., New Delhi 110002.
ite concept of generalized inverses for matrices play a very significant role in many xoblems of engineering and physics in which the theory of ordinary inverses of artices ceases to be inapplicable or inadequate. The author has made a sincere attempt W introduce the concept of generalised inverses of various types for matrices in a wimple looking (size-wise) elegant monograph which is readable and enjoyable by mades of all forms-beginners or users.

The book contains four main chapters dealing with the actual is supported by a chapter on Introduction dealing with the motive forjectmant inverses and various notations utilized in the other chapters, and two Appendics onin hints to some of the difficult exercises in the book and a list of useful reforen respectively.

Each article in the book is very carefully written for beginners as well as mest, the subject and is followed by a number of well selected solved and unsolved pothen to clarify the matter in a nice way.

The geometrical illustrations in Chapter 2 dealing with Moore-Penroseinverse ber been demonstrated in a very enjoyable manner.

As a whole, the book is written with utmost care and will serve as a basic terthow for students taking a course in the subject of generalised inverses for matrics.

Department of Applied Mathematics
Alonsath Churam Indian Institute of Science
Bangalore 560012.

Multivariate approximation.theory (II) edited by Walter Schempp and Kal Zate. Birkhauser Verlag, Basel, 1982, Pp. 240, S.Fr. 60. Indian orders Allied Publidr Pvt. Ltd., New Delhi 110002.

With the rapid development of computers and with their extensive use in solith scientific problems, the interest for doing research in Approximation Theory hasgur veiy fast in the past two decades. During this period, many text-books wree mith and proceedings of conferences were published. The aim of the subject is to appritu mate functions of several variables, their derivatives and/or some of the quarivi associated with them, their averages for instance. It is desirable to do this in wid a way that the whole procedure can be easily fed into a computer.
The present volume is an attempt in this direction. This constitutes the procidits of the Third International Conference on Multivariate Approximation Theorl be at Oberwalfach, 1982. The papers presented cover a wide range of probecri id methods, both classical and modern, in the subject. There are articles which with uniform and mean square approximations of continuous functions on pravid spaces by polynomial or piecewise polynomial functions. In most cases, expliciclult lations of basis functions were done. This ought to be very useful for number analysts. Quite a few anticles aic devoted to the study of spline approximation self-adjoint operators in Hilbert spaces; another one gives an answer to the quble when a converse set is a Chebyshev set? [(i.e.) each point in the space h^{35} ? ${ }^{3}$.
nearcet clement in the convex set.] This kind of approach may lead to anothei point of vicw for the study of regularity of solutions of certain variational inequalitics.
Numerical quadrature is the topic of study of certain number of articles. This is rely escential in finite element method, which depends heavily on weak formulations of the boundary value problem. One article which gives methods to evaluate intcgrals on spheres should find application in boundary element method. The constiuction of numerical quadratures using Max Nocther Theorem in algebraic geometry is something new. So is the idea of getting ciíor estimates in numaricel quadrature using bi-orthogonal systems.

Numcrous applications of the theory ard mothods given in this volume are very interesting to pure and applicd mathematiciars alike. They irclude some classical problems like the evaluation of analytic contiruation of a function of a complex rasiable using inter polation techniqucs, domain of deperdence theo:ems for hyperbolic equations using some non-stardaid polyromial approximations, the convererace of the Fourier series to the function ard so on. Arother uscful application is that of vector splines in estimating upper air volticity and divergence. This is giren in the last article of the volume.

There are two articles which study approximations by finite element method. One is about the construction of C^{k} finite clements foir arbitraiy integer $k \geq 0$. This gneralizes the existing C^{1} finite elements which are constantly used in the conforming fime element method. The other one takes up a very important and difficult study d the behaviour of the constants which appear in the error estimates in finite element method. Indeed, without this knowledge valious crror estimates obtained are not ray useful practically!

Apart from piesenting classical methods and modern tiends in the current wescatch wackle problems in the subject, this volume also gives up-to-date references in the himature. In addition, numerous open problems have been indicated to the ieaders marious talks. In view of all these, this book is highly recommerded to any research liory of applied mathematics and numerical analysis.

