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ABSTRACT 

Three measures for the singularity of near singular matrices have been 
suggested. One based on the basic principle of linear dependence of the column 
(or row) vectors constituting the matrix, while the other two on methods of Ortho- 
normalization" and Orthogonalizatton", respectively. The advantage of the first 
measure is the computational ease (as well as greater accuracy in the case of un- 
symmetric matrics), for instance, in comparison to Neumarm-Goldstine's measure. 
The important feature of the remaining two measurers is that they are part of the 
Inversion proces itself in contrast to those suggested by Turing, Neurnanm and 
Goldstine, all of which involve calculations additional to the task of inversion. 
Moreover these measures, unlike the suggesied measures of Tuiing, Neumann and 
Goldstine, do not assume any knowledge of inverse or characteristic values of the 
matrix and also take into cosideration tne degree of accurancy of the elements o( the 
matrix. However in the case ofa large matrix, say, of 100 or more order, the second 
measure based on Orthonormalization method may be impractical and sometimes 

even not feasible, but the third one based on Orthogonalization method is 
immune to such difficulty and is, moreover, superior to other measures as actually 
proved by Numerical examples. 

I NTRODUC [ION 

.
A matrix is said to be singular if its determinant vanishes. And if a 

matrix possesses a very small determinant value, it is said to be near singular s  

and ill conditioned' with respect to inverse'. There is a very large class of 
37 
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problems which give rise to a very highly ill-conditioned matrices. However, 
speaking about near singular matrices, the well known Hilbert's matrices 
naturally come to mind as typical examples. These matrices are strictly non 
singular in the theoretical sense, though may appear as singular when their 
reciprocals are computed numerically. A question arises naturally : 	What is 
the criterion of deciding whether a matrix is to be taken as singular in the 
numerical sense?' The answer is a relative one, related to the degree of 

precision adopted in numerical camputation, particularly with the numerical 
definition of zero '. The usual practice of numerical analysis is to express a 

number correct up to a finite number of decimal places and to retain these 
number of decimal places in all subsequent computations. For example, the 

number 1/6 = 0.16 4. 67 when expressed correct up to five decimal places. Any 
number which is less than 0.000005 in magnitude has to be neglected and treated 
as zero '. Consequently, the numerical zero ' in this case is any number less 
than 1/2 x 10 -5 . If we take the determinant of a matrix to be the measure of 

singularity and if that determinant turns out to be less than 1/2 x 10-5, an 
obvious conclusion will be that the matrix is to be treated as singular. On 
the other hand, if the latent root is taken to be the measure of singularity and 
then if the smallest latent root is less than 1/2 x 10 -5, the matrix is to be 
taken as singular. The thing does not end here. If the computations are 
carried out correct up to, say, eight decimal places, then any number less than 
112 x 10 -8  is taken as a numerical zero and if the determinant or the 
smallest latent root is greater than 1/2 x 10 -8, the matrix is not singular. 
Consequently, the numerical definition of singularity is a relative one directly 
linked with the degree of precision of the computations. 	Even a truly 
singular matrix, for example, one whose row sum or column sum is exactly 0, 
may not turn out to be singular computationally, if the computations are done 
with more decimal places than the elements of the matrix are expressed. A 
measure of such singularity of matrices is, therefore, necessary not only to 
decide whether a matrix should, in the numerical sense, be considered singular 
or not, but also to have a comparative study of matrices, ill-conditioned with 
respect to inverse. 

The present study is aimed at finding an index to measure the extent of 
this near singularity for a given matrix taking into account the measure of 
accuracy in expressing the elements of the matrix. 	Three methods, for 
obtaining such an index, are suggested and the merits and demerits of these 
methods along with those of the existing ones have been discussed thereafter 
by considering a few numerical examples. Among these three suggested 
measures, the first one is based on the basic principle of linear dependence 
of column (or row) vectors of a matrix, the second on Orthonorrnalization 17  
method and the third on Orthogonalization 17  method (without normalization 
of the orthogonal vectors). The superiority of the last method over the other 
two and also the existing ones has been demonstrated with numerical examples. 
It is an added advantage that the latter two methods" give the inverse of a 
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matrix. The effect of row and column permutation over these suggested 
measures has also been shown by considering a few numerical examples. 

