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Abstract 

The SSOR iterative method is applied to self-adjoint boundary 	vain problems, such 	as the Poisson 
and biharrnonic differential equations. 	We assume the relaxation parameter to be 

2 

= 1 4- Cie 

where Cis independent of the mesh spacing h and where, for example, CE 	1 for the Poisson equation. 
The asymptotic convergence rates of the SSOR method are then determined from the minimum 
eigenvahie of an associated non-self-adjoint problem. These results extend the work of Varga for 
the Successive Overrelaxation (SOR) iterative method. 

Key words : SSOR iterative method, self-adjoint boundary value problem. 

I. Introduction 

Let A = [aisi l 	eage be a nonsingular complex matrix, and let us seek the solution 
of the system of linear equations (or at least a good approximation to the solution) 

• 
E aioixi  = bi , I 	i 	4, 	 (1.1) 
Jai . . .  

Which we write in matrix notation as 

Ax = b 	
(1.2) 

where b is a given column vector and x is the column vector of unknowns. 
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In general, a first degree linear stationary iterative method for approximation to 4 -1  b 
can be described by 

x(s+.1 ) = Gxon) 	k,m = 0, 1, 2, . 

for some iteration matrix G and some vector k, where m is the iterative index, 	and 
x (0)  is an arbitrary guess vector. If E 1 	:= x ( * )  - x is the error vector at the end of 
the meth iteration, then 

DIN) = 	= . . . = GTh E ( ° )  , in 	0. (1.4) 

We knowt that the error vectors Ev" )  of the iterative method tends to zero vector for 
all Do if and only if the spectral radiusl p (G) of the matrix G is less than unity. 

Tne successive overrelaxation (SOR) Iss method is given by the equation 

x"-1-1  = (D 	coL) -4  {(1, - to) 	+ coU) x (*1)  + (D 	toter cob, m 	, 	(1.5) 

where w is the relaxation parameter and A = D 	U, where D, -L and -U 
denote respectively tnc diagonal, strictly lower and upper triangular parts of A. We 
refer to the matrix 

ses 	(D - coL) 1 	- co) D coil} (1.6) 

as the successive overrelaxation (SOB.) iteration matrix associated with the matrix A. 

The symmetric successive overrelaxation (SSOR) iterative method is defined by 
Youngs as two half iterations. The first half is the same as the SOR method mentioned 
above, while the second half iteration is the SOR method with the equations taken in 
reverse order. The SSOR iterative method is defined by the equations 

x(e+ 1)  = scat") + co (2 - (0) (D coU)' (D (04-1  Db, (1.7) 
where 

: = I - co(2 - co) (D (DU)' D (D cold)i (1.8) 

is the SSOR iteration matrix associated with matrix A. 

2. Associated eigenvalue problem 

Let A be an xn Hermitian positive definite matrix. Consider splitting of A into 

A = D L L* 	 (2.1) 

where D and -L denote respectively the diagonal and strictly lower triangular parts 
of A. 

Let 2 be an eigenvalue of the SSOR iteration matrix ew associated with the matrix 4 
and let e be a corresponding eigenvector, Le., 

(2 .2) 
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Then, from (1.0 
e  (0(2 — (0) (D cotr D (D toL)i 	At  

or, 
• • (I A) (D — (0L) D -1  (D 	= (2 0,0 AC 

or, 

or if w(I 	+ .00 0, 

(I_ 7 A) 	[(I — co) D 	LD-' L*1 c. • 	 (2.3) Act  

3. Self-
adjoint elliptic differential equation in one variable 

Consider the self-adjoint elliptic differential equation in one variable 

usz  4- au = f,0 x < 1 	 (3 . 1) 

subject to the homogeneous boundary conditions 	 • 

u (0) = u (1) = 0, (3.2) 

where f(x) and a (x) are given real continuous functions on [0, 1] with a (9 0. 

thing the standard three-point discrete approximation 2  to (3.1)-(3.2), we get the 
raatrix equation Au = b, where the matrix A is given by 

• 

t2 4- al  h2) 	...... 	0 
•, 	\ 

I 	— 1 (2 + 472  111) — 1 
A = h2 

n \\ \I , _ I (2 + Cis  4-10) 

where 

1 
h re- 	- and 	: = a (ih) 	I 	n. 