[^1]Branching processes by S. Asmussen and H. Hering. Birkhauser Verlag, P.O. Bra Publishers Pvt. Ltd., New Delhi 110002 . S.Fr. 82. Indian orders to Alluy

This book augments the current literature on branching processes with a detailed account of the works of the authors on branching diffusions and related models. It is a wer come addition to the existing books on branching p:ocesses and researchers in his area should find the book extremely useful.

The book is divided into four parts. Part A, the shortest, contains an introdacion to various branching models with emphasis on applications. Part B contains a detaiked discussion of the limit theory of the Galton-Watson and the continuous time Martor branching processes. Even though the material is fairly standard, the discuisin here is more elaborate and contains several now proofs. In particular, there are tree proofs of the Kesten-Stigum theorem. (stating that the limit randem variable of the Galton-Watson process is non-zero iff the usual ' $X \log X$ ' condition holis).

Part C entitled 'Multigroup branching diffusions on bounded domains' is the main part of the book; it contains the basic theory of branching diffusiond du to the authors, including limit theorems for such processes. In the words of the autbors the aim of this part has been 'to treat a large subfield to the highest degree of generdin! and completeness possible'. In particular, this part includes the construction of the branching diffusions due to Ikeda, Nagasawa and Watanabe which was hitherto wr. available in book form. Processes with infinite set of types are discussed here for the first time. Examples of the process discussed in this part include the multitype Bellmar Harris and the Sevastyanov processes, but not the Crump-Mode-Jagers (C-1H) branching process. This latter process is treated separately in part D, Ch. X. Part D discusses some special models. It begins with the examples of branching Ornstein-Uhlenbeck process and branching Brownian motion wherein the condiuwis of part C (for the validity of the limit theorems) are not satisfied. It then discrisis the generalized age-dependence (The $\mathrm{C}-\mathrm{M}-\mathrm{J}$ process) and random characteristic, wr taining the works of O . Nerman in the supercritical case, Doney in the subcritiod adi and Holte and Green in the critical case. Multitype versions are also given. Find an attempt is made to study two sex models which are known to be much roir complicated than the unisex models.
In conclusion, the book is an excellent addition to the existing literature on bist ching processes. It might be noted, however, that for a highly technical book of tis size, an index would have been very useful, if not absolutely necessary.

Ipplicd probability-Computer science : The Interface-2 volumes, edited by Ralph 1. Disney and Tuenis J. Ott, Birkhauser Verlag, Basel, Switzerland, 1982. Vol. Ipp. 52, Vol. II-pp. 514, S.Fr. 88 each volume. Indian orders to Allied Publishers put. Ltd., New Delhi 110002.

If the evolution of enginecring sciences, many research groups have developed their perspectives in pursuing the same area without much of an interface among them. As an cxample, statisticians, communication engineers and time series analysts have rorted in the area of signal processing evolving their particular methodologies without mich of communication among them. Some years ago, a concerted effort was made w bring these groups together. Similarly, in the present day there are many computer sientists who believe that probability is beyond their domain. As a result, in many curricula involving computer science, probability courses are absent or/are at a very minimum keel. However, in the international arena the computer scientists and applied probatilists have come to work on similar problems developing similar approaches and tools without prossibly trying to cross fertilize each other. Realizing this lacuna, the operations Research Society of America (ORSA) and The Institute of Management Siences (TIMS) had organized in 1981 in Florida a joint meeting between these two proups. The proceedings of this first meeting have come out as a two-volume book.

Forty-five papers from researchers from around the Western world are included in these two volumes. The striking area of common methodology between these two goups is the network of queues. More than half the papers are in this area. Tne ret are in other functional areas, which are fast becoming a source of exciting research problems, like computer performance analysis, data networks, data base analysis, ardysis of communication protocol, mixed voice-data telephone networks, probabilistic malysis of algorithms and reliability.

The first eight papers are of a survey nature presented by invited speakers and covers topis like queuing theory, simulation, memory allocation and analysis of algorithms. The other papers fatl into categories like network of queues, queuing models in perlomance analysis and various other iypes of models in performance analysis, reliability, probabilistic aspects of simulation, probabilistic analysis of data bases, computalional aspects, of probability, probabilistic analysis of algorithms and probabilistic scheduling.

