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ABSTRACT

Bhatnagar, Gross and Krook developed a collision model for one component
neutral assembly in order to overcome the inherent difficulties of the Boltzmann
collision integral. This has been generalized to an N-component assembly of
charged and neutral particles by Bhatnagar and Devanathan. However, for the
simplicity of the model, the above mentioned authors have taken the collision
cross section to be a constant. [In fact the collision cross section is some unknown
function of the relative velocity between the _particles, as has already:been pointed
out by Krook and aiso by Koga. Koga gave some expressions for the cross section,
which are linear and exponential function of the square of relative velocity, and
calculated the coefficients involved in the model. In this paper, choosing the same
types of cross section as suggested by Koga, we have obtained the transport
equations by expanding the distribution functions In generalized Hermite
polynomials following Grad. It is found that variable cross section enhances _thc
relaxations times of all physical variables and thereby decreases the electrical
conductivity and diffusion coefficients. Also such va::iable cross section in_truduces
very high anisotropy even in the absence of raagnetic field and the magnitudes of
the viscosity coefficients in the principal dircc.tlons are dccrs_:ascd. The bulk
viscosity of the plasma is increased apart from introducing anisotropy. Further
this model introduces anisotropy in the heat fiux tensor also. All the transport
prooerties have been obtained inan earlier paper t'ay Devana_than,' ch]rm anc:
Bhatnagar. We have obtained the modi_ﬂed expressions for viscosity, electrica
conductivity, heat conductivity and diffusion coefficients.

1. [INTRODUCTION

Bhatnagar, Gross and Krook' gave a simple meaningful mod:l for 1:1;

binary collisions in an assembly. This was later generahdzcd b};t.[ioi:;;l;iacn:
3 for two component and multic
Bhatnagar and Devanathan® for ' g
asscmbl%ies respectively including the electromagnetic e‘:hl"ft::ts;h i ozznsidercd
basic assumptions in the above quoted investigalions is tha ffwo —rir
the collision cross section' between two interacting particles ¢ e uicd i
species to be constant. Devanathan, Uberoi and Bh?u;i;rtics ssing the
1 transpor

ali _G-K model for evaluating the

generalized B-G-K "
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polynomial. It is very well known that the collision
ting particles depend on the magnitude of their relative
velocity, Consequently, in 2 recent paper Koga® has reconsidered the B-G-K
model taking into account the functional dependance of cross section on the
crelative velocity of the interacting particles. He has considered the following
two cases: (1) Collision cross cection as linear function of square of relative
velocity and (2) Collision cross section as exponential function of the

square of relative velocity.
In the present paper we have taken the cross section to be of the form

generalized Hermite
cross section of interac

i 1 [ 2
— ¢ A +Bcﬁa] 2 i.1
Tix 0(0(2 [ ]

where C;s, is the relative velocity between the interacting particles. Using
the above cross section, [l.l] feeding it into the collision integral of the
Maxwell-Boltzmann equation, and integrating over the entire velocity range
of the scatterer denoted by suffix & we get the right hand side of the B-G-K
model as a function of the first and the second power of the molecular

velocity of the scattered particle (a).

After recomsidering the B-G-K model, in section 2 we establish the
consistant set of transport equations following the procedure of Grad® and in
section 3 we calculate all the transport coeflicients like viscosity, heat and
electrical conductivities, by interpreting the transport equations in an appro-
priate manner.

2 DERIVATION OF TRANSPORT EQUATIONS

In order to derive the transport equations governed by the kinetic equa-
tions, we introduce the non-dimensional velocity v, and the non-dimensional
distribution function g, given by

m \2s
P A 21]
where Co = (k T"'-“)m [2.2]
mﬁl
and g, - Ca 3 [2.3]
N,

where N, is the number density, T‘i“ the mean temperature of the particles of

type a with molecular velocity ¢ and mass m, and k is the Boltzmann

constant. The non-dimensiona] djstributi : ; L
: istributio etic
equation. l n functions satisfy the kin
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In writing the above we have denoted by v;, the non-dimensional velocity
and by T, the temperature of the scattered a particles due to their encounter
with o type particles; Kj,, L;, and M;, are the constant coefficients of the
reconsidered B-G-K model. We expand the non-dimensional distribution
function g; in the form

ga(Va, 1, 1) =w (V) %o a” (r, ) H™ (v,), [2.5]
l v
where wlv,) = TPy ER cxp.( - —2—-) [2.6]

It has already been pointed out by Grad that all the physical variables are
given by only considering n = 3 terms in the above expansion of distribution
function. Hence we will truncate the series for the non-dimensional distn-
bution function only at n = 3. By the orthogonality property of the generalised

Hermite polynomials H (v,) we have
g™ (r, 1) =(1/x&) - JE® (va) g dve [2.7]

where XP e[ (o) [H® ()P dve 28]

— - ! tions governing the coefficients

From the kinetic cquatl?n [2 4]. the equa g gH‘" (v.) and integrating

a'” can be obtained by multiplying throughout Dy a S i
over the entire velocity range of v,. Io Cartesian tensor product no :

we have
(m+1)