n + 

It follows from (2.3) that 

(3  - 

(Ac) i — 	(I — co) (De% + (9 2  (ari l  L*)4 1, 1 	 (3.4) 

(0 (I — + 
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And using Taylor Series expansion, we get 

(G)4 	(cc), 	(1 — 	L. 	(2 + cih 2) c  ) 
w (1 — + .1) 	 ' 

1  +ft 	 Cid 	= 9 3 • • • n, 
/0 (2 + Cr4_1h 2) (3.5) 

for sufficiently small h. Since 2 + cr,h 2  —• 2 and 2 + cri_a —* 2 as h 4. 0, so it follows 
from (3.5) that 

(1- 2)  
miff 	 (3.6) 

for sufficiently small h. Hence, passing to the continuous case, we get 

(I —  (2 — (02  fe. G 6 + 2-11(1771 w4 6 
	

(3,7) it) 

for sufficiently small h. 

Since the above differential equation has been derived from (3.1), we assume that it 
satisfies the boundary condition (3.2), i.e., c(0) = c (1) = 0. 	If we set 

(1 —  2) — (02  
(3.8) asm Thi coa-0+W 

then from (3.7) 

— en +06 sia a 6 with c(0) = (1) = 0. 

From (3.8), it follows that 

da 	 
•Ti 2h2 co 0 	+ 	ity < for 0< w< 2. 

Hence finding the maximum eigenvalue or 8„ = 	is equivalent to finding the mini* 
mum eigenvalue of —c„ + ac = a c subject to the boundary conditions 6(0) = 6 ( 1 ) 

= 0 for sufficiently small h, and for all (.0 c (0,2). 

If we set 

2  
1 + Ch i  

where C is a positive real number independent of the step size h, then 0 < w < 2. 
Now, we prove the following proposition : 

Proposition 1 : Let 

2 
co = 	 I + Ch 
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where Cis a fixed positive real number independen.t of the step size h. Then for suffiA dent!), small h, the optimal co for the SSOR method applied to (3.3) is approximately 
given by C vp, where p is the minimum eigenvaiue of the eigenvalue problem 

X < 1 

sat i sfying the homogeneous boundary conditions 

(0) = c (1) = 0. 

t Proof: If A is an eigenvalue of the SSOR matrix un then from (3.8)  

(1 — A)  (2  — coy 	da 
a 2h2  co (I 	±  A)  and -itt  < 0 for 0 < co < 2. 

Hence A will be maximum when a is minimum. Substituting 

 

  

and simplifying (3.8), we get 

— Cah + a  
A = 

C2  + Cah +- a 

 

(3.11) 

Note 	± Cab + a 0, since C, h and a  are positive. 

From (3.11), it follows that 

2ha 	—  
dC [0 + Cah + a ]! 

The critical points of A as a function of C are given by C = + Nra. 

The minimum of A as a furction of Cis attained at C = Ara, i.e., the optimal co for 

the SSOR method is attained at 

2 
= 	  

+ Nip • h 

where p is the mirimum eigenvalue of (3.9). 

In patticular, if we take a (x) rt 0, then it is known that the minimum eigenvalue of 

the problem (3.9)-(3.10) is given by nt. Thus we have the following corollary 

Corollary 2 : 

2  Let 	co = 
1 + Ch' 

Where C is a fixed positive real number and h is the mesh size, then, for sufficiently 

s mall h) the optimal co for the SSOR method applied to (3.3) with o(x) -a-  0, is 

approximately given by C = irc 

(3.9) 

(3.10) 
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The above re;ults are obtained on the 
(3.10) of the eigenvalue problem (3.9) is 
equation (3.1). 