The standard of most of the papers is quite high and most of them give the state of the att as of 1980 . There is a wealth of material for any serious research worker to derelop further the ideas presented. The publishers are to be complimented for bringing oul such a timely publication. In my opinion, these two volumes will be an excellent sdition to the library of many educational institutions and research laboratories. Department of Electrical Engineering
Indian Institute of Science
Bangalore 560012 .

Probability and statistical inference edited by Wilfried Grossman, Georg C_{h}. Prume \$49•50.

This book is the outcome of the proceedings of the second symposium on mathe matical statistics held in Austria in June 1981. The participants and the authors mane the 70 papers delivered at this conference 35 are included in the present book. The because most of the papers deal with applied probability and estimation theory. In papers cover roughly the following topics : non-parametric estimation theory, asymp
totic theory of estimation, invariance principles, Carlo methods and different types of statistical tests. There is a solitary paper on sha chastic integral representation of a sequence of martingales. Perhars a more appor pritate title would have been 'Applied Probability and Statistical Estimation'.

Most of the papers are either applicational in character using theory already derioped by others or extensions to theoretical results obtained elsewhere. Some of the papess are well written while some others are somewhat too terse to be useful. On the whols the quality of papers is good and may be useful to researchers specializing in the mabe matical aspects of statistical estimation theory.

It would have been better if there had been a uniformity in the reproduction of papers Some papers are double spaced, some have one and a half spacing and some are singe spaced. The paper, 'One Method of Stable Estimation of a Location Paramera' is so closely typed with hand written mathematical expressions overlapping the typd matter that it is almost very difficult to understand it.

Department of Electrical Engineering
V. Krbeali
Indian Institute of Science

Bangalore 560012.
Complex differential geometry by S. Kobayashi and H. Wu. Birkhauser Yerder Bascl, 1983, Pp. 159, S.Fr. 26. Indian orders to Allied Publishers Pvt. Itd, p.o. Box No. 155, Asaf Ali Road, New Delhi 110002.

Part I. Function theory on noncompact Kähler manifolds by H. Wu
An attempt to find a solution of a significant problem in mathematics has often trullel in a wealth of mathematical ideas. The problem of uniformization of Riemand faces is one such. It has attracted some of the most illustrious mathematicians ${ }^{\circ}$ its time and their efforts to solve the problem have given rise to many significant midn matical ideas such as the concept of a manifold, universal covering space and so 01

In recent years, an attempt to generalize this theorem to higher dimensions has produced some excellent mathematics which is the subject-matter of the book under review. Before embarking on the detailed analysis of the contents of the book, let me give a brief history of the problem.

The uniformization theorem of Riemann surfaces says that a simply connected Riemann surface is conformally equivalent to the Riemann sphere, the complex plane or the unit disc. It is well known that there is no direct analogue of this beautiful theorem in higher dimensions. By using celebrated Ahlfors-Schwarz lemma and result of Blanc-Fiala-Huber, one can reformulate the uniformization theorem in differential geometric language as follows:
(i) Every compact surface with positive curvature is conformally equivalent to the Riemann sphere.
(ii) Every noncompact complete surface with positive curvature is conformally equivalent to the complex plane.
(iii) Every simply connected (complete) surface with curvature bounded from above by a negative constant is conformally equivalent to the open unit disc.

It is conjectured that with some reasonable curvature assumptions on the manifold the above results have higher dimensional analogue. The higher dimensional analogue of case (i) is known as Frankel's conjecture which states that a compact Kähler manifold of positive sectional curvature must be biholomorphic to the complex projective space. This conjecture was proved by Andreotti-Frankel and Mabuchi in case of dimension two and three respectively. Very recently the gereral case was proved by Sill Yaul.

Corresponding to the case (ii), one has the conjecture that a noncompact complete Kähler manifold of positive sectional curvature must be biholomorphic to some C^{n}. Sin-Yau: proved that a noncompact simply connected Kähler manifold of complex dimension n with $0 \geqslant K \geqslant-A / r^{2}+\epsilon$ must be biholomorphic to some C^{n}, where A ond \in are positive numbers and r is the distance from a fixed point of M. Greene$W_{l^{8}}$ generalized this result to the case $0 \geqslant K \geqslant-k(r)$ with $k(r) \geqslant 0$ and $\int_{0}^{\infty} r k(r)$ ${ }^{4}<+\infty$.

