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ABSTRACT 

The propagation of the small amplitude disturbances in an inhomogeneous 
atmosphere embedded in an idealized dipole field of a uniformly magnetized body 
is considered. The gravitational forces are included. It is found that due to 
inhomogeneity of either the density or magnetic intensity the disturbances generally 
tend to grow excepting in a special case. This conforms to the general belief on 
the formation of shocks in atmospheres. But in the special case when the local 
Alfven speed is constant and when the phase velocity lies between magneto- 
acoustic mode and magneto-acoustic mode modified by Lorentz force, the distur- 
bances die out. 

INTRODUCTION 
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magnetized slab and of width a and extending to infinity in the x- and z- 
directions. The idealized field lines in the undisturbed state are take- 
parallel  to the body and are given by It o  i=r(Ha 3Ir3, 0, 0) where H denotes 
te intensity at the surface. We have taken the y-axis normal to the surface 

of the body and r denotes the distance measured along this axis. The z-axis 
is taken perpendicular to the field lines in the plane of the body 	We not e  
that this magnetic field configuration is realized in the equatorial plane of a 
dipole field. The density p o  of the atmosphere in the unperturbed state is 
taken to vary as po s Ran/r', where R is the surface density. Further, the 
atmosphere is subjected to the gravitational attraction of the body given by 
g (0, Ga 2/r 2 ,. 0). G being the magnitude of the acceleration due to gravity at 
the surface. We shall furthr suppose that initially the medium is at rest 
and is in a steady but nonhomogeneous state, the pressure gradient being 
balanced by gravitational and Lorentzian forces. Moreover, the medium is 
taken to be an ideal conductor. Consequently, the basic equations governing 
the system are 

?phi + div (pv)== 0, 	 [IA] 

p[6vlot +(v6V)vicrt pg Gilc) J x H V p, 	 [1,2] 

V • B 0, 

V *II -= 0, 

curl E:= 	/0(a nb t), 

curl H = (440 J (1/c)(13ht), 	 [1.3] 

B 	H, 

D = E E, 

and 	E (lic)v 	ons O. 	 [I.4] 

We shall denote the unperturbed quantities with the suffix 0 and the 
infinitesimal perturbations in all the physical variables by the suffix 1. 
Further, we shall assume that all the perturbed quantities vary with time as es' 	Nondimensionalizing the distances with a and the magnetic field with H 
and eliminating the perturbations in density and electromagnetic fields, we 
obtain the following equation satisfied by the induced velocity : 

vibia (G au?) [div(viirt)]G0  + bet H 2/(4-rr iRa co 111[3 Jo  x 11 1  + (curl h i ) x Ho] 
+ 	II 2/4-nR)(teic2)(v t  )( 	x Ho  — (S1/42  ca2) grad div (v ibin) 	[1.5] 

Where 	 11 1  mi. (Vika)) curl (v1  x HO, 	 (1.63 
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V and S 
being typical speed and sound speed in the medium. Go , Jo  and H o  are given by 
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The vectors 

(iW), oj, 
Jo n' [o, 0, (l1114)], 
Ho  = [( I /el), 0, 0 , 

with i - a 
the nondimensional equatorial distance. In order to simplify the 

discussion we shall introduce the following nonditnensionaI parameters. 

a = (aco/V), the frequency number, 

/3 [c/ { s/(ac). 11 I, the electromagnetic number, 
F— (Gal V 2), the Froude number, 

y 1=a H2/(4 R V 2), the Alfven number, 

and 	 S (..S/k'), the pressure number. 	 [1.8] 

With the help of these, the equations (1.5) and (1.0 reduce to 

(F a 2) [div it IPA Co  + (v/ia) [3 Jo  x h, + (curl h 1 ) x 110] 

+ (Y/i32 ) ( 11 1 x H0) x Ho  — (3 2/a 2) grad div 	 [1.9] 

and 	bi in (lila) curl (v i  x 	 [1.10 

In section 2 we shall consider the case when all the perturbed quantities 
depend on the normal distance q  only and in section 3 when they vary along 
the direction of the initial field according to en in addition to varying 
transverse to the unperturbed magnetic field. These two cases are of 
particular importance. 