Using the power mol;thod, we found in 
radius of the SSOR, iterative matrix A s 
the result of Corollary 2. 

assumption that the boundary conditions 
the same as that of the original differential 

the author's dissertation 4  that the spectral 
vith different mesh size h and C agrees with 

4. Biharmonie differential equation in one variable • 

Consider the following biharmonie equation in one variable 

As u =1; 0 < x < (4.1) 

with boundary conditions 

u(0) = u (1) um (0) = 	(1) = 0. (4.2) 

Using a uniform mesh 

1 h = 
n + 

a standard difference approximation applied to (4.1) gives 

h.  u s  (ih) 4 6114 - 4(u4 _1  ÷ ui El) 	( 44-2 	144+2), 1 S 	n (4.3) 

while (4.2) is approximated by 
• 

us  = st. ÷3  Ls-- 0; 2u0 	u_1 	us.  = 0 ; 2Us +2 	us  •—• Li n n = 0, (4.4) 

and these relations further give 

111 = — 11_1 ; Us  =  (4.4') 

This then results in the matrix equation 

Au =1' (4.5) 

where 

5 
—4 

1,12  I 
4/. 	I 	 • 

A = f = h 4  

	

—4 	1 
6 —4 	1 0 

	

1 —4 	6 —4 	1 

I 	46 — 4 	1 

• I 
.... 

—4 
• 

6 
a 

— 4 • 
1 	4 	5. 

• 
• (4.6) 

• • 
• • 

IN

•  

• • 
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being an n X x real symmetric and positive definite matrix and  
t • 
 f(xj and xi : = ih. 

From (2.3), it follows that 

(1  	[6 (1 — (40 c i  If ( 	 ! (-461.4  * 17ci  L. 4 ci+01". 	(4.7) 
114i 0)  (I —+ 	 6 

140111 Taylor Series expansion, we have 

—46_ A- 1764  — 44 +1  

1 = -•••411 2  (C (2)  (.0 4  -a h4  (c (4)  (0)1 + 009 	96g. 

• • 	(4.8)• 

And so for sufficiently small h, it follows from (4.7) and (4.8) that 

— co2  h4  (c (4)  xth + (0 	j- (I)  4:-.70[6 (1 — co) ci  + —6— t— 4h2 (4), 
1 

(cm (x)) ;  964], 1 	n, 3 

since (A6)4 = (6(4)  (x)) i  + 0 (h6). Hence passing to the continuous case, we get 
the following differential equation: 

h4 c(4) 	 (1 —A) 	
[6  (1 — (a) 	

2 

— -3 h4  6 0) (x) 9e}]. 

Or, 

it )  (x) 3 (1 	00[9 (2 — (0)2  — 4h2  w2  6 (2)  CO] 
t  4P■•••••• 	 - 	 - • - 	

• ■■••• 

e [(18 17W) in A (18 — )JJ 
• . 

If 

2 
(pi=  1 Ch 

where C > 0, then on simplification, we get - 

27 (1 — .0 C2  [c 94,-2--02)  (41 
6(4) (x) 

R9Ch 	A(9Ch 8)) • 

Set 

27 (1 — 2,) C2 	 (4 ,1O) 
h2  [9Ch —8) -i' 2(9Ch sg• 
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Then from (4.9), we have •11  
• • 	• 

• 
to)(x) 4 a [t — 

4
9C2 
— • 6 (2)  (x)] . 

Lemma 3 : The minimum eigenvalue of the biharmonic differential 

• 

equation 

4 
e (4 )(x) = a [6 — 9C1 (2)  (X)1 p 0 < X < 1. 	 (4.12) 

with boundary conditions c(0) 122  6 	= 6(2)  (0) = 6 (21  (1) = 0, where C > 0, is 
given by 

9C 2  n 4  
90 +4z" 

Proof : Clearly c(x) = sin rnnx, where in is a positive integer, is an eigenvector of 

(4.12). So from (4.12), it follows that 

4 
[ 	

, 
yrd no 4  sin nmx = a sin nmx + --se m2  sin nmx ]. 9C2  

Or, 
g i m4 	 9C2 E4  M4  

a 	4  
1 +

90
a-  m- 9 	÷ 4n2  m2  • 	 (4.13) 

Since 

da 	32407E4  nil  72n6  m 5  C2  „ 
dm = 	(9c2 42m)2 	> v or L., m >0. 