[^2]directly or indirectly, inspired a good part of the work done in this general area in the last fifteen years. A recent construction by Mostow-Siu ${ }^{4}$ of a compact K äbler surfea the open two ball has shed some light on the complexity of these problems.

Now coming back to the book under review, the author tries to narrate to the raders the fascinating story of the mathematical adven,ture that failed in its main goal frie. that of solving the above conjecture) but still produced some excellent mathematios.

I am sure that this book will be of great value to the reader who wishes to be introduced to such treatment of the subject as enables him to grasp the essentialfatury without having to go through the agonizing experience of ploughing through the paper written by masters like Yau, Siu, Wu and many others in the field.

In principle one has to agree with the claims of the authors in the preface that tur prerequisites for reading these notes is rudimentary knowledge of Riemannian gar metry up to second variational formula, as well as some elementary facts about stin manifold such as Grauert's solution of the Levi problem. However, in orde to appreciate the book, it is essential to possess a considerable amount of mathemtial maturity. The author being an active worker in the field seems to have an irreisable tendency to push some of his recent results of utmost generality even before discosising some special cases. The reader may therefore find it difficult in some places to cour prehend what is going on. This does not however diminish the usefulness of the bod or the interest it sustains.

Background material $\S 0$ provides briefly the differential geometric language and some elementary results that are needed in the rest of the book. One can find her : reasonably self-contained discussion of the transition from the Hermitian comediba of a given Kähler metric to the Levi-Civita connection of the real part of the Kilitr metric, which is not easily accessible in the existing literature.

The first two lectures are concerned with the problem of existence of nonconsisel holomorphic functions on certain Kähler manifolds. This is accomplished by ob tainits the following two theorems (Wu):
(i) A simply connected complete Kähler manifold of non-positive sectiond ${ }^{\text {a }}$ (ur vature is a Stein manifold.
(ii) A complete noncompact Kähler manifold with positive bisectional currial and nonnegative sectional curvature is a Stein manifold. These theorems guarnite the existence of many nonconstant holomorphic functions (just pull back the tilith function on C^{n} via the imbedding). The strategy of the proof of both the thor is to construct a C^{∞}-strictly plurisubharmonic exhaustion function and then innold Grauert's solution of the Levi problem.

The third lecture is concerned with the nonexistence of bounded nonconstant holororphic functions on certain Kähler manifolds or equivalently bounded nonconstant harmonic functions on certain Riemannian manifolds. The main result is Yau's beautiful theorem that a ccmplete Riemannian manifold with nonnegative Ricci curvatura carries no nonconstant positive harmonic function. This is the only theorem in the bcok which is attended to by the author in all its details. The proof is based on Weitzerbock formu'a ard the skillful application of the maximum principle. Another result (of the author) proved here is that a Riemannian manifold with a pole under some suitable assumptions on radial curvature carries no nonconstant positive harmonic function. The proof depends on Harnack inequality of Moser.
The fourth lecture is devoted to the discussion of certain results on simply connected complete Kähler marifolds of nonpositive sectional curvature, one of which confirms the plasitility of the conjecture that if the curvature stays bounded away from zero, then the manifold has the characteristic features of a bounded domain in C^{n}. More specifically the following theorem (Wu-Greene) has been proved; If M is complete simply connected Kähler manifold with norpositive sectional curvature which is less than or equal to- A / ρ^{2} outside a compact set, where ρ is the distance function relative to a fixed point $0 \in M$ ard A is a positive constant, then it is complete hyperbolic and possesses a Retgman metric which is ccmplete when the curvature is suitably pinched. Another result (of the author) discussed here is that a simply connected complete Riemannian manifold of dimension greater than or equal to three with certain restrictions on the sectional curvature (which guarantee that its sectional curvature decays very fast relative to a fixed point) is flat. This generalizes a recent result of Mok-Siu-Yau ${ }^{6}$.

The fifth and the final lecture is devoted to the discussion of certain open problems,
Part II. Topics in complex differential geometry by S. Kobayashi and C. Horst
The aim of these notes is to give a concise account of recert results concerning the Calabi conjecture, the existence of holomorphic affine connections, holomorphic projective connections, quadratic structures, conformal structures, holomorphic tensor fields on a complex manifold. This part is in many ways a catalogue of the results of the author and his collaborators scattered in various journals.

