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ABSTRACT

Three measures for the singularity of near singular matrices bhave been
suggested. Onc based on the basic principle of linear dependence of the column
(ot row) vectors constituting the matrix, while the other two on methods of Ortho-
normalization'” and Orthogonalization?'’, respectively. The advantage of the first
measure is the computational ease (as well as greater accuracy in the case of un-
symmetric matrics), for instance, in comparison to Neumann-Goldstine’s measure.
The important feature of the remaining two measurers is that they are part of the
inversion proces itself in contrast to those suggested by Turing, Neumanm ‘and
Goldstine, all of which involve calculations additional to the task of inversion.
Moreover these measures, unlike the suggesied measures of Turing, Neumann and
Goldstine, do not assume any knowledge. of inverse or characteristic values of the
matrix and also take into cosideratiosn the degree ofaccurancy of the elements ol the
matrix. However in the case ol a large matrix, say, of 100 or more order, the second

measure based on Orthonormalization method may be impractical _m‘d sometimes
even not feasible, but the third one based oo Orthogonalization method is

immune to such difficulty andis, moreover, superior to other measures as actually
proved by Numerical examples.

INTRODUCTION

A matrix is said to be singular if its determinant vanishes. Aqd if 8
is said to be near singular

matrix possesses a very small determinant value, it s s
There is a very large class of

and ‘ill conditioned! with respeet to inverse ' 37
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se to a very highly ill-conditioned matrices. However,
speaking about near singular'matrices, the well knm;frf Hilbert’f 'n:;atrices
paturally come to mind as typical examples. These malrices arle § r;}c y non
singular in the theoretical sense, though may appear as amgu"ar‘w‘ enhthcfr
reciprocals are computed numerically. A question arises naturally : W at is
the criterion of deciding whether a matrix is to be taken as singular in the
numerical sense?’ The answer is a rcl:e_ltive one, related }o the degree_ of
precision adopted in numerical camputation, partlfularly wu‘h _the numerical
definition of ¢zero’. The usual practice of numerical analysis is to express a
number correct up to a finite pumber of decimal places and to retain these
number of decimal places in all subsequent computations. | For example, the
number 1/6 =0.16467 when expressed correct up to five decimal places. Any
number which is less than 0.000005 in magnitude has to be neglected and treated
as ¢ zero’. Consequently, the numerical ‘zero’ in this case 1s any number less
than 1/2 x 1073, If we take the determinant of a matrix to be the measure of
singularity and if that determinant turns out to be less than 1/2 x 1075, an
obvious conclusion will be that the matrix is to be treated as singular. On
the other hand, if the latent root is taken to be the measure of singularity and
then if the smallest latent root is less than 1/2 x 107>, the matrix is to be
taken as singular. The thing does not end here. If the computations are
carried out correct up to, say, eight decimal places, then any number less than
1/2x 107% is taken as a pumerical zero and if the determinant or the
smallest latent root is greater than 1/2 x 107%, the matrix is not singular,
Consequently, the numerical definition of singularity is a relative one directly
linked with the degree of precision of the computations. Even a truly
singular matrix, for example, one whose row sum or column sum is exactly 0,
may not turn out to be singular computationally, if the computations are done
with more decimal places than the elements of the matrix are expressed. A
measure of such singularity of matrices is, therefore, necessary not only to
decide whether a matrix should, in the numerical sense, be considered singular
or not, but also to have a comparative study of matrices, ill-conditioned with
respect to inverse,

The present study is aimed at finding an index to measure the extent of
this near singularity for a given matrix taking into account the measure of
accuracy in expressing the elements of the matrix. Three methods, for
obtaining such an index. are suggested and the merits and demerits of these
methods along with those of the existing ones have been discussed thereafier
by considering a few numerical examples. Among these threc suggested
measures, the first one is based on the basic principle of linear dependence
of column (or row) vectors of a matrix, the second on Orthonormalization'’
method and the third on Orthogonalization!” method (without normalization
of the orthogonal vectors). The superiority of the last method over the other
iwo and also the existing ones has been demonstrated with numerical examples.
It is an added advantage that the latter two methods!’ give the inverse of a

problems which give 1i
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matrix. The effect of row and column permutation

over these
measures has also been shown by considering a few num Suggested

erical examples,

METHODS

Method 1—(Method based on linear dependence)