METHODS 

Method .1 (Method based on linear dependence) 

The ultimate cause of singularity or a matrix is the linear dependence of 
its column (or row) vectors. Mathematically n column vectors a l , a2, • • • 
an  of a matrix A of order n are said to be linearly dependent over a field F, 
provided there exist n elements x i , x2, • • • , xn  of F, not all zero, such that 

al 	+ a2 x2 + • • • + a n  x„ a 0 

otherwise the n column vectors are said to be linearly independent. 

Numerically speaking this is directly linked with the numerical definition 
of ' zero '. 

if the elements of the said matrix are expressed correct up to p decimal 
places, then numerically the linear dependence of these column vectors means 
that these column vectors of the matrix numerically satisfy a linear equation, 
that is to say, the linear expression on the left side of (0 is less than 
1/2 x 10— P in magnitude. Or, in other words if 

mod (x i  a l  + x2  a2  + • • - + x„ a„) < x 10 -p 

the matrix A is singular in the numerical seas& Let us denote by the vector 

xi 	+ X2 22 + • • • + xn  a n, 

then 	 .I . < I x 

Theoretically the equation x1  al +x2a2 • 

X ( [X1, X2, • • • • 	) is a column vector:  
provided the matrix A is non - singular and e 
much as knowledge of E is not availab 
determined from least square method, as 

• • + Xn an E or A X E  where 
can always be solved for x's 
is given. This does not help 

le. The minimum of can be 

-÷€ 1 2 aX A r  A x rninimum 

where A l  s transpose of the matrix A and x' e transpose of the column 

vector x. 	But by choosing Is arbitrarily small, one can make 171 2  as 

small as one desires irrespective of the elements of A. Hence the need of 

finding min I E 1 2  /ix 1 2  is obvious (x 0 0). 

	

; 112 	X f  ie A X 
=min 

	

I X 1 2 	I X 1 2  

is smallest latent root of A' A 

eh (say) 
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If the matrix A is singular ,u 0. Thus the smallest latent root of A' A is a 
measure of the singularity of the matrix A or more r recisely its square root. 

If V,u < 121- x 10 -P , then the matrix becomes singular in the numerical sense. 
It is easy to determine numerically the smallest latent root of A' A by an 
iteration method such as Jacobi's since A' A is symmetric and positive definite. 
But this is another computation problem different from inversion. 

Method 2—(Grams' Orthonorrnalization process) 

Let A = (a1, 02, • • • an) where ai 	a21, • • • 	ano denote the 

column vectors of the matrix A. 

From the column vectors a l , a2, • • • , an , we form orthonormal 
e• ..,._ 	. . . 	., 	whirl, are mutually orthoeonal and the norm of each kb tea) 
is unity. 

vectors 
vector 

z1  can be given by zi = lad ' 

Z2 bY Z2 n 	12 r 	N la2i — ka2 z
2) 1/2

o  

In general, the orthonormal vector z, can be given by 

3-I 
(as  z i) z i  
	i  =1  z, sal 

	

{l a 5 12 _ 	(as  2  ir} 112 

1---t1 

where (a, z i) denotes the inner product of the s-th column vector of A and i-th 
column vector of Z where 

Z 	1(.Z 212) 

Bessel's Inequality 4  
- 

D3 mi laS1 2 
	

(a, zi)2  ?..-• 
11 =1 

provides a criterion for deciding whether a particular column vector a, is 
linearly dependent on the column vectors a l , a2, • • • , 	. If a, is linearly 
dependent on zi , z2, • • • , z3 _ 1 , that is to say on al , a2, • • • 	aj - 1 , the 
Inequality becomes an Equality, viz., 

142 	24,-;  
er:31 

(a, zi)2  sa 0 
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If the original elements of the matrix are expressed correctly up to 
n decimal places, the numerical zero will be any number <1 x 10 -". 

In Bessel's Inequality, if 

i i 
Ike — 	(as  zi)'} 1(2 sr x-10 - ' (say), 

where 1 C x < 10, the Index of linear dependence I is defined as 

- I 0 - " x • 10' —1  • 10"" 
2x 

For actual linear dependence I 1. 	If 1< 1, there is no linear 
dependence in the strict sense, but I will give a measure of linear dependence 
and thus of near singularity. 