Chapter one gives a brief resume of definitions and basic results that are needed in the subsequent chapters. Notable among them are Calabi conjecture and some related results proved by Yau and Aubin.

Chapter two describes briefly the work of the author with M. Inoue. It is shown that the existence of holomorphic affine connection imposes a heavy restriction upon n-dimensional manifold by proving that its chern class c_{i} must vanish for $i>n / 2$ and if in addition the manifold is Kähler, then all its chern class vanish. Further, it is
shown by invoking Yau's solution of Calabi conjecture that such a manifold admin a holomorphic affine connection if and only if it is covered by torus.

Chapters 3 and 4 give brief accounts of characterizations of a compact Kähler-Eiquter manifold which admits (i) a normal projective connection, (ii) a conformal structore.

The final chapter (5) gives a brief discussion of the results of Bochner which shows hor the definiteness properties of the Ricci tensor impose heavy restrictions on the existom of holomorphic tensor field on a compact Kähler manifold. All these results have bron reformulated in terms of the signs of the first chern class using Calabi conjecture.

References

1. SiU, Y. T. and Yau, S. T. Compact Kähler manifolds of positive bisectional curampar
2. Siu, Y. T. and Yau, S. T.
3. Greene, R. E. and Wu, H.
4. Mostow, D. AND Siu, Y. T.
5. Yau, S. T.
6. Mok, N., Yau, S. T.

- and Siu, Y. T.
Inv. Math., 1980, 59, 189-204.

Complete Kähler manifolds with nonpositive curvature of fas than quadratic decay, Ann. Math., 1977, 105 (2), 225-264.

Function theory on manifolds which possess a pole, Springer-liedy Berlin, New York, 1979.

A compact Kähler surfaie of negative curvature not cored by a ball, Ann. Math., 1980, 112 (2).

Harmonic functions on complete Riemannian manifolds, Come Pure Appl. Math., 1965, 28, 201-228.
The Poincaré-Lclong equation on complete Kähler maxiolk Compositio Math, 1981, 44, 183-218.
B. S. Pandtrangar Rio

Manasa Gangotri
University of Mysore
Mysore 570006.
Differential geometric control theory edited by Roger W. Brockett, Richard S. Millman and Hector J. Sussmann. Birkhauser Verlag, Basel, Switzerland, 1983 , Pp. 340, S.Fr. 62. Indian orders to Allied Publishers Pvt. Ltd., P.O. Box No. 155, 13/14, Asaf Ali Road, New Delhi 110002.

This book is the outcome of the proceedings of the Conference on Difierential Gor metric Control Theory held at Michigan Technological University during June-duly 1982. There were 76 participants who discussed the application of differentia gor metric methods to nonlinear control theory problems and the recent progress in th field. The papers consist of both old ideas and new developments,

Half the book consists of monographs by Hector Sussmann and Robert Gardner. The other half consists of ten papers by the control theorists and geometers amongst the participants. The monograph by Sussmann consists of control theory and very pittle of differential geometric aspects. The control theory presented consists of the following basic ideas: (a) treating control system as a collection of vector fields forming dynamical polysystem, (b) characterizing the coordinate invariant properties in terms of the structure of the Lie-algebra generated by the vector fields. (c) treating the local and global consequences of real analyticity and (d) extendirg the results of linear system theory for nonlinear systems. The author exploits the properties and structure of Lie-algebra and Lie-brackets to characterize linear contrcl systems and explains the presence of certain Lie-trackets in the case of nonlinear systems. Since the author starts from basic fundamentals the exposition is very clear and entremely well presented. Since the Lie-algebraic characterization of nonlinear filtering results is under active research now, this paper will certainly form a link between control theorists and nonlinear filtering workers.

The second main paper by Robert Gardner goes into the techniques of differential geometry and exterior differential systems. The paper consists of six chapters. The first chapter is an introduction to differential geometric methods and simple applications to control theory and calculus of variations. The next three chapters deal with Pfaffian systems and applications to Monge systems arising in control theory. The last two chapters discuss Cartan's method of equivalence and applicatien to the calculus of variations of curves.

