J. Indian Inst. Sci., Nov.-Dec. 1994, 74, 771-775. © Indian Institute of Science.

Short Communication

Stresses and voltage developed in a nonhomogeneous piezoelectric bar due to torsion

AMARENDRA DAS AND KARTIK CHANDRA SANTRA*

Faculty of Science, Burdwan University, Hooghly Mohsin College, Chinsurah 712 101, West Bengal, India, *P. O. Khalisani (Santrapara), Dist. Hooghly, 712 138, West Bengal, India.

Received on December 16, 1993; revised on November 28, 1994.

Abstract

Stresses and electric voltage generated in a nonhomogeneous piezoelectric bar acted upon by a torque at one end, the other end being fixed, are considered here. The solution is presented in terms of a series of modified Bessel functions, Macdonald function and Lommel function (in modified form). Results for the homogeneous case are also discussed as a particular case. Numerical results show wide differences in the voltages and the stresses of nonhomogeneous and homogeneous bars.

Keywords: Bar, nonhomogeneous, piezoelectricity, torsion.

1. Introduction

The electrical and mechanical response of laminated piezoelectric bar due to torsion has been investigated by Lee and Moon¹. We attempt here to present a complete expression of the stress fields and electrical voltage generated in a twisted nonhomogeneous piezoelectric bar.

2. Formulation of the problem and the method of solution

One end of a bar of rectangular section having sides a, b and length l (Figure 1) is fixed and the other end is acted upon by forces reducing to a twisting moment M. The lateral surfaces of the bar are free from external forces.

FIG. 1. Polarity of the voltage developed across the bar.

The strain (S_{ij}) and the electric displacement components (D_i) are then expressible in terms of stress (T_h) and electric field components (E_i) as^{1, 2}

$$S_{xx} = S_{yy} = S_{zz} = S_{yz} = 0,$$
 (1a)

$$S_{xy} = s_{66}T_{xy},\tag{1b}$$

$$S_{xx} = s_{55}T_{xz} - d_{15}E_x,$$
 (1c)

$$D_x = \varepsilon_{11} E_x - d_{15} T_{xz}, \tag{1d}$$

where s_y , d_y and ε_y represent elastic compliance matrix, piezoelectric strain/charge matrix and permittivity matrix, respectively, and are expressed in terms of power-law function of the sum $(y + y_0)^{2,3}$, *i.e.*,

$$s_{ij} = \bar{s}_{ij} (y + y_0)^n$$
, etc., (2)

where n is an arbitrary real number and is termed as nonhomogeneity parameter, y_0 the distance of a given straight line parallel to the side a from the z axis, \bar{s}_{ij} , etc., are material parameters for a homogeneous body.

Under open-circuit condition, following Sirotin and Shaskolskaya⁴, one may write from eqn (1c) and (1d)

$$E_x = (d_{15}/\varepsilon_{11})T_{xz},\tag{3a}$$

$$S_{xz} = s_{55}(1 - k^2) T_{xz},$$
 (3b)

where $k = d_{15}/(s_{55} \cdot \epsilon_{11})^{1/2}$ is known as the electromechanical coupling coefficient.

For a continuous medium, T_{xx} and T_{xy} should satisfy the equilibrium equation²

$$\frac{\partial T_{xx}}{\partial z} + \frac{\partial T_{xy}}{\partial y} = 0.$$
⁽⁴⁾

If the projections of the displacement of a point on the axes of Cartesian coordinates are denoted as u, v, w, eqns (1a), (1b) and (3b) will take the form²

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = \frac{\partial w}{\partial z} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = 0,$$
(5)

$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = S_{xy},\tag{6}$$

$$\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} = S_{xz}.$$
(7)

On integration, eqns (5)-(7) give

$$u = \vartheta \phi(z, y) + u', \tag{8a}$$

$$v = \vartheta xz + v',$$
 (8b)

$$w = -\vartheta xy + w', \tag{8c}$$

where ϑ is the angle of twist per unit length, ϕ is the torsion function, and u', v', w' are rigid-body displacements.

The stress components can be expressed in terms of stress function $\psi(y, z)$ in the following manner, so that eqn (4) is satisfied identically:

$$T_{xx} = \frac{\partial \Psi}{\partial y}, \tag{9a}$$

$$T_{xy} = -\frac{\partial \psi}{\partial z}.$$
 (9b)

From eqns (1b), (3b) and (6)-(8), one gets

$$\frac{\partial^2 \psi}{\partial z^2} + \frac{1}{s_{66}} \frac{\partial}{\partial y} \left[s_{55} (1 - k^2) \cdot \frac{\partial \psi}{\partial y} \right] = -\frac{2\vartheta}{s_{66}}.$$
 (10)

We expand the right-hand side of eqn (10) in a Fourier sine series as

$$-\frac{\vartheta\vartheta}{\pi s_{66}} \sum_{m=1,3,5,...}^{\infty} \frac{1}{m} \cdot \sin\frac{m\pi z}{a}.$$
 (11)

