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Abstract

The S.SOR il‘.Cl"ali\"c mcthf)d is applied to sclf-adjoint boundary value problems, such as the Poisson
and biharmonic differential equations. We assume the relaxation parameter to be

2
e T A

where Cis independent of the mesh spacing A and where, for example, @ = 1 for the Poisson equation.
The asymptotic convergence rates of the SSOR method are then determined from the minimum
eigenvalue of an associated non-self-adjoint problem. These results extend the work of Varga for
the Successive Overrelaxation (SOR) iterative method.

Key words : SSOR iterative method, self-adjoint boundary value problem.

1. Introduction

let 4 = [a,,] €eC**® be a nonsingular complex matrix, and let us seek the solution
of the system of linear equations (or at least a good approximation to the solution)

> a,x=b,1<i<n ' (1.1)
i=3 . . L ‘
which we write in matrix notation as

Ax = b (1.2)

where b is a given column vector and x is the colunmn vector of unknowns.
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In general, a first degree linear stationary iterative method for approximation to 4-1
can be described by

x™) = Gx™ + Ak m=0,1,2,..., (1.3)

for some iteration matrix G and some vector k, where m is the iterative index, and
x'® is an arbitrary guess vector, If E® := x(® — x is the error vector at the end of

the m-th iteration, then
E{.) — GE{.-II = .., = G'E‘o}, nt 2 0. (l '4)

We kaow? that the error vectors E™ of the iterative method tends to zero vector for
all E® if and only if the spectra] radius? p (G) of the matrix G is less than unity.

The successive overrelaxation (SOR)%?® mcthod is given by the EQUétion
1= (D - ol {(l —w)D + U} x™ + (D —wl)'wb,m>0, (1.5

wnere @ 1s the relaxation paramcter and 4 = D =~ L — U, where D, —L and -U
denotc re.pectively tne diagonal, strictly lower and upper triangular parts of 4. We
refer to the matnx

L, :=(D - wl)? {(1 ~w)D + wU) (1.6)

as the successive overrelaxation (SOR) iteration matrix associated with the matrix 4.

The symmetr.c successive overrelaxation (SSOR) iterative method is defined by
Young? as two half iterations. The first half is the same as the SOR method mentiored
above, wiile the second half iteration is the SOR method with the equations taken in
reverse order. The SSOR itcrative method is defined by the equations

x"+D = g,x™ + (2 ~ w) (D - wU)* (D — wL) Db, (1.7)
where '
So:=l—-w2—w)(D - U'DD - L)' 4 (1.8)

i1s the SSOR iteration matrix associated with matrix 4.

2. Associated eigenvalue problem
Let 4 be a n x # Hermitian positive definitc matrix. Consider splitting of 4 nto
A=D—-L ~ L* 2.1)

where D and —L denote respectively the diagonal and strictly lower triangular parts
of A.

Let 4 be an eigenvalue of the SSOR iteration matrix &, assocjated with the matrix 4
and let & be a corresponding eigenvector, ie.,

l‘.?w E - J.E. (2!2)
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" Then, from (1.8) |
£ - w2 - w)(D - wL*)-1D (D ~ WLy 4e = 1,
of,
(] —)..)(D s (IJL)D'I(D - (,uL*)E: (0(2 ':'(L))Ae
or,
ol —o+)de =1 =)l -0)D + & LD-11¥)
or if w(l —ow + 41)?"-'0;
dc=—L =B 00D+t LD
- ol —o + ) @ } ¢ (2.3)
3. Self-adjoint elliptic differential equation in one variable
Consider the self-adjoint elliptic differential equation in one variable
-4, +ou=f0< x< 1 ' o (3.1)

subject to the homogeneous boundary conditions |
u(0) =u(l) =0, ' (3.2)

where f(x) and o (x) are given real continuous functions on [0, 1] with ¢ (x) > 0.

Using the standard three-point discrete approximation? to (3.1)}(3.2), we get the
matrix equation Au = b, where the matrix 4 1s given by

2 + oy h?Y) ~1
e < ,0

I -1 2 +0.h%) —

| . o .
4= pe \\ Nl | &3

-
-

where

1 . r
o= - ¢ = hy: | [ < N
n+1and oy o (ih) <

It follows from (2.3) that

(L—-24) ) (D) + WP (LD L*L < i<n’ (3.4)
w(l-——w+).)[(l w) (De) + @ -

(4 f_)i =
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And using Taylor Series expansion, w¢ get

— ()i + (0€) = P (l D + Ay I:(l

w? 1 -
F'(2+0'4-1h’) l, i=2,3,...,n, (3.5)