The other ten papers including that of Roger Brocketl are on (a) asymptotic stability and 'feedback stabilization', (b) control theory, inverse spectral problems and real algebraic geometry, (c) on the existence of globally-invariant distributions, (d) noncommutative generating power series, Chen series and filtered transitive Lie-algebras in the local realization of nonlinear systems, (e) secondary characteristics of locally flat bundles, (f) analytic bounds for sub-analytic sets, (g) design for multi-input nonlinear systems, (h) controllability of affine systems, (i) generic properties of extremals in optimal control problems, (j) robustness in nonlinear control. As mentioned before some of these papers are pedagogic and some of them give some original results.

For pecple who are specializing in the area differential geometry applied to control theory this book will be a very good addition.

School of Automation
V. Krishnan

Indian Institute of Science
Rangalore 560012.

Abstract algebra by N. P. Chaudhury. Tata McGraw-Hill Publishing C_{0}. Ltd. 124,
Asaf Ali Road, 3rd Floor, New Delhi 110002,1983 , pp. 152, Rs. 69.
This is a good introductory textbook intended for students who begin their colkg mathematics. It has six chapters-sets, groups, rings, vector spaces, lattices, and forth The concepts are clearly explained with appropriate examples of a strictly elemandy seem to have been verine high compared to Indian editions of the foreign pubbishats.
Cayleys's. The price is rather

Immediate Past President
Indian Mathematical Society

K. Venkatachalieigat

8, 2nd Cross, Nehru Nagar
Bangalore 560020.

The basis of organic chemistry (Second Fdition) by R. J. Fessenden and J.S. Fessenden, Allyn and Bacon, 42, Colebrook Row, London N1 8AF. 1978, 511.9 Indian orders to UBS Publishers' Distributors Ltd., 5, Ansari Road. Box 7015, Ta Delhi 110002.

The authors have emphasised the reactions of types of bonds and how they ocerr. instead of using the traditional approach. Because the book is directed bonarid students with varying backgrounds and interests, the authors have treated racaina mechanisms from a visual standpoint rather than a mathematical one. This is hidgr commendable.

In view of the vast interest of present day students in biologically-oriented field suit as genetics or the study of the drugs, emphasis has been laid on some of the bionequad applications of organic chemistry.
In the present revised edition, Chapter 1 has been expanded to give a more dealided review on bonding. The discussion on physical properties in Chapter 18 has kou deleted to accommodate a slight expansion of spectroscopy, NMR in particular. ${ }^{\text {A }}$ few additional topics have been added. The $E-Z$ and $(R)(S)$ sy stems of nomenclawr are introduced briefly as are the subjects of prostaglandins, insect pheromore at photosynthesis.
The book is divided into 18 chapters. The different subjects covered in each char ${ }^{\text {rec }}$ and elimination reactions, addition reactions and reductions, reactions of cartorl compourds, stercochemistry, shapes of cyclic molecules and optical isomerism. and other carbohydrates, amino acids and peptides, nucleic acids and the chatritr
of heredity, introduction to metabolism, organic compounds occurring in nature, the action of drugs and spectra of organic compound s.

This book is directed towards the student who has had a background in general chemistry. The authors have intentionally introduced material that may be a review for many students. They have tried to build a firm foundation for an understanding of why reaction occurs.

Another useful aspect of this book is the number of study questions included at the end of Chapters 1 through 9. These are some typical questions but not exhaustive. A review of important organic reactions is made in Chapter 10. Students will find this chapter very useful. Answers to some of the problems are appended. A dependable subject index is another attractive fcature of this book. There is no doubt that this is a very useful and comprehensive book on organic chemistry.

Department of Organic Chemistry
T. R. Kasturi

Indian Institute of Science
Bangalore 560012.

Study guide to organic chemistry by Morrison and Boyd (Third Edition), Allyn and Bacon, \$ 12.95 .

This is a guide to problems given in the text book of organic chemistry by Morrison and Boyd. The answers have been systematically worked out with suitable explanations. This will help the students to find out where they have gone wrong, in case they do not get the right answers. With a few answers, references to chemical literature have been given with a view to enable the stucent to look up the original papers, if necessary and if they are curious.