Method 3—(Orthogonalization Method) 

This method involves the 
matrix A without normalization 
Generally we can write 

formation of the Orthogonal basis of the 
of the Orthogonal vectors x i , x2, • • • 1 xn. 

Xs+1 cr as  — 
I a  

cs,s4-1 	x, 
1.=.1 	14' 

In case as. fi  is linearly dependent on the preceding vectors a l , 02, • • • 9 

as, Ix3+i i12   will vanish, i.e., the norm of x54. 1 — 0. In this case we define the 

Index in the following way. 

If norm of xs+1  m• X • 10 - ' where 1 x < 10 and we express the original 

elements of the matrix in n decimal places, the Index J will be 

.1=4. • lo - n x • io-r
1 

- 10'" 
2x 

The two methods are essentially the same, only the second method avoids 

the rounding off errors of extracting square-roots. 

COMPARISON WITH OTHER MEASURES 

Turing l  suggested two measures, viz., 

M (A) = n max la ij j max ja ii is t  
J 	14 

N (A) xi= n -1  norm A norm /4 - 1 
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But both of these assume the knowledge of reciprocal matrix, which cannot 
be obtained numerically in the majority of the cases. Because inversion 
process cannot proceed when the condition of the matrix is bad. This is of 

pure theoretical interest. 

John Von Neumann and Goldstine 2  suggested the following measure 

lit(A)1  Pkiii) 
1,2 ( 4)1 

where A (A) is the largest and iu (A) is the smallest of the latent roots of A. 

The largest and smallest latent roots of A are to be calculated which is 
feasible in many cases, though for unsymmetric matrices, the calculations of 

and M become tedious and a problem by itself. The first measure, that is, 
the square-root of the smallest latent root of A' A is easier than Neumann 
and Goldstine's measure to compute (because A' A is always symmetric even 

if A is unsymmetric) and can always be computed with accuracy. 

The Index I or J, however, is still easier than the first measure to 
compute because when the reciprocal of the ill-conditioned matrix is computed 
by the Orthogonalization method" or Orthonormalization method, these 
Indexes are automatically calculated, practically no separate calculations are 
necessary. 

I or J differs from these condition numbers essentially in that it takes 
into consideration the degree of accuracy of the elements of the matrix. Also 
it does not assume a knowledge of inverse or characteristic values of the 
matrix. In fact, the inverse cannot be computed in most cases. 

EFFECT OF Row AND COLUMN PERMUTATION ON TILE SUGGESTED MEASURES 

In the case of symmetric matrices changing of rows into corresponding 
columns or vice versa has no effect on any of the proposed measures. Under 
row and column permutation, a symmetric matrix generally turns out to be 
unsymmetric in most of the cases. Speaking of the unsymmetric matrices as 
well as symmetric ones, the first measure le , the one based on the square- 
root of the smallest latent root of A' A will remain invariant under row and 
column permutation. 

In the Orthogonalization process for inversion, the quantity 

P 
1=1 

remains invariant under row and column permutation, so that one may look 
upon P as a measure of the singularity of the matrix ; but in majority of the 
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cases (like the suggested measures of Turing') P may not be obtainable 
because the process of finding Ix'', is 1, 2, 	, n is unable to proceed if 
a particular column (or row) vector (2, 4_ 1 	< n) is numerically linearly 
dependent on the preceding vectors, since in such a case lx,„ 411 becomes zero 
numerically and consequently the remaining vectors x„, +2 , x„, +3, • • • , X

, which 
have respectively km+1 1, lx„, +21, lx,n+31, • • • as their denominators, cannot 
be derived. 

This difficulty is sure to lead one to consider the quantity jx„, +1 1 which is 
the only cause for stopping the process, as a measure of' singularity. Though 
not always invariant under row and column permutation, such a measure based 
on lx,„ + ii , however, tends to be invariant as the matrix approaches singularity 
and remains invariant when the matrix is numerically singular. This has been 
shown by considering a few numerical examples. 

Measure based on Orthonormalization process is essentialsAy the same as 
that based on Orthogonalization process, except that the latter measure avoids 
rounding off errors of extracting square-roots and so the effect of row and 
column permutation has the same nature as that on the measure based on 
Orthogonalization method. 

NUMERICAL EXAMPLES AND PROGRAMMING ASPECTS 

The problem of construction of near singular matrices for testing these 
methods is made easy by the choice of Hilbert's matrices, the linear dependence 
of the column (or row) vectors becoming more pronounced as we take higher 
orders. 