2. When the distui 
(1.9) and (1.10) reduce to 
velocity component v 

[yin' + 8 2/e1 (d2  v/c192) 

+ 21 yie + a 2/9".  

In the domain of consideration 1 cri<00 the above differential equation has 

only one irregular singular point at q noz cc and hence the behaviour of the 

solutions is completely determined by the asymptotic behaviour of the 

solutions. 	The irregular singular point at infinity is of the normal type 

(Forsyth 3, Tricomil and hence admits asymptotic solutions of the type 

/re" where p is a real constant and U a, real or purely imaginary constant. 

'bailees  vary only along the normal, the equations 
a single equation for the nondimensional equatorial 

— [97617  + 2n 82/if'" Fign+2] (dvid/i) [r:12/$2 96 

4- {n (n I) 52  bin +2 1 + n F 17"+3.1v O. 	[2.1] 
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Consequently, the sign of p and the nature of 9 completely give the 
information regarding the stability of the perturbations. Further, in order 
to interpret the results we note the following points of importance : 

(i) The successive terms in the coefficient of the middle term of (2.1) 
arise respectively due to the inhomogeneity of the initial magnetic 
field, density variation and due to gravitational force. 

00 For n < 6, the significant contribution is from the density gradient .  
and in this case the local Alfven speed (which is proportional to 
7)n-6)x tends to zero at large distances and the main process is 
the pressure build up. 

(iii) For n> 6, the field gradient is the predominant term and the local 
Alfven speed tends to infinity as 7)  tends infinity. 

(iv) When n a 6, the contributions of density and field gradients are of 
the same order and the magneto-acoustic mode comes into play. 

The following are the asymptotic forms for various cases : 

(a) n < 5. 

v (1 ) 	lin [A cos (a TO) B sin (a /1/3)] ;  

(b) n 5. 

V (n) n5  [A cos Ra Ida) (ya ( 2 — 3 2)12 52  33) log in 

B sin {(a 9/0 + (yist(132  — 82)/2, 83) log if ; 	 [23] 

n az 6. 

✓(9) 	Tit/ cos Ari B sin Ad ; 	 [14] 

where p R9y + 12 82)/ 2 (y 8 2 )1 > 1, 
A2 . [a 2.(6 2 +  y v 13 2 ( 82 + r )] ;  

(d) 	7. 

✓(v) 	i 9 / 2  ‹A cos la v1 i6 + [a (A2  — 82)/2713] log j 

B sin {a q if? + [ct (f3 2  — 8 2)/27A log ii}) 	 [2.5] 

• (9) rs tri2  [A cos (a q/(9) + B sin (a n1 ft:)1. 	 [2.6] 

From this 
we conclude that the unbalanced pressure gradient or field gradient 

always predominates leading to overstable oscillation. In the particular case 
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when n a 6± I these oscillations are aperiodic also. Hence we conclude that 
always there would be build up of the perturbations. This conforms 

with the general belief regarding the formation of shocks in an in homogeneous 
atmosphere in such cases which always has a well-defined propagation 
mechanism. 

3. If, in addition to equatorial variation, one has the variation along 
the unperturbed magnetic field, an additional induced motion in this direction 
occurs. Hence the system behaves as a diamagnetic material due to the 
coupling between transverse and longitudinal modes with a possibility of 
stable modes under certain conditions of applied frequency and wave number. 
Proceeding as before, the equation satisfied by the equatorial component of 
the velocity is 

r 	+ 	n 2 82 	(12  v 	I 	3 y (3  a2  — 2 k2  82) 2nn 2 82  a2 Fidv 

1_ it 	(a 2  k 2  8 2) qn  d ti 2  a2  k2  52 	 n+ 1+ 	d 
7/ 

[a2 	n (n + I) n 2  s2 	n F a 2 	y (a 2  k2  /32) 	21 y a 2  
+ 	(a2 k2 8 2) rin+2 ( a 2 	k2 82)  rin+S 1- 	/32 n6 	(a2 k2 82) n it 