The guide is recommended for students as a reference book.
Department of Organic Chemistry
Indian Institute of Science
Bangalore 560012 . T. R. Kasturi

Proceedings of the Fourth International Congress of Quantum Chemistry edited by Per-Olov-Lowdin and Bernard Pullman. D. Reidel Publishing Co., Dordrecht, 1983, pp. vii $+457, \$ 67.50$.
The Fourth International Congress of Quantum Chemistry which was held on June 14-19, 1982 at Uppsala, Sweden, consisted of six symposia, in various areas of quantum chemistry, solid-state theory and quantum biology. The proceedings therefore contain
papers in various arcas and cach area has now become so growth that it hecomes impossible for a. sirgle reviener to equal competence.
The proceedings contain six sections. In the section entitled 'Qlantum mecterne estimate chemical reaction rate from the prirciples of quantem mechanics. In lux paper. the advantage of the hyperspherical coordirates has been stressed. The sen section alorg with the section 'Computational quartum chemistry' 'mphasics on 4 methods of dealing with electron correlation. For a long time chemists are gererat familiar with the configuration interaction methods for dealing with electron comes. lation and with its diadvantages. Methods based on the cluster anasatz for an rean wave function are quite impressive in dealing with the problem of electron coredain An extension of the coupled cluster approach to the open shell systems has been shar although it requires a considerable computational effort.

One of the latest and impressive developments in computational quantum chemina is the calculation of energy derivatives and its potential application in the detation of transition state and saddle point on the reaction surfaces. Although in the ine. dependent section, new theoretical techniques are discussed for understanding mk cular reaction dynamics, the application of the calculation of energy derination of late expanded dramatically and may continue to draw the attention of chemissifor many years to come.

The section on large molecules ard solid state theory seem to suggest that acuruth calculations of the electronic structure of clusters built up from tatious atms serve as a future junction between quantum chemistry ard solid-state theory. Intion content, a widcr application of the pscudo-potential quantum chemical aproastifo the treatment of medium size clusters is called for. Unfortunately, not a single pyd on the pscudo-potential approach is found in this proceedings.

In the section of ' Quantum biology' an article on evolution of molecule is sati. This is certainly an interesting article irt the ficld of molecular biology but I do nol se any relevance of this article to quantum biology because nowhere any quantum chemide principle is involved. Only article which fits in this proceedings is that of R. Later and A. Pullman on the distribution of the electrostatic field and potential around \mathbb{R}^{M}. the most complicated molecule.

In spite of the fact that the articles are written by the specialists, they are of gencrit interest to physical chemists, organic chemists and molecular biologists.

The forgotten third skill by Marcelle Kellerman. Pergamon Press, 1981, pp. 129, price not stated.

Foreign language teaching in the past has invariably emphasised the acquisition of the 'productive' skills of speaking and writing. Structure and phonetic drills through the oral method have been used to teach language. Reading has been a neglected skill. There has beer, as Kellerman puts it, a belicf that reading in a foreign language is difficult for most children, that it cannot give pleasure, that it is time consuming ard not really necessary', and that 'since success in the form of examination passes can largely dispense with fluent reading as a skill in its own right, why bother?' This speaks of the general apathy forcign language teachers have shown towards reading as an impartcd skill. Ms. Kellerman starts with the promise that children have an innate ability to understand much more than they know, and to know much more than they often given (sic) the msclves credit for' thus dismissing fears and misgivings, so ficquently expressed about reading, as 'discriminatory and baseless'. The book suggests a major change in language didactics so that reading can become 'a central objective of our foreign language programme after the first oral phase...an activity accessible to, and to be enjoyed by, all learners literate in the mother-tongue ... on the condition that we put them in asituation where they can clearly demonstrate their aputude '.