Scaling: Floating 
the numbers handled 
point system. Since 
cases, retention of a 
computations becomes 

point working is used 
in these methods is 
the rounding off err 
fairly large number 
necessary. 

in all the cases since 
too large for a sati5 

ors play a significant 
of significant digits 

the range of 
;factory fixed 
roll in these 
during the 

Checks: The mutual Orthogonality of the column vectors of Z (or 

X 	)C2, • • • t xn  in the case of the third method) matrix is a sufficient check 
to determine the accuracy of the calculations. In addition, the normality of 
the Z-matrix can be checked in the case of the second method. 

singular matrix M of order 7 and 
attached and calculations in all the cases were done in floating point with 20 

Rnri ens.), alptnant nf *11 the H'ilbert's matrices was retained correct up to 8 
decimal digits unless otherwise stated, to minimize the rounding off errors, 

Results: Numerical examples of 6, 7 and 8 order Hilbert's matrices, a 
two other matrices, each of order 3, are 

— 	..,... 	 v..04.11/./ 44 	Iri ■alli.J ■a/A11. 	W• 	wn 	—._ 

significant digits. 

• 
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Ex. 1: (HILBERT'S MARTIX OF ORDER 6, METHOD 3 WAS USED) 

Using Orthogonal basis of linear transformation; of the column vectors 
of this matrix, mutually orthogonal vectors x i , x2, •••, x6  were formed, where 
the smallest of the norms of the orthogonal vectors was given by 1x61 

3-987 x 10 -1. According to our previous definition of x and r, the value of 

x-3987 and r 	. And the Index of linear dependence or Condition 

number J was given by 1= • 1254 x 10 -1  (v n 8). To compare method 2 and 
method 3, the following table can be given. 

TABLE 

A comparative study of D's and x's of method 2 and method 3. 

Method 2 
	

Method 3 
Orthonormalization Basis 

	
Orthogonalization Basis 

  

Case 1 
(Calculations done with 10 

significant digits) 

Case 2 
(Calculations done with 

2u significant digits) 

(Calculations done with 20 
significant digits) 

For z i , pl c- Of 14913R89 x 10 1  

For z2 , D2 = 0 , 19173108 x 10 -1  

For Z3, D3 c 0-91424500 x 10 -4  

For Zs, D4 a= 0'23050000 x 10 -6  

For Z5, D5 — 0-9 x 10 

which is a negative number. 

= 0•1491389 x 10 1 
	

142 s 0.14913889 x 10 1  

	

D2 0. 19173107 x 10 -1 
	

IX21 2 Ca  0'19173107 x 

	

D3 a 0•91424452 x 10 -4 
	

1x3 1 2 e 0-91424452 x 10 -4  

	

D4 ca 0-23067036 x 10 -6 
	

14 2 = 0-23067036 x 10_ 6  

	

D5 0-30064028 x 10-9 	142  0-30064028 x 10 -9  

	

D6 a 0-15890052 x 10 -12 	lx61 2  0-15890113 x 10 -12  

This is due to rounding off 
errors rendering further com- 
putations impossible as z has 
as its denominator D5 . 

The smallest of D's as determined in case 2 was given by 

D6 a 0.15890052 x 10 -12  

which agreed nearly with the value of lx 611 2  =0.15890113 x 10-12) 
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showing thereby the more accurate results in determining the Index lies in 
Orthogonalization basis ; this was due to the fact that Orthogonal basis 
avcids extraction of square roots. Again if the calculations are done in 
floating point with 10 significant digits, we are not able to find z 5  and 26  because Bessel's Inequility D5 or D 6  becomes negative due to rounding off 
errors making further computations impossible, as z 5  and z6  have as their 
demonstrators VD5  and VD6. Such trouble will not come in the case of 
Orthogonalization method. 