The ultimate cause of singularity of a matrix is the linear dependence of
its column (or row) vectors. Mathematically » column vectors ay, @y, * * -0
a, of a matrix 4 of order n are said to be linearly dependent ove;' abﬁc]d F,
provided there exist n elements x;, x5, * + +, x, of F, not ail zero, such tha;

Xy ta X+ ta,x, =0 (l)

otherwise the n column vectors are said to be linearly independent.

Numerically speaking this is directly linked with the numerical definition
of ¢ zero’.

If the elements of the said matrix are expressed correct up to p decimal
places, then numerically the linear dependence of these column vectors means
that these column vectors of the matrix numerically satisfy a linear equation,
that is to say, the linear expression on the left side of (i) is less than
1/2x 1077 in magnitude. Or, in other words if

mod (x(a; + X2, +° * * + X, 3,) <+ x 1077

e
the matrix A4 is singular in the numerical seass.  Let us denote by ¢ the vector
Xia,+X28+4++ * * + X, 8y,

then e | <ix107?

e -»
Theoretically the equation X;a8;+X28:+* * *+Xg8y=¢ Of Ax=¢ wher'e
x( =[x, x5+ + +, x,]) is a column vector, can always be solved for x's

-+, ) .
provided the matrix A is non-singular and € 1s given. This does not help
much as knowledge of T is not available. The minimum of € can be

determined from least square method, as
e = x" 4" A x = minimum
x’ = transpose of the column

+n2
one can make |e|® as
A. Hence the need of

where A’ = transpose of the matrix A and
vector x. But by choosing x's arbitrarily small,
small as one desires irrespective of the elements of

finding min |;|2/lx|2is obvious (x =0).

el . x4 AX
min —; w NI ——
x| x|

[
- smallest latent root of A A

- u (say)
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If the matrix A is singular u = 0. Thus the smallest latent root of 4" 4 is a
measure of the singularity of the matrix A or more [rc?iscly 1ts square root.
If ¥ u <L x 1077, then the matrix becomes singular in the numefical sense,
It is easy to determine numerically the smallest latent root of 4 4 by an
iteration method such as Jacobi’s since A" A is symmetric and positive definite,

But this is another computation problem different from inversion.

Method 2—(Grams® Orthonormalization process)

Let A—_n-(al, az, ** *, ) where ﬂ,-==(ﬂ1;, Qriy * * ° am‘) dCIlOtC the
column vectors of the matrix A.

From the column vectors ay, @z, * * * , G,, We form orthonormal vectors

21, 23, * * * s 2, which are mutually orthogonal and the norm of each vector
is unity.

: a,

z, can be given by z; =m .

|

a,—(ay2,) z
b - 2_ 2 «] 1
Z; Oy 2 'HEZF — (ﬂz 21)2} 1/2

In general, the orthonormal vector z; can be given by

Z, - izl

{laf - = (a2}

where (a, z;) denotes the inner product of the s-th column vector of A and i-th
column vector of Z where

z-(zhzz'.t k™ zﬂ)

Bessel’s Inequality*

$-1
Dy = ]a.rlz == i§1 (a, Z,-)z =0

provides a criterion for deciding whether a particular column vector a, is
linearly dependent on the column vectors a,,a -+, a.y. Ifa, is linearly
depcnd?nt on 23,23 ***, z,-y, that is to say on a;,ay, * -+, a,.y, the
Incquality becomes an Equality, viz.,

|a,|? - (a;2,)* =0

=]
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If the original elements of

the matrix are ex re
, - ssed correc
n decimal places, the numerical zer P tly up to

0 will be any number <1 x 10~™.