Assuming

$$\psi = \sum_{m=1,3,5,...}^{\infty} Y_m(y_1) \cdot \sin \frac{m\pi z}{a},$$
(12)

so that ψ should vanish beforehand on the two sides z = 0 and z = a, we get from eqns (10) and (11),

$$Y_m''(y_1) + \frac{n}{y_1} Y_m'(y_1) - \mu^2 \cdot Y_m(y_1) = \frac{\vartheta \cdot P_1(y_1)^{-n}}{m},$$
(13)

where

$$\begin{split} \mu &= \frac{m^2 \pi^2}{a^2} \Big[\overline{s}_{66} \ / \ \overline{s}_{55} (1-k^2) \Big] \,, \\ P_1 &= -8b^n / \ \pi \cdot \overline{s}_{55} (1-k^2) \end{split}$$

and

$$y_1 = y + y_0.$$

The solution of eqn (13) helps to find the expression of T_{xx} and T_{xy} as

$$T_{xz} = \sum_{m=1,3,5,\dots}^{\infty} \partial \mu y_1^{-N} \Big\{ A_m \cdot I_{N+1}(\mu y_1) - B_m \cdot K_{N+1}(\mu y_1) - P_2 \cdot L_{N-1,N+1}(\mu y_1) \Big\} \sin \frac{m\pi z}{a} ,$$
(14a)

$$T_{xy} \approx -\sum_{m=1,3,5,\dots}^{\infty} \vartheta \cdot \frac{m\pi}{a} \cdot y_1^{-N} \Big\{ A_m \cdot I_N(\mu y_1) + B_m \cdot K_N(\mu y_1) + P_2 \cdot L_{N,N}(\mu y_1) \Big\} \cos \frac{m\pi z}{a},$$
(14b)

where $I_s(\mu y_1)$ and $K_N(\mu y_1)$ are modified Bessel functions and Macdonald function of order N and argument μy_1 , respectively, $L_{N,N}(\mu y_1)$ is the Lommel function (modified form) of order N, N and argument μy_1 ; and $P_2 = P_1/m \cdot \mu^{N-1}$, N = (1 - n)/2.

Using the boundary conditions that $\psi = 0$ at $y = \pm b/2$, the arbitrary constants A_m and B_m can be determined. The voltage developed between the fixed and the clamped end of the bar can be found as

$$V = \int_{0}^{1} E_{x} dx = \int_{0}^{1} \frac{\overline{d}_{15}}{\overline{\varepsilon}_{11}} T_{xx} dx .$$
(15)

As $T_{xz} \propto \vartheta$, $V \propto \vartheta$, which tallies with the experimental result of Lee and Moon¹.

For purely elastic cases, the stresses obtained by making $\vec{d}_{15} \rightarrow 0$ and $\vec{e}_{11} \rightarrow 0$ tally with those found by Lekhnitskii².

3. Numerical results and discussion

Numerical computations have been carried out to obtain stresses and voltage developed in a bar of barium titanate (ceramic). For this ceramic the material constants are⁵

$$\bar{s}_{66} = 2.227 \times 10^{-11} \text{ m}^2/\text{ N}, \quad \bar{s}_{55} = 1.8315 \times 10^{-11} \text{ m}^2/\text{ N},$$

 $\bar{d}_{15} = 2.6 \times 10^{-12} \text{ C/N}, \quad \bar{c}_{11} = 1596 \times 8.85 \times 10^{-12} \text{ F/m}.$

The material parameters are chosen as $y_0 = b$ and a = 0.033 m, b = 0.04 m and $M = -1 \times 10^{10}$ in SI units (see Table I).

Ta	ble	I
----	-----	---

Nonhomogeneity parameter	Maximum value of T _{x2} /OM in SI units	Voltage developed (V/1 &M) in SI units			
n = 0	1.78	3.27 × 10 ⁻⁴			
n = 1	2.49	4.58×10^{-4}			

It can be noted that the voltage developed for the nonhomogeneous case is greater than that for the homogeneous case.

Acknowledgement

The authors thank Prof. A. Chowdhury of Jadavpur University, Calcutta, for his valuable comments.

References

1.	LEE, C. K. AND MOON, F. C.	Laminated piezoelectric plates for torsion and bending sensors and actuators, J. Acoust. Soc. Am., 1989, 85, 2432-2439.								
2.	LEKHNITSKII, S. G.	<i>Theory</i> Publish	of ers	elasticity	of	an	anisotropic	body,	1981,	Mir

- 3. DAS, A. AND SANTRA, K. C.
- SIROTIN, YU. I. AND SHASKOLSKAYA, M. P.
- 5. PERELOMOVA, N. V. AND TAGIEVA, M. M.

Stresses and voltage developed in a nonhomogeneous piezoelectric bar due to finite bending, J. Indian Inst. Sci., 1992, 72, 301-313.

Fundamentals of crystal physics, 1982, Mir Publishers.

Problems in crystal physics, 1983, Mir Publishers.