)(2 +J¢£1_)e

¢

-4

for sufficiently small A, Since 2 +6h*— 2and 2 + o h* > 2as &k | 0, so it follows
from (3.5) that

— (@) + @ * oo @ - e I Si<n 3.6

for sufficiently small k. Hence, passing to the continuous case, we get

(1 —A) @2 - tu)’
2hT o (I —a)+l) 3.7)

for sufficiently small A,

— €4 T 06 =

Since the above differential equation has been derived from (3.1), we assume that it
satisfies the boundary condition (3.2), i.e.,, €(0) = ¢(1) = 0. If we set

(1-)Q2— w)
"ol —0 +4)° (3.8)

then from (3.7)
— €, ¥ 0€ &= g€ WwWith 6(0) = 6(1) =0
From (3.8), it follows that

da 3 e i1}
dj 2k=m(§_w)+l)z<0 for 0 < w< 2.

Hence finding the maximum eigenvalue of S, € = A6 is equivalent to finding the mini-

mum eigenvalue of —e¢,, + 0¢ = ¢ subject to the boundary conditions ¢ (0) = 6(1)
= 0 for sufficiently small &, and for all w €(0, 2).

If we set

¥,
1+ Cn?

" p—
w.—

where C is a positive real number independent of the step size £, then 0 < w < 2.
Now, we prove the following proposition :
Proposition 1 ¢ Let

2
=T R
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the step size k. Then for suffi-
pplied to (3.3) is approximately
of the eigenvalue problem

where Cis 2 fixed positive real number independent of
ciently small A, the optimal @ for the SSOR method &

given by € = v/, where  is the minimum eigenvalue
—¢,to(x)6=0a6 0< x< 1

(3.9)
satisfying the homogeneous boundary conditions o
€(0) = €(1) =0. 0.1
Proof : 1f A is an eigenvalue of the SSOR matrix &, then from (3.8)
(1-4Q2 -0 da
e = el —a + ) e <0 for0cwc
Hence 4 will be maximum when « iS minimum. Substituting
_ 2
A e
and simplifying (3.8), we get
C* — Cah + a
A= C r Cah ¥ o (3.11)

Note C* + Cak + a # 0, since C, h and ¢ are positive,

From (3.11), it follows that

di _  2ha(C* —a)
dC  [C* + Cah + a]*°

The critical points of A as a function of C are given by C = * 7.

The minimum of A as a furction of C is attained at C = 1/a, i.e., the optimal w for
the SSOR method is attained at

2
. V- h’

where u is the mirimum eigenvalue of (3.9).

In particular, if we take o (x) = 0, then it is known that the minirpum eigenvalue of
the problem (3.9)-(3.10) is given by n%. Thus we have the following coroliary :

Corollary 2 :
2
wt o=

Where C is a fixed positive real number and k 1s the I'nesh S1Z€, then, for suﬂifent!}f
approximately given by C =,
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- The above results are obtained on thc assumption that the boundary conditiong
(3.10) of the eigznvalue problem (3.9) is the same as that of the original differentia]

equation (3.1).

Using the power msthod, we found in the author’s cissertation? that the spectra]
radius of the SSOR iterative matrix &, with different mesh size # and C agrees with

the result of Corollary 2.

4. Biharmonic differential equation in one variable

Consider the following biharmonic equation in one variable
Nu=f, 0<x<l

with boundary conditions
4(0) =u(l) =u®(0)=u'®(1)=0.

Using a uniform mesh

]

h=n+l’

a standard difference approximation applied to (4.1) gives
R u(ih) =60, —4(u,_y +uy) + W+ 84), 1<i<n
while (4.2) is approximated by

g =u,4y =0; 2ug—~u_, —u, =0; 2u,,, — U, — U 40 =0

»

and these relations further give

Uy = —U_; , Uy, = —Uyys.
This then results in the matrix equation
Au = {,

where

5 -4 1 1 . ™ 77
| /i
-4 6 -4 1 1,
NN O '
A= , f=h .
N -\4\6 —\4\1 -
6

O 1 - ~4

S l -"'4 5 a fn

—-‘ b I

(4.1)

4.2)

(4.3)

(4.4)

- (4.4) |

(4.5)



SYMMETRIC SUCCESSIVE OVERRELAXATION ITERAT[VE METHOD 187
n X x real symmetric and : : .