Hencethe minimum eigenvalue of eigenvalue problem (4.11) will be attained when In 
is m;.nimum. In particular, if m is a positive integer then the minimum will occur 
when in = I, and the minimum eigenvalue will be given by 

9C2 n4  
9C2  + 4/0 ' 

Proposition 4 : Let A be the n x n matrix (4.6) obtained using the standard differ- 
ence approximation to the biharmonic differential equation (4.1)-(4 .2). Then the 
optimal o) for the spectral radius of the SSOR matrix 8, is approximately attained at 

2 	
. 

21E  0J 	 ,: ,, = 1--+ Ch' C > Op where C = 	c- - v i ate In 2  ir2  3 

and the step size h is sufficiently small, and we assume that the boundary condi- 
tions ofthe associated eigenvalue problem (4.12) satisfy (4.2). 
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proof : From (4.10), it follows that 

da 	 486C3  
	< ° for C > 0, 

e., a is a decreasing function of A. So the maximum value of A is attained at mini 
- ;win  value of a. From lemma 3, the minimum value of a is given by 

9C/  n 4  
90 + 4/0 

Substituting this in (4.10) and on simplification, we get 

27C — 9Chl ir4  + 8h'  +  12x2  A=---  270 + 9Ch 3  n4  + 8/0 mg + 12n 1 	 (4.14) 

Elementary calculations show that the minimum of the maximum eigenvalue A as 
function of C occurs at 

C=inil I + 	n 3  

and the optimal ay is given by 

(1)  = fl(ii 	ih2  it 2) • h • 

Remark : For sufficient small h, the otpimal cu will occur at C = 

*lie used the power method to determine the spectral radius of the SSOR iterative 
nutrix Ss, for different values of C and h. The results given in Table 2 of the author's 
dissertation 4  agree with Proposition 4. 

Self-adjoint elliptic differential equation in two variables 

Consider the secondaorder selfgadioint elliptic partial differential equation in two 
variables given by 	 4 	 • 

(5.1) 

cleaned in an open, bounded and connected set R in the plane. For the boundary 

condition, we assume that 

a (x, u 13 (x, 	= y (x, y), (x, e F, 	 (5.2) 

and In, the boundary of R, is assumed to be sufficiently smooth. We also assume that 

P (x, > 0 

\ (x,y) >0 

(5.3) 
(x,y)Eit 
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Using a finite difference approximation with uniform mesh size 	we get a system 
of linear equations! 

••• 

Au = k ri(u) 

where • • 

(A44, 1  = Del  tic 1 	L, 	sam Rh 	••••• 714, I Mi t  

"'"" B 40  U41  frj ;PI 

1 L

4  i = Fri , I , R i9  i  

, 	Teo 1  = Pio 1.4.i •  Bit I  at Ph  ,- i , 

Di,, = Li., + R e,, + Ti , i  + Bo p  i + 17 to  i Itt  

(5.4) 

and 

Ps ,: = P (xt, Y1), et, 	= (xt, a). 

Using Taylor Series expansions, we compute (AA, '  and (DA, as follows : 

(A c), 	LIt  (co  a  CI-1 9  $) 4+ R (1/4 	ci Et, 3 

+ 	(1/4 a ci, 1 41 ) + 	I  (ci, — cf.") + 	Ei: ; 

1,4 i  = Piei, I  = Pc i  — i h (P)1, i  + (+02  (PA, i  + O(Fz), 

altt. i = Pol, I = Pt, I + i h (P)4, a + (1 102  (PRA, t + 0  (h3). 

Ti, , = P io  1 +I = Pd . ; + 1 h (PA, i  + (+1)2  (P„)4, i  4- 0 (h 3), 

Ili , i  = Pi, r e =6-* Pi, i — 4 h WA, j e  +. (fh) 2  (P„).. i  + 0 (1j 3). (5 . 5) 

A simple calculation (using Taylor Series expansion and neglecting terns of order h 3) 
yields 

(A04. I  4.-- — h 2  [(Pc,,), + 	 ("A, h'. 	 (5.6) 

And 

(DA, = 	+ Ic , + Ti, + Bi, I  + 474 , 1  h2) ‘4,1 

= 9134, + h2  (P„ +. P„)i, + h 2 o 4, d c g, + 0 (h 3). 

or, 
(DA, * 4/24, 1 Es,, for sufficiently smill 4. 	 (5.7) 
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And 
1 

47c;  for sufficiently small h. 	 (5.8) 

So for sufficiently small 14 we have 

a  (Lir 794.? • ( 	/ R1-1, i (LD-2 14 *  Oc = 	4 p I 	C4-1 , W. 