In Bessel’s Inequality, if

5~1

{la? - = (a:2:)} "% = x- 107" (say),

where 1 < x < 10, the Index of linear dependence I is defined as

l,=1-107":+x.107" = L. 10r-n

2Xx

For actual linear dependence 7/>1. If J<1, there is no linear

dependence in the strict sense, but 7 will give a2 measure of linear dependence
and thus of near singularity,

Method 3—(Orthogonalization Method)

This method involves the formation of the Orthogonal basis of the
matrix 4 without normalization of the Orthogonal vectors Xy, xz, * « *, Xp.
Generally we can write
5 Qeiq X;

X Bor| —
.f+1= s+ _ |xilz

In case a,. is linearly dependent on the preceding vectors a4y, 4z, = * *,
s, ]Jc,.;.,l2 will vanish, i.e., the norm of X,+;=0. In this case we define the

Index in the following way. |
If norm of x,., =X+ 107" where 1<x <10 and we express the original
elements of the matrix in n decimal places, the Index J will be

-+ 1 -
J=2:10""+x-10 -2—;“ 10

The two methods are essentially the same, only the second method avoids
the rounding off errors of extracting square-roots.

COMPARISON WITH OTHER MEASURES

Turing' suggested two measures, viz.,
M (A) = n max |a! n;‘ajx lagl™"
i, ] ]

N (A4) =n~" norm A norm A
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But both of thesec assume the knowledge of reciprocal matrix, which cannot

be obtained pumerically in the majority of the cases. Because inversion

process cannot proceed when the condition of the matrix is bad. This is of

pure theoretical interest.

John Von Neumann and Goldstine? suggested the following measure

{a(4)]
| (4)]

where A (A4) is the largest and u (4) is the smallest of the latent roots of 4.

P(4) =

The largest and smallest latent roots of A4 are to be calculated which is
feasible in many cases, though for unsymmetric matrices, the calculations of
A and u become tedious and a problem by itself. The first measure, that is,
the square-root of the smallest latent root of A’ A is easier than Neumann
and Goldstine’s measure to compute (because 4’ A is always symmetric even
if A is unsymmetric) and can always be computed with accuracy.

The Index I or J, however, is still easier than the first measure to
compute because when the reciprocal of the ill-conditioned matrix is computed
by the Orthogonalization method" or Orthonormalization method, these
Indexes are automatically calculated, practically no separate calculations are
necessary.

I or J differs from these condition numbers essentially in that it takes
into consideration the degree of accuracy of the elements of the matrix. Also
it does not assume a knowledge of inverse or characteristic values of the
matrix. In fact, the inverse cannot be computed in most cases.

EFFECT OF ROW AND COLUMN PERMUTATION ON THE SUGGESTED MEASURES

[n the case of symmetric matrices changing of rows into corresponding
columns or vice versa has no effect on any of the proposed measures. Under
row and column permutation, a symmetric matrix generally turns out to be
unsymmetric in most of the cases. Speaking of the unsymmetric matrices as
well as symmetric ones, the first measure i.e, the one based on the square-

root of the smallest latent root of 4’ 4 will remain invariant under row and
column permutation.

In the Orthogonalization process for inversion, the quantity

n f
Pe = |x]
=1
remains invariant under row and column permutation, so that one may look
upon P as a measure of the singularity of the matrix ; but in majority of the
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cases (like the suggested measures of Turing!

uring') P may not b ;
. e 4

because the process of finding x|, i=m1,2, . . . ki ?talnzb!c
a particular column (o.r TOW) VECIOr @ny; (m <n) is numerica]r olf.:cc if
depenc!ent on the preceding vectors, since in such a case sl bec Y linearly
numerically and consequently the remaining vectors x,,.,, x :_l:l on;cs ;?rﬁ
+dy T m4-3a * X, WhIC

have respectively |Xmit|, |Xme2ls [Xmsal :
: +2|s [Xm+3}, ¢ * * as their depomi
be derived. X ominators, capnot

This difficulty is sure to lead one to consider the quantity Ix | hich i
the only cause for stopping the process, as a measure of singulm-l;T-l thllc %
not always invariant under row and column permutation, such a m:f;surc ;Ugg
on |%x+1 , however, tends to be invariant as the matrix approaches singulaarz‘:
and remains invariant when the matrix is numerically singular. This has beez
shown by considering a few numerical examples,

Measure based on Orthonormalization process is essentially the same as
that based on Orthogonalization process, except that the latter measure avoids
rounding off errors of extracting square-roots and so the effect of row and
column permutation has the same nature as that on the measure based on
Orthogonalization method.