A being an positive definite matrix Uy =

fio =/(x) and X = ih. e =),

From (2.3), it follows that

from Taylor Series expansion, we have

— 46‘_1 : 1761 - 46”*1
. 1
= —4h* (e (x)), — 3 A e (), + 0(h%) + 9,

And so for sufficiently small &, it follows from (4.7) and (4.8) that
(1 =) ' w* "
ht ((“’ (.\')){ o3 0 (l ‘-—'t:;). :—)) [6 (l - (0) & + —6"" { = 4h2 (G{z_] (x)),

|
- 3-!:‘(6*” (x)); + %}]. I <i <n,

since {(Ag), = h* (69 (x)), + 0 (h®). Hence passing to the continuous case, we get
the following differential equation:

mz

e (x) 2 g6 (1~ @) e +

- 13 B e (x) + 95}] |

(o an e

Or,
L3 - D92 - )40’ M)

AP X
B o[(18 — 17w) + A(18 -mT
If

where C > 0, then on simplificatior, we get -

27(1 — A C? [c - %;s"’(x)] ('4_9){
() = [(OCh —8) + A(9Ck + 8)] °
Set | _
i = 27(1 — ) C? (4,10)

RT(9Ck — 8) + A(9Ch + 8)]
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Then from (4.9), we have I d "
4 -
E(”(X) = a [6 = gﬁ - ¢f?) (x)] . | (4 .11)

Lemma 3 : The minimum eigenvalue of the biharmonic differential cquation

4

e (x) = a[e T em(x)] » 0 < x< 1 | _ (4.12)

with boundary conditions €(0) = 6(1) = ¢'3’(0) = ¢'®)(1) =0, where C > 0, is
given by

9C3£l
9Ct 4 4nt°

Proof : Clearly ¢(x) =sin max, where m is a positive integer, is an eigenvector of
(4.12). So from (4.12), it follows that

, . 3 e s I
n¢m'sin Amx = a| SIN nmx+§-c—§-7r m-sin ﬂme.
Or,
o = xim' _9Catm?
4 . 9C*+4ntm*” (4 .13)
—_— I m? .
1 + oL, n°m
Since

d 324C* ' m® + 121 m® C?
an = OC tammy: >0 for C, m>o0.

Hence the minimum eigenvalue of eigenvalue problem (4.11) will be attaincd when m
is minimum. In particular, if mis a positive integer then the minimum will occur
when m = 1, and the minimum c¢igenvalue will be given by

OC*nt
9C? 4 4nt°

Proposition 4 : Let A be the n X n matrix (4.6) obtaincd using the standard differ-
cnce approximation to the biharmonic differential cquation (4.1)-(4.2). Then the
optimal w for the spectral radius of the SSOR matrix ., is approximately attaincd at

W= : 2 Cs>0. where C =2 I i
“ 14+ Chk’

and the step size & is sufficiently small, and we assume that the boundary condi-
tions ofthe associated eigenvalue problem (4.12) satisfy (4.2).
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proof : From (4.10), it follows that

da _ ~ 486C*
di~ h[OCh =8)+ 1(9Ck + g)f <0 for C >0,

je.,als 2 decreasing function of 4. So the maximum value of J
mum value of a. From lemma 3, the minimum valye of ais giv

9C2nt -
9C* + 4n®°

Is attained at mini-
en by

Substituting this in (4.10) and on simplification, we get

_27C? = 9Ch* 7t + 8htnt + 1227
= 27C? + 9Ch*n* + 8R¥ At + 1240 (4.14)

A

Elementary calculations show that the minimum of the maximum eigenvalue 2 as
function of C occurs at

C=%avV 1+ ¢htnt

and the optimal w is given by

2
YT+ @1 £ 3k -k
Remark . For sufficient small h, the otpimal @ will occur at C = =,

"Ve used the power method to determine the spectral radius of the SSOR iterative
mitrix &, for different values of C and k. The results given in Table 2 of the author’s
dissertation® agree with Proposition 4.

5. Self-adjoint elliptic differential equation in two variables

Consider the second-order self-adjoint elliptic partial differential equation in two
variables given by '

—(P(x,y)u4,), — (P(x,y)u,), +o(x,y)u(x,y) =f(x,9), (x,y)eR  (5.1)

defined in an open, bounded and connected set R in the plane. For the boundary
condition, we assume that

a(x))u+ B (%) 5o = 7(52), GIET, 5.2)

and I, the boundary of R, is assumed to be sufficiently smooth. We also assume that

P(x,y)>0
l > , (x, 7)€ R. | ¢-3)

o(x,y) >0
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Using a finite difference approximation with uniform mesh size &, we get a systey
of linear equations?®

Au =k +E(u)
where
(Aﬂ)c, i = Dm Uy gy — Ll.i iy, 5 — Ri,l Ugrs, g — Ti,i Ui, §43 L
~ By U 45
Lil’ = % b Rhf s PH‘I:"
T" ; = P', ,+i, Bi, P S Pj, ,..i‘ . (5-4)
D"’ == L", + R.‘., + T"’ + B"‘ +d"’h'
and

P,y:=P(x, »), 0., =0 (x, ).