Speaking and writing are easy to teach and provide tangible yardsticks for assessing achicvemnts; listenirg ard reading are more difficult to teach and to test. The mach nistic character of the oral method, however, even though appropriate at the initial larguage lcarning stagcs, relics too much on 'transient recall capacities ' and develcps only a temporary ability and not any enduring linguistic competence. We may compare the 'drills only' student to 'a. traveller who receives verbal directions and walks on slowly, repeating them in his mind. Whether they stay in his mind or not will depend on his memory' (A. J. Thomson and A. V. Martinet, EFL Bulletin, No. 4, 0.U.P.). A crucial psycholinguistic implication here is that children cannot learn 10 understand language by imitation or rote because meaning is not directly represented in the sounds that they hear. Language can be bettet understood through the application of syntactic rules and these can be assimilated and internalized by reading and comprehending carefully sclocted written materials. The reading text, as H. G, Widdowsen says, 'realizes linguistic rulcs by reference to the principle of extension...' and makes 'the utterance meaning clear by providing other utterances which are complementary ard extensive (Contrived and Natural Language, EFL Bulletin, No. 4, page 8). Reading would also allow pupils to explore the world of knowledge through the medium of the forcign language and build for themselves a storehouse of experiences in terms of which they can process the texts that they read subsequently. As Kellerman puts it, 'Greater success would surely be achieved if our foreign language courses encouraged sclf-reliance in pupils and appealed to developing and more rnduring interests'. Reading being a student-centred activity, leads to 'independent
thinkirg ard creativity'. It liberates the pupil from the confines of the classon laments the reglect of the third skill, reading and this neglect, she feels, 'may mo
account for the relatively poor linguistic achievements of foreign language karmes,
In order to make a reading course effective, the book gives certain axioms on a mio teaching strategics should be bascd. The axioms pertain to the 'socio-pedagog d foreign larguage readirg' ard speak of a carcfully 'defined pattern' of the radiry course, 'of well defined stages ', 'frequency' of reading, 'accessibility of reading w all pupils literate in the native language', 'relevance of reading content', 'araiaditity of varied and extensive literature', 'availability of time and space for intra-and entre curricular reading' and 'encouragement and recognition of the effort made by tre learner'. There must also be appropriate and reliable methods for testing pupik active and passive knowledge of the target language.

Efficient reading is normally done in terms of three sources of information from ixe text-semantic : reading in order to comprebend meaning; syntactic: the way mords are strung together in sentences : and, graphic : letter and word perception. Thes skills are to be taught in an interdependent way so that each can aid the other. Lean. ing to read and to speak and understand langauage can go hand in hand as complerint taly activities held together by a framework of meaning.

There has to be a period of preparation before pupils can enter the reading pazis. Kellerman suggests that for the pre-reading phase pupils would have had approximuer three terms of oral instruction at the rate of 30 minutes a day, and a method of tastr ing which encourages them to think and feel independently in the foreign langure and to speak it with the minimum of effort. In the reading phase, the literature str: ted should harmonize with the aptitudes, needs and aspirations of young pupis: I should be of good quality, linguistically sound, rich in imagination ana authentic id its message or plot.' The starting point in reading must be a story or desciphar which is held together by a logical development and arrives at a climax or conclusiver General understanding of the basic tale must be ensured. To achieve this the wibl suggests five steps or 'Moments' as she calls them : four 'Moments' of guided rast' ing and comprehension followed by a fifth one when unaided reading is enviged The reading phase would lead to semi-liberated and liberated reading situations whar ' the pupil has access to and enjoys reading unedited genuine foreign literature'.

The book is divided into convenient sections airanged in a logically developmull order which makes comprehension and acceptance of her aigument casy and smoul The six chopteis are: The case for foreign language literacy; Experiminal bos grourd ; Theorctical bases of planning reading programmes; Practical apprazitio: Implications for teacher training; and, Summary of conclusions. The style is tribl
gire and the plan convincing. The author does not indulge in any abstract philosophy while building a case for reading. On the contrary, her approach is a practical one based on certain experiments she conducted in some schools in Yorkshire. She actrowledges her debt to Julian Dakin whose work in India and Spain opened up new possibilities in the quest for different emphases in language didactics. Julian Dakin died in 1972 at the age of 31. What he had to say was important; and he had just started saying it. The present work is an attempt to carry on the work Julian Dakin envisaged in his correspondence with Ms. Kellerman. A selection of reading texts, written by Julian Dakin, is given in the appendix. Suggestions for further reading are given at the end of the brok.

Foreign Languages Section
S. J. Singh

Indian Institute of Science
Bangalore 560012.

[^0]: Department of Applied Mathematics
 K. P. SNOHL^{2}

 Indian Institute of Science
 Bangalore 560012.

[^1]: TIFR Centro
 M. Vanninathan
 Li.s. Campus

 Bangalore 560012.

[^2]: Corresponding to the case (iii), one has the conjecture of Wu that a simply connected mmplete Kähler manifold of negative sectional curvature must be biholomorphic to Fold thed domain in C^{n}. A weaker version of this conjecture says that on such manifold there are many nonconstant bounded holomorphic functions. Up to this day, n_{0} progress has been made on thesc conjectures. However, they have,