NUMERICAL EXAMPLES AND PROGRAMMING ASPECTS

The problem of construction of near singular matrices for testing these
methods is made easy by the choice of Hilbert’s matrices, the linear dependence
of the column (or row) vectors becoming more pronounced as we take higher
orders,

Scaling : Floating point working is used in all the cases since the range of
the numbers handled in these methods is too large fora satisfactory fixed

point system. Since the rounding off errors play a significant roll in these
cases, retention of a fairly large number of significant digits during the

computations becomes necessary.

Checks: The mutual Orthogonality of the column vectors of Z (or
X =[x, x5, ***,x, ] in the case of the third method) matrix is a suficient check
to determine the accuracy of the calculations. In addition, the normality of
the Z-matrix can be checked in the case of the second method.

6, 7 and 8 order Hilbert's matrices, a
matrices, each of order 3, are

done in floating point with 20
ize the rounding off errors,
was retained correct up to 8

Results : Numerical examples of
singular matrix M of order 7 and {two other
attached and calculations in all the cases were
decimal digits unless otherwise stated, to minim
and each element of all the Hilbert’s matrices

significant digits.
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Ex. 1: (HILBERT'S MARTIX OF ORDER 6, METHOD 3 WAS USED)

Using Orthogonal basis of linear transformations of the column vectors
of this matrix, mutually orthogonal vectors xj, X3, ***, Xg WEre _formcd, where
mallest of the norms of the orthogonal vectors was given by ] e
3.987 x 10~7. According to our previous definition of x and r, the value of
x=3987 and r=7. And the Index of linear dependence or Condition
number J was given by J=+1254 x 10°' (" n=8). To compare method 2 and

method 3, the following table can be given.

the s

TABLE

A comparative study of D’s and x’s of method 2 and method 3.

"-__-

Method 2 . Method 3 '
Orthonormalization Basis Orthogonalization Basis
Case | Case 2 : ;
(Calculations done with 10 (Calculations done with wﬁk;?;’ﬁ%‘;if%‘?;ﬁ‘?;“ 20
significant digits) 2v significant digits)
For z;, D, = 0-14913%89 x 10" ' D, = 0-149138%9 x 10 X2 = 0-14913889 x 10!

For z;, D, =0-19173108 x 107! | D, = 019173107 x 10~} | |x,/* = 0-19173107 x 107
For z3, D3 = 091424500 x 10™* | Dy = 0:91424452 x 10~* x3|° = 0-91424452 x 10°*
For z;, Dy =0-23050000 x 10™° | D, =0-23067036 x 10™° | |x,|* = 023067036 x 107
For zs, Dse= —0:9 x 10 Ds = 030064028 x 1077 | |xs}* = 0-30064028 x 1077
which is a negative number. | Dg=0-15890052 x 10™'% | |x{* = 0-15890113 x 10~"

1

This is due to rounding off
errors rendering further com- |
putations impossible as z; hags|
as its denominator D..

—— . b e

The smallest of D's as determined in case 2 was given by

D, = 0.15890052 x 10~'2

which agreed nearly with the value of 62 ( =0.15890113 x 10~?)
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showing thereby the more accurate results in

Orthogonalization basis; this was due to the fact that Orthogonal basi
avcids extraction of square roots, Again if the calculations are doneasilz
floating point with 10 significant digits, we are not able to find z; and z
because Bessel’s Inequility D or D¢ becomes negative due to roun:iing oé‘
errors making further computations impossible, as zs and z, have as their

demonstrators 4/ Ds and &/ Dg.  Such trouble will not come in the case of
Orthogonalization method.

determining the Index lies in

VON NEUMANN AND GOLDSTINE’S MEBASURE: The largest and smallest

fatent roots of Hilbert's matrix of order 6 are 1.61889971 and 0.00000010
respectively and the measure is

