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Short Communication

Complementary variational principles for convection of heat
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Abstract

The upper and lom bounds on the mean temperature for the steady convection of heat under constant
temperature gradient are derived from the canonical theoly of complementary variational principles.
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1. Introduction

Arthurs! has shown that one can construct complementary variational principles for
the pair of canonical equations

awW oW
Tx = - - ¥y = — L.l 1.2
y  Thy=— ( )
where T and T* are adjoint linear operators, W (x, y) is a functional which is convex
iIn X and concave in Y and

)
dx’ dy

are appropriate functional derivatives, In fluid mechanics it is possible to identify
situations where the governing equations are of the canonical form.

The aim of the present papzr is to d:velop complemsntary variational principles for
the steady heat convection equation in which the heat input from the bourdary to the
fluid is constant in the flow direction and subject to the condition that the tempera-
ture T =0 on the boundary C. These extremum principles lead to upper and lower

bounds on the mean temperature.
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2. Mathematical formulation

Consider a steady laminar flow of a liquid in a long straight pipe of arbitrary ¢pgss.
section under the influence of constant pressure gradient along the axis (0X) of the
pipe. Itis assumed that the flow velocity u« (», z) is entirely paralle]l with the axis ang
is independent of distance X' along the pipe. As a consequence, the continuity equatiop

du
3—_;-—0

is satisfied id>ntically. Viscous dissipation is neglected and the heat input from the
boundary to the fluid is constant in the flow direction. The governing equation of

temperature distribution is

divgrad T = — ;’c u(y, 2), 2.1)

T =0 on C, (2.2)

where
k = the cocfficient of thermal diffusivity

(—a) = the constant temperature gradicnt in the flow direction and divgrad
= (3%/dy* + 3%/dz*).

3. Complementary variational principles

Equation (2.1) can be expressed in the form

grad g=¢, g=0 on C, (3.1)
~divg = + -E- u, (3-2)

where ¢ is a vector having components in the y and z directions. Consider the furc-
tional

1@o)= [(36-4+ Fug—¢- grad g di+ [g¢ . de 3-3)
8 ¢
=I(%¢'¢+%ug+gd'v¢) s (3.4)

where s is the cross-iection and # is the oitward unit normal to C. The extrema!s
of this functioral with g =0 on ¢ lead to (3.1) and (3.2). The exact solution I8

denoted by ¢ = ¢*, g=T. The complem:ntary principles are constnctcd from
(3.1)-(3.4) as follows :

First choose 2 trial function g satisfyirg (3.1). Then (3.3) gives

G(g) = *[(—z ug + %gmd g. grad g) ds (3.5)
g )
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Next choose another tria] function ¢ satisfying (3.2).
Then (3_4) gives
J(¢)=&{é-é ds. (3.6)

The functionals G (g) and J(@) provide lower and upper bounds to the functional
(T, é*), that 1s,

G(g) < I(T,¢*) <J(9) 3.7)
Now

I(T,¢*) = -j(—-z uT+%grad T. grad T)ds.

Using (2.1) we obtain &fter some calculation

[(T,¢*) = +; z (fuds) ; (3.8)

where
T, = [ uTds/ [ uds 1s thc mean tempcrature.

From (3.7) and (3.8) we get
%(fm)'IG(g) & 47T, gz—;f( fuds "I @). (3.9)

4. Application
Circle : y? 4+ 22 = ¢?,

In parametric co-ordinates y=r cos 0, z=rsinl, 0 Lr<¢ 0 g < 2n, the
boundary C corresponds to r = ¢. Also, it is known that

2
u= ZU'. (l - E‘i ]
| where U, is the average velocity.

Choose g as

_ _a (l-—f 4.1)
§ = e a3

where o is a paramster and the boundary condition is satisfied.
Substituting in (3.5) we get

a® c? 1 (4.2)
G(g) = —21[ F(Uﬂi‘ﬂ- + iag).

] -I-SG.-—-?
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The extemals of (4.2) are got by setting gg = (0. This gives

g %c’ U., and g:f-c 0
Therefore

Gg) =4 2—:(:' UL B 4.3)
Choose ¢ as

ot (o (=207 7)1)

where B is a param:ter and (3.2) 1s satisficd, Substituting in (3.6) we have

1l xa? na® U3,
I = g5 gr Vb + 7 B (4.4)

The extremals of (4.4) are got by setting

Thus, we have

2act U, 11 ac® U,
5k =T==g ,

If, however, we take

4,2 1
g = --a.<3—- 4 {;—.), (4-6)

from (3.5) one obtains
2 /1
G(@g)=—- Zf ( : U, ac® + —-az) (4.7)

The extremals of (4.7) are obtained by setting

aG
3—:—0
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1 3> G
a= — 8 C2 U“ and 3;3 L < 0.
Hef‘.ce&
11 =a*
G(8) =g = <" Um (4.8)
Thus, we have
11 ac* U,, C1lac* U,
8 &k STas g 7 4.9)

We see that the lower and upper bounds coirncide.

In concll_tsion, it i1s noted that the bonnds or the mean temperature car be obtaired
for other simple geometries, .
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