A a,;
x® O ds_ +{(n+3) X W, 2X8 2) g(2) 5(»-2)] ¥ +¢a [J{ a 3 it

y ? 108 64
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where
Afﬁncz = [11(2 '77)3!2] ’ f [Kﬁa. + Ljqi Vai

+ Ui Ugi Mﬁa] H("} (Ya.) cXp ["' (TchZ T&a) (va. o ufﬁa)zl d Vg o [210]

We note the following points about the equations [2:9]. The variable
cross section introduces coupling with lower and higher order moments.
Following Grad, we truncate the expansion at n=3  With the help of the
above assumption, we get the consistent set of equations. Since a'™ are nothing
but linzar combinations of the physical moments, converting back we obtan
the following transport equations:

3 Na | 3(Nattea) _ g [2.11]
cl 3 X;
1 d(Nyugap) +_1_.a~(NE_P,,,;,)_ e, £, +_F_‘g£d __€q &piy Hy
N, 3t N,  ax m, = m, em,

N aa " 3 (1) DY 4 L {

e “’*‘a] [2.12]
Cq "
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The CXPTCSSionS A{aﬁis Atﬁgp! Ag.zu)-ppi A?ipq* A(63u).£?pp! A?a).ppq and A(Bsg.pqr

are very lengthy and are given by the equations [2- 0] after giving various
values to n. We note the following important points regarding the above
transport equations. The momentum equations are directly coupled to the
stresses as well as with heat-flux vector. The heat flux tensors are coupled
directly with all the lower order moments. Consequently, even in the absence
of magnetic field, w2 expect intense anisotropy in the plasma.

3. STATIONARY NON-EQUILIBRIUM PROCESSES

In this section, we shall consider some simple stationary, non-equilibrium
processes and we shall deduce the expression for electrical conductivity,
viscosity, heat conductivity and diffusion coefficients of the plasma.

In order to find the expression for electrical conductivity and diffusivity
terms, we consider the Lorentzian gas. Expressing the higher order moments
1in terms of equivalent lower order moments, the momentum equation reduces to

1 ‘a(N‘,, Ci) e, E, Fan Pﬂe;‘”‘
1 2Wece)_(enBy , Fup)_totom gy,
5 : o m, m, C g
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op= (,P“ Na - ¢p Np) Dpy
) [3.5]
where
Dy=No Do Doy + Ng Dga Dgy + N, Dy D,y [3-6]
and
D; = Ny Doy + Ny Dg, [3.7]
where
m. (Ksy Tau +5 Msa Tsa)
D o - a Sa aas da __5:?._ a
’ Ugg. F 3 M [3.8]

From [3.3] we see that electrical conductivity decreases in the case of variable
cross section. because D, has increassd. We now consider the gradient
dependance of the stresses. For simplicity, we have chosen the Z-axis along
the direction of magnetic field and deduced the stress components and hence

the expressions for visocity and bulk viscosity :

Pyiz= — #50333 €a33 — ﬂil:fa (%n + €422 + 9133) [3-9]
where
(0) 2 k* Taa 3. 10]
Magiz = 3
mg (Ta. ;i 7 !u)
and
) K2 T2 (ra+51,) | [3.11]

i m> (7, + 10 I;_J (ra +7 1)

{Pnzs} _ {fa.zs} , [3.12]
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With similar expressions for P,»,, In all these expressions, we have

re=S N g T -2

(0) t’ﬂ)
N ¥ Tsa

M;, [3.19]

Due to the dependance of cross section on the relative velocity between
two species of particles, a very high anisotropy is introduced even in the
absence of magnetic field and the magnitudes of viscosity coefficients in the
principal directions are decreased. Further the diagonal terms of the stress
tensor depend also on the dilatation term (e, + €,22 + €533) apart from other
f:ouplings. Hence we can conclude that variable cross section not only
introduces anisotropy, but the bulk viscosity of the plasma is also increased.
The viscocity along the direction of magnetic field is decreased by a factor

=1/(z, + 71). [3.20]

If we examine the viscocity coefficients corresponding to stress components

Bara, Pa_zz, Pa3i, Poyy etc., the anisotropy is evident even in the absence of
magnetic field.

Proceeding in a similar manner for the heat flux vector we obtain

Sa3 = = K3 (3 Taofd x3) [3.21]
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where
K.Y - 25’" Tao (7, +971.)
«l7q +23 Talg + 12611] [3.22]
[ Sul ] A,-#ﬁ} a Tuu/~11
Sa 2 T, [ax, [3.23]
where
KO - 2_5 KT, L lTa+ 145, W,
mg lwz + 70 ¢ 14L)] |~ w7 4141, [3.24]

As in the case of stress tensor both the magnstic field and variable cross

section introduce anisotropy in the heat flux vector. The coefficient of heat
conductivity along the magnetic field is given by

Sk T, (Ta+9f )

T wilri+ 23,1 +1261] [3.25]

This expression for heat conductivity along the magnetic field shows that the

ratio of heat conductivity and the coetlicient of viscosity along the magnetic
field is no longer a constant,
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