Using Taylor Series expansions, we compute (A 5_)‘,, and (D_f),,,, as follows :

(A€h, s = Lo, 1 (6,1 — 61, ) + Ry (6 ) = Gon, )
+ Ty (€, — €, q0) + B (6, —€,4) +a, ke, ;
Loy = Pigs = Py = Eh (P, + G0 (P, + 0 (AY),
R,y =Piy, sy =P,y + 10 (P),, + 3h)* (P, , + O (hY).
T,y =Puyy =P, +1h(P), , + 3P, ; + O (h%),
B,y =Pypry =P, —Yh(P), , + GH2(P,),, + 0 (). (5.5)

A simple calculation (using Taylor Scries expansion and neglecting terms of order A%
yields

(A9 s = = K [(PC,), + (Pé,).l,,, +(20), , B o )
And
(De),, s =[L,y+ R,,+ T, + B, + 0, k) ¢,
= [4P,, + 3 h*(P,, + Py, s + hay, ] ¢, 4 + 0 (A3).
Or,

(Df_)a,: = 4P, ¢, ; for sufficiently small 4. | (57)
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. 1 t
(D), = Y for sufficiently small 4.

(5.8)

So for sufficiently small /, we have

Li [ T_ L
LD'L* o), é(_: { 1")(‘_ 1 Li, , Ry, ;
( LN 4P, -1, +1 + P

B § T‘ 1_1) (.B R
+ » L4 C iy i» ’ __‘j f'_‘t -

S— o
- 4P.‘_1’ { P‘. =1 ¢ 4 ‘—11 jIP‘: §—~1 el—.l, f’f‘l+ L‘, ’Ri—l,] P‘, ,__l'fi” . : =

t B,y Loy Pioa,yy €y + By Ry Pes,y G, 4]
By straightforward computation (using Taylor Series expansions), we get

— S e m——— 1 Eices a
4(P* = hPP, = kPP, + I*P,P, & k* PP, + i* FP,), ,

_ (LD'-I L*E)., i

X {(4P® — 3hP® P, — 4kP% P, + 2* P* P,, + $h? PP,P, + 2h* Pt P,
~h* PP, + h* PP} + L1 PP}),, €, + W2 (P, ,)* (P,6), ,
— R (P, )2 (P,6), g — B2 (P 1)* (o), s + R (P, )? (Pye,),,
+ h2 (P, ) (€ — 26,, + €,), 5} + O (hY).
For sufficiently small A, we drop terms in A2 in (5.9) and o (5-9)
(LD'L*¢), , = Py 4 €, 4. (5.10)

Hence for sufficiently small A, it follows from (2.3), (5.6), (5.7) and (5.10) that

= B (Pe)ys + ((PEN) ¢ 1 + (G, 1 1

= ca(l(l-_mll 70 = WD) P g6, + 0P, 6,1 1<isn. (5.11)
Since (5.11) has been derived from the elliptic equation (5.1), we assume that it satisfies

the boundary condition of (5.1). So passing to the continuous case, we get from (3. 11)
that |

1 —3 5.1
=~ (Pe), — (Pg), + 06+ 5 ((1 _w)+ 3 @2 Fe o 2)
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with boundary condition (5.2), i.e.,
de
a(x,y) €+ B (%)) 5 = y (%,5), (x,y)€e L.

Set

_(1-42 -0y
TRl -0+ i)’ P39

then
dafdi < 0 for 0 < w< 2.

Hence maximum eigenvalue of SSOR matrix &, associated with (5.1)-(5.2) is related
to the m'nimum e¢igenvalue of the associated eigenvalue problem

— (P¢,), — (P¢,), + 06 = aPe. (5.14)
subject to the boundary condition (5.2) by the relation (5.13) for o in the interval
O<w<2

Special case : Now, we consider the Laplace equation with Dirichlet boundary
conditions in which case P= 1 and ¢ = 0. Then for sufficiently small &, it follows

from (2.3), (5.6), (5.7) and (5.9) that

- h’(é,.'f' C,-,) éw(l(t:é)‘ll ij[(z = (D)! €+ 6024}:2 (fu 3 €y — an)]'

On simplificatior, we get
2(1 —4) w*® h?