3  Yk2 F 

(a2 k2  82) 191 = O. 	
[3.1] 

Here also the middle term represents the gradient effects. But the factor 

a 2 — 1c2  82  arising due to the coupling of transverse and longitudinal velocity 
components determine the sign and hence there is no unbalanced retriving 
force as in the previous case. Hence there is a possibility of stability and 
growing and decaying modes. We shall summarize the results as follows: 

(a) n < 5. 

and 	 /in  [A en +B&"} if 	S2  <0, 	 [3.4 

where 	
A2 a  (k2/62) ( v3 e s2) a  .. "42,  

and vs  , .= Gal akV), 
the nondimensional phase velocity along the field lines. 

As expected, if v,,, 
is supersonic, very little coupling takes place and hence 

unbalanced retriving forces induce overstable oscillations. On the other hand, 

when it is subsonic, there is a 
growing mode and a decaying mode mainly 

due to pressure build up. 

(b) n ••• 5 	 • 	• 
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As in the previous case, apart from an aperiodic phase shift, the results 
are the same as in the case (a). In the supersonic case, 

V (11) r■-- 95  [A cos {A9 (b1/2A) log 9} 	B sin diA9 + (b 1 /21t) log /1} 

and in the subsonic case 

V  (10 ree•-• 	[A en) 'bias B e-Agn bob, 
I) 	I, [3.3] . 

where 	bl (yk4/a2 182 82) (vZ s2)[v 	CP 0 ± 1 1C 2  . 

It is interesting to note that whenever the phase velocity lies in the range 
(S, co  (1 + 1/k2)"2) there is a phase lag and a phase shift otherwise 

In the case n > 6, the deciding factor is the electromagnetic induction 
and hence the speed of the light co  plays the role of S. If the phase velocity 
is greater than co, then 

v 	77 P  [A cos {Ai ij + 0212 AO log 	B sin {A, q + (b2/2A0 log 9}], 

and if it is less than co, then 

/I P [A e+ si n b21214 + B 	"in qb112lail s  

where 

and 

Al = 2 
— MI' 

a 2 (cr 2 82_ 	c,.2N 
( a 2_ k2 82)  

(d) n > 7. 

Here also, when tç> co 

v 	n P [A cos Ag B sin Ad, 
and if Ti 	co, then 

[3.5j 

Thus, when n > 6, as in 
available. But none of these are 
or growing and decaying modes. 

(e) n 5 

the previous case, both types of 
stable modes. Either they are 

modes are 
overstable 

By far, the case, when the local Alfven speed remains constant throughout the domain ( i.e. when n 6), is the most interesting and the most complicated. Instead of giving the detailed expressisps, we shall summarize the results. 
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Four characteristic  velocities appear 
between hydromagnetic, acoustic, and 
They are respectively 

in this case due to intense coupling 
transverse and longitudinal modes. 

VA 	 VA 	 VA S 	  
[2 + (3/210<47-S2)11/2  [ I + VeUcb]' 	

and
i2 	ti +(1/S 2)1" 

namely, the sound speed, the magneto-acoustic mode modified by Lorentz 
force term, the magneto-electromagnetic mode, and pure magneto-acoustic 
mode. 

Whenever the phase velocity lies between modified magneto-acoustic 
velocity and the magneto-acoustic velocity, the perturbations are stable and 
behave as 

v ( n) 	( i/q Pi) [A cos Ari + B sin Aq1, 	 [3.6] 

where 

12 S2  +  9 VI I  V)! 	+ (3/2) ( vits 2)1} > o. 

	

pi a s2 v 	L 	ii_4viii[ii-(v1/69 2)]} 

Whenever the phase velocity lies between acoustic velocity and the magneto- 

	

electromagnetic velocity, v 	is given by 

v (v) if [A e" + B C " 
	 Da) 

and we have both growing and decaying modes. 
In the rest of the cases, the asymptotic form shows overstable modes of 

the type 
v (q) 	EA cos Ali B sin Ad. 	 [3.8] 

1. 

2. 

3. 

4. 
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