B " Tit 11 	, (Bi, 
1" 	 t -1 • 4P4 , 1_1 

1 
- 	  [Li • 714-1, I P4, 	cs-i, iF1+ Li, I RI 	Pfp 	Et, / a 	• 4 Piet, • 1)4, jet 

• • 	• 

+ B ,  a Ta, 1-1 Pa-i, 1/41 	Bi, I Rt, 	P4-4, a cob  1.4) . 

By straightforward computation (using Taylor Series expansions), we get 

(Lirrl 	= 2 4 (P 	hPP, hPPr  + 112  Pr Pr  + h2 	+ 112 PP9,04, 

ro  X ((41"  — 4hP2  Pe  4hP2  Pr  + 212 2  P2  Pr, 1/1 2  PPApPi  + 211 2  P2  P  

I,' P2  P a  + ht  PP: + 	PP:)i, ci, +  

— 112 (Ps, 1 )2  (1),(04, — h 2  (Pi, i) 2  (Pec), I 	h2  (F4, ,)2 y 604, 

+ 1: 2  (P,, 	(c„ 	2c„, + 	g) + 0 (h 3). 

	

For sufficiently small 11, we drop terms in h 2  in (5.9) and so 	 (5.9) 

(ur,  ie*c)i•  * Pd, I ¼a' 
	 (5.10) 

Hence for sufficiently small h, it follows from (2.3), (5.6), (5.7) and (5.10) that 

h2  OP csVia ÷ Qs) + 04: h2  

— 	(1 — A)  
co (1 	co 4. 2)14  0 	P4, 1 Cip 	(1)2  P4, / 6i, 	1  < 	n. 	(5.11) 

Since (5.10 has been derived fro 
the boundary condition of (5. O. 
that 

in the elliptic equation (5.0, we assume that it satisfies 
So passing to the continuous case, we get from (5.11) 

(5.12) --  	0— 2) 2  P6 IS 	 .s  (1)  Cy), + 6 + hz co  (1 — 0 4- A) • 
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with boundary condition (5.2), i.e., 

a (x, 	+ ft (x, y) a--8: = y (x, y), (x, e r. 

Set 

_ (I —  .1.)  (2 — car 
a  • 	hy (0 (1 — (40 + (5.13) 

then 

daldA. < 0 for 0 < < 2. 

Bence mnimum eigenvalue of SSOR matrix 8„, associated with (5.1)45.2) is related 
to the at' nimm eigenvalue of the associated eigenvalue problem 

— (Pc) — (P4 e aP c. (5.14) 

subject to the boundary condition (5.2) by the relation (5.13) for co in the interval 
0< < 2. 

Special caw : Now, we consider the Laplace equation with Dirichlet boundary 
conditions in which case P e 1 and a 0. Then for sufficiently small h, it follows 
from (2.3), (5.6), (5.7) and (5.9) that 

(1 + c°2 h2 
(c,„ + 6 VP 2‘0 1. — h 2  (En + Er? # co (1 L. co + A) '" 

On simplificatior, we get 

2 (1 — 	 (02  h 2  
(Ca + 4") 	w)2  4  (cm + 

(5 .15) 
Let 

2  
co 

1 + Ch 

where C > 0, then from (5.15) we get 

( 60 + 
( 1 

— 

2Ch (1 + A) 

	C (Cie  + Cry  + 2En)]* 

Set 

(1  — a. 
2Ch (1 + 	 (5 .16) 

then 

-et ( 6.. + cn) 4-- a (40 6 •-• (Cef  + Cry  + 2C0)]. 	 (5.17) 
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It is easy to verify that the eigenvalue problem (5.17) with Dirichlet boundary condi- 
t i ons has all positive eigenvalues. From (5.16), daldA < 0 for C > 0, i.e., a is a 
dec reasing function of A. Hence, the maximum eigenvalue A of the SSOR matrix Ow  
derived from Laplace equation and the minimum eigenvalue a of (5.17) with Dirichlet 
boundarY conditions are related by (5.16). 