VON NEUMANN AND GOLDSTINE'S MEASURE: 
latent roots of Hilbert's matrix of order 6 are 
respectively and the measure is 

The largest and smallest 
1.61889971 and 0.00000010 

P (A) (A) . 1.61889971 
=1.61889971 x 107  

0.00000010 

and the Index of linear dependence is 1/2 x 10 -8  X P (A) = .80944985 x 10 -1  

Measure on the basis of the smallest latent root of 

IA: 	,12 sic .00000010 = 1 x 10-7  

and the Condition number is 

1 	
- 1/2x 10 - 8. 	=.5 x 10'-  

Ex. 2: (HILBERT'S MATRIX OF ORDER 7, ME 1000 3 WAS USED) 

Using Orthogonal basis of linear transformations of the column vectors 
of the matrix, the mutually orthogonal vectors x l , x2, - • • , x7  were found, 

where the smallest of the squared norms of the orthogonal vectors was given 

by IA712  r 0.3229408 x 10 -15  and the norm was given by jx 7ica 1.797 x 10 -8  and 

consequently the Index of linear dependence or Condition Number 
J aa  . 3 3 4 9 

x 10 and the smallest latent root is 0.00000000. 

Ex. 3: (HILBERTS' MATRIX OF ORDER 8, METHOD 3 WAS USED) 

In this case also, exactly similarly as above, the mutually orthogonal 

vectors were formed, where the smallest of the norms of the orthogonal 

vectors was given by 1.141 me 8.036 x 10 -1°  and consequently the Condition 

Number a 0.622 x 101  > L. Hence this matrix was singular in the numeri- 

cal sense. 
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Ex. 4: (A SINGULAR MATRIX OF ORDER 7, METHOD 3 WAS USED) 

The singular matrix expressed in 4 decimal places was given by 

	

- 1.0000 	0.4589 	0.5612 -0.0201 	-0.3947 	-0.3123 	- 0.6412 

	

-0.4589 	1.0000 	0 3114 	0 8525 	0 0429 	0.2861 	-0.3190 

	

- 05612 	0.1114 	0 0000 	0.7502 -00655 	0.1467 	-0.4462 

	

-0.0210 	0 8525 	0.7502 	1.5826 	-04173 	0.1205 	0.1240 

	

-0.3947 	0.0429 -00655 	0.4173 	1.0000 	0 1882 -0.3511 

I 

	

-O•3123 	0.2861 	0.1467 	0 1205 	0 1882 	1.0000 	-0.3092 

	

! 0.6412 -0.3190 -0.4462 -0.1240 -0.3511 	-0.3092 	1.0000 

where the 4th column was the sum of the preceding 3 columns. 

Here the smallest of the squared norms of the mutually orthogonal 

vectors X1 , X2, • • • 

was given by I val 
J= .7195 x 10 11  » 1. 
elements of it were 
decimal places. 

, x7  was given by 1x41" ri 0.48280000 x 10 - " and the norm 
= 6.948 x 10 -20  and therefore the Condition number 

Hence this matrix is strictly singular even if the 
expressed correct upto 18 decimal places instead of 4 

Ex. 5: (AN UNSYMMETRIC MATRIX OF ORDER 3) 

The matrix was given by 

.2 	.1 
.1 	.3 	.1 
. 1 	.2 	.2 

Here the smallest 	of the squared norms of the mutually orthogonal vectors 
xl , x2  and x3  was given by lx3 1 2  et •01190476 and P was 	given 	by p a° V( . 06 X 
•035 x •01190476) 	0 0 5 0 U 0 0 0 • 

When the first two columns were interchanged, the squared norm of the 
smallest orthogonal vector x 3  as well as P[ 	(• 17 x •01235294 x •01190476) a 
0-00500000] would remain invariant ; but when the last two columns were 
interchanged, the squared norm of the smallest orthogonal vector x 2  was given 
bY 1 121 2  .= *01833333 ; and P( a il(-06 x -01833333 x •02272727) •00500000), of 
course, would remain invariant as it was. 

The smallest 	latent root of A' A was given by •92330317 and this would 
be unaffected under row and column permutation of the matrix A. 

Ex. 6 : (A NEAR SINGULAR MATRIX OF ORDER 3, METHOD 3 WAS USED) 

Calculations were done correct 
given by 

•21 
•21 
' 67 

upto 7 decimal places. 

•32 	•45 
•32 	•44 
•78 	•59 

The matrix was 
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The smallest of the squared norms of the mutually orthogonal vectors 
xi , x2 and x3  was given by lx31 2 — •500 x 10 -4  when the columns were changed 
to corresponding rows, the smallest of the squared norms of the orthogonal 
vectors would be jx 2 1 2  -- •419 x 10 -4. 
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