P(4) = 01889971 1889971 x 107

0.00000010

and the Index of linear dependence is 1/2 x 107% x P (4) =.80944985 x 10~"

Measure on the basis of the smallest latent root of

A" A: A u=.00000010=1x10"7

and the Condition number is

1 -1
l 2 X 10-81 "_—=15 x 10 v
/ "

M

Ex. 2: (HILBERT'S MATRIX OF ORDER 7, METHOD 3 WAS USED)

Using Orthogonal basis of linear transformations of the column vectors
of the matrix, the mutually orthogonal vectors x;, X2, = * *» X7 were fm’md,
where the smallest of the squared norms of the orthogonal vectors was_agwcg
by |x;{* = 0.3229408 x 10~ '* and the norm was given by I'x-;] = 1.797 x 10 3:;29
consequently the Index of linear dependence or Condition Number J=.

% 10° and the smallest latent root is 0.00000000.

USED
Ex. 3: (HiLBertS’ MATRIX OF ORDER 8, METHOD 3 WAS )

In this case also, exactly similarly as above, the mutua:y or:ll;tzgz;l::
vectors were formed, where the smaliesﬂt of the norms l(;f [thcc 0(!':0n dgilion
vectors was given by |xg| = 8.036 x 10~ and conscgueﬂ] ¥y Fagronspianr
Number J = 0622 x 10' > 1. Hence this matrix was singuiar in

cal sense,
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Ex. 4: (A SINGULAR MATRIX OF ORDER 7, METHOD 3 WaS USED)
The singular matrix expressed in 4 decimal places was given by

10000 —0.458 —0.5612 —00201 ~0.3947 —03123 —0.6412 |
_ 04589  1.0000 03114 08525 00429 02861 — 03190
_05612 03114 00000 07502 ~—00655  0.1467 — 0.4462
_0.0210 08525 07502 1.5826 —0-4173  0.1205 —0.1240
03947 00429 —00655 —0.4173 1.0000 01882 —0.3511
_0.3123 0.2861  0.1467 01205 01882 1.0000 —0.3092 |

0.6412 —0.3190 —04462 —01240 -0.3511 -03092  1.0000 |

where the 4th column was the sum of the preceding 3 columus,

Here the smallest of the squared norms of the mutua'lly orthogonal
vectors Xy, X5, * * * , X7 was given by |x4|2 — 0.48280000 x 107 and the norm

was given by |r4|=6.948x10"2° and therefore the Condition number
J=.7195%x 10" >> 1. Hence this matrix is strictly singular even if the
elements of it were expressed correct upto 18 decimal places instead of 4

decimal places.

Ex. 5: (AN UNSYMMETRIC MATRIX OF ORDER 3)
The matrix was given by

A={.2 2 K
1 3 1]
.1 2 2

Here the smallest of the squared norms of the mutually orthogonal vectors
X1, X3 and x5 was given by |x;|* = <01190476 and P was given by P = A/(-06 x
*035 x *01190476) = -00500000-

When the first two columns were interchanged, the squared norm of the
smallest orthogonal vector x; as well as P[ = 4/(-17 x -01235294 x 01190476) =
0:C0500000] would remain invariant; but when the last two columns were
interchanged, the squared norm of the smallest orthogonal vector x, was given
by |x,* = -01833333 ; and P( = /(06 x -01833333 x -02272727) = -00500000), of
course, would remain invariant as it was.

The smallest latent root of A’ A was given by 92330317 and this would
be unaffected under row and column permutation of the matrix A.

Ex. 6: (A NEAR SINGULAR MATRIX OF ORDER 3, METHOD 3 WAS USED)

_ (I;Jalculations were done correct upto 7 decimal places., The matrix was
given by

21 <32 .45
| «21 -32 44
| 67 78 +59
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The smallest of the squared norms of th
and x; was given by |x 12 = .500 ki mutually orthogonal vectors
Xis X2 3 g Y {X3 x 107" when the columns were changed

to corresponding rows, the smallest of the squared norms of the ort
vectors would be |x,]*> = 419 x 1074, orthogonal
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