En the author's dissertation 4 , the power method has been used to determine the maxi- 
mum eigenvalue of  a .  There it is also shown that the optimal co for the SSOR 
matrix so, derived from Laplace equation with Dirichlet boundary conditions are 
a ttained at C = 1/h, i.e., Ch = 1 which shows that the optimal co is unity. 

6. Biliarmonic differential equation in two variables 

Consider the biharmonic partial differential equation 

V 4 14  (XI 	= f(xt y), (x, E R, 	 (6.1) 

where 

a2 	at 	4 	2 	2 	494 	2434 	e 
v v 	+ ax , ay, ay, 

and where R is a simply connected region, for simplicity. 

The boundary conditions for is (x, y) are assumed to take one of the following forms 
on each portion of F the boundary of R : 

au (x, y) = 	(x, y),  au (axy, 	= g2  (X ,  y) ,  (xl  

Th3x 

au (x, 
is (x, 	= g3  (x, y), ---an  g4(x, y), (x, E r, 	 (6.2) 

or 

au  (x,  y) 
a

0  a2  V 2  11(x, y) 
On 	On 

=0, (x, y)e r, 	 (6.3) 

where the functions gi  (x, 	are given and /2 refers to the outward pointing normal. 

Using a standard finite difference approximations with uniform mesh size h, we get the 

well-know/is 13-point biharmonic star : 

1 
2 — 8 2 

1 — 8 20-8 1 
2 — 8 2 
	

(6.4) 
1 
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From (6 .4) and (2.3), usi 
we get 

. 	(1. 	[20 (1 	to) cipi 	3 (4+1 ' 1-2  

ng Taylor Series expansions and neglectiniterms of order he, 

1 	1 	6. 17 	6 • . + 	Ci+3 g-1 r 61-1 	 7" 1+1 	et, 5-1 . 	ci4-41-1 — 3 6 +2,, 20 	' 	10 

1 	_. 1 	 . 
TO  
69 

, 	
.
10 

	

+ 	C4+3
P 
 jai -r s co-; • 	2ci...1 , 1  7"  

, 1 	 6 
2enin  it -5  cos„, 	64-3,01 	5 

17 	6 	6  1. 	s  1 	2 __5  64_10+1 	--5 	-t- To  €01, 1 41 T fos.  4-1,1,41 —  

= 	(1--7-2)  
20 a — 0.) + it) 

[150 (2 — coy 	hz (02  (54 E n  36, + 6c)  

+ co' ( — 15 c„„ + 36c,,, a18 	-i- 12 • -- 	I  I Emit, 1• 

Let 

2 
0 = 1 1 + Ch 

C > 0, then substituting this value of co in the above discrete differential equation, 
we get 

(1 —  
li(V2  c)" 	 [ 50 	— 6 (9 ca„ 15h2  (Ch I + (Ch + 

+ 6c,, + cn) + ht(— 154„. + 36cm, 

+ 12 	— 1I: 	j . 

Dropping h2  terms and passing to the continuous problem, we get 

(1 —  
V4  c e 15h2 (Ch 1 + A (Ch + I [150 C2  c — 6 (9 e„ + 6 c„ + 6,)1 	(6.5) 

for sufficiently small h. Since (6.5) has been derived from biharmonic equation (6.1), 
we assume that it satisfies the boundary conditions (6.2) or (6.3) (as the case may 
be) of (6.0. Now, if we set 

	0 — 
= 15h2  (Ch — + A (Ch 1 )) 

• 

(6.6) 

then we have the following eigenvalue problem: 

V4  6 + a 150 0 — 6 (9 c„ 	+ 66.,„ + En)] (6.7) 
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with the boundary conditions (6.2) or (6.3). For C > 0, we have da/dA < 0, i.e., a 
is a decreasing function of),. So the maximum eigenvalue of SSOR matrix s o, obtained 
from OM and the minimum eigenvalue of the eigenvalue problem (6.7) with the 
sa me boundary conditions are related by (6.6). 
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