— (€ + &) = oG -o) (1 =7 [@ — @) e — —— (eut &, + 26,)].
- (5.15)

W = 2

1+ Ch’
where C > 0, then from (5.15) we get
| -

— (6 + €,) = 26(?: a -AI-)A) [4C* € ~ (€0 + €, + 26,)).

Set
. o =4

T T & (5.16)

then

- (6” T £ﬂ') = a (4C'l € — (6" * Coy T 26")], (5‘17)
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. ify that the eigenval bl : w

[tis easy to Verify that the eigenvalue problem (5.17) with Dirichlet b -

ions has all positive cigenvalues. From (5.16), dafdi < 0 for C > 0, nf:ry: a

decreasing function of 4. Hence, the maximym eigenvalue A of the SS(,)R' I;;atrix S
o

gerived from Laplace equation and the minimum eigenvalue ¢ of (5. ith Diri
poundary conditions are related by (5.16). a of (5.17) with Dirichlet

In the author’s dissertation®, the power method has been used to determine the maxij-
mum eigenvalue of &,. There it is also shown that the optimal @ for the SSOR
matrix 8, derived from Laplace equation with Dirichlet boundary conditions are
attained at C = 1/h, 1.e., Ch = 1 which shows that the optimal @ is unity.

6. Biharmonic differential equation in two variables

Consider the biharmonic partial differential equation

Viuxy) =f(xy) (x.¥)€R, 6.1)
where

PR ¢ A 2k
. g . ¥ 2 2 — . o
Vi=gatsnV =V IV =gt anag: T a5

and where R is a simply connected region, for simplicity.

The boundary conditions for u (%, y) are assumed to take one of the following forms
on each portion of I the boundary of R :

_ g? 2) = g (x, J”): i (;;‘2’) = g, (x, y), (x, ) el

u(x, }’) = g3 (x, y)! o (a.i' y) = B (x: y)s (xs y)e I, (6'2)
or

) _ o, EVEED _o, 3, y)er, 6.9

an an

where the functions g, (x, y) are given and # refers to the outward Qointing normal.
Using a standard finite difference approximations with uniform mesh size h, we get the

well-known® 13-point biharmonic star :

1
2 =8 2
1-8 20~8 1
2-—% 2 (6.4)
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From (6.4) and (2.3), using Taylor Scries expansmns and neglecting terms of order i,
we get

'~ “
H (Vs = co(l(— wl*l Fy [20(1 @ st ot { R b

+_1 ; _ 6 + !7 _ 6
-+ 55 G, g Gk T g G g Gy T3 €4y

N l 69
T 10 €43,5-1 T 5 G-, = 26, T g TO S

1 l 6
. 26”1,, + —5 €ivg, 4 + m‘ 643,441 — 5 €4-2, 1 +1

17 6 ! ' .
+ & G101 <% Giyyn + I 1,001 + 55 39 St — 5 Ei-mﬂ}]

J.) -
= 55 (l % T D [150 2 — w)* ¢ — A w® (54 €n + 366, + 6¢,)
+ k‘w‘(_ lsellfl + 36(:“:' - Igclllr + lzclﬂ" - [lelﬂ'l‘)]h!‘
Let
= i where
CT 1T+ Ch

C > 0, then substituting this value of w in the above discrete differential equation,
we get

(1-4) :
(V* s # Gy ch =T 5 (O T I))[lsoc e —6(%,

+ 66,, + 6") + hz('— L5 €pes F 366:

~ 1860y + 12644 — 116,,,,)]: ;.

oy

Dropping h* terms and passing to the continuous problem, we get

(1—~2) .
VieEmEch—T+ A+ 060 +6e,+6,)) (69

for sufficiently small A, Since (6.5) has been derived from biharmonic equation (6.1),
we assume that it satisfies the boundary conditions (6.2) or (6.3) (as the case may
be) of (6.1). Now, if we set .

(1 = 4) -
T ISAT(CR — 1+ A(Ch + 1))” (6.6)

then we have the following eigenvalue problem:

Veie=a[lS0C? -6(09¢, + 6¢,, + ¢)] 6.7)
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with the b?undary n‘:onditions (6.2) or (6.3). For C >0, we have dafd) < 0, ice.,
is a decreasing function of 2. So the maximum eigenvalue of SSOR matrix S obtair:ed

from (6.1) and the minimum eigenvalue of the eigenvalue problem (6.7) with the
same boundary conditions are related by (6.6).
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