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Abstract 

The upper and lower bounds on the mean temperature for the steady convection of heat under constant 
temperature gradient are derived from the canonical theoty of complementary variational 	principles. 
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1. Introduction 

Arthurst has shown that one can construct complementary variational principles for 
the pair of canonical equations 

OW 
ay * aw  T y = —ay  (1. 1, 1.2) 

where T and T* are adjoint linear operators, W(x, y) is a functional which is convex 
in A' and concave in Y and 

a 	a 
axe ay 

are appropriate functional derivatives. In fluid mechanics it is possible to identify 
situations where the governing equations are of the canonical form. 

The aim of the present paper is to d,velop complemmtary variational principles for 
the steady heat convection equation in which the heat input from the boundary to the 
fluid is coristant in the flow direction and subject to the condition that the tempera- 
ture T = 0 on the boundary C. These extremum principles lead to upper and lower 

bounds on the mean temperature. 

* Present address : mathematics Department. National College, Tiruchirapalli, 
Tamil Nadu. India. 
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2. Mathematical formulation 

Consider a steady laminar flow of a liquid in a long straight pipe of arbitrary cross . 
section under the influence of constant pressure gradient along the axis (OX) of the 
pipe. It is assumed that the flow velocity It (y) z) is entirely parallel with the axis and 
is independent of distance I along the pipe. As a consequence, the continuity equation 

is satisfied ithntically. Viscous dissipation is neglected 
boundary to the fluid is constant in the flow direction, 
temperature distribution is 

divgrad T 	u(y, z), 

T ze 0 on C, 
where 

and the heat input from the 
The governing equation of 

(2.1) 

(2.2) 

k 	the coefficient of thermal diffusivity 

(—a) = the constant temperature gradient in the flow direction and divgrad 
(82/ays + erne). 

3. Complementary variational principles 

Equation (2.1) can be expressed in the form 

grad g 0, g = o on C, 

a div r--- + 	u,  
where # is a vector having components in the y and z directions. 
tional 

(3.1) 

(3.2) 

Consider the flirt- 

1 	a 
-1(g,#)=21( - 0 0+ aug - 0. grad g) + fg sii dc (3.3) 

2 

(1 
= Vi - 0 ± iig + g d*v 0) cis  

where st is the crols-;ection and it is the oittward unit normal to C. The extremals 
of this functioral with g = o on c lead to (3.1) and (3.2). The exact solution is 
demoted by = 0*, g = T.  The  compienyntary principles are constructed from 
(3.1)-(3.4) as follows : 

First choose a trial function g satisfyir g (3.1). Then. (3.3) gives 

a 	1 
rG (g) = — f(-- -

k ug + - 	g ad g. grad g) ds 	 ( 3 . 5 )  2 
s 
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Next choose another trial function # satisfying (3.2). 
Then (3.4) gives 

1(0)=1.10•0 ds. 	 (3.6) 

The funetionals G (g) and no provide lower and upper bounds to the functional 
AT, #1, that is, 

G (g) AT, 01 J (O. 

Now 

(r, r) = - f(- a 	1 k  uT + grad T. grad 1) ds. 

Using (2.1) we obtain ifter some calculation 

1 a 
= ± 	f uds)T„, 

(3a) 

(3.8) 

where 

=5 urds1 f uds is the mean temperature. 
• 

From (3.7) and (3.8) we get 

G (g) + a 
2k 7,  ( scuds) .1 Ws (3.9) 

4. Application 

Circle : y2  + z2  = c2 . 

In parametric cosordinates y= r cos 0, z = r sin 0, o r c, o 0 2n, the 

boundary C corresponds to r = c. Also, it is known that 

u = 2U„,( 

where U., is the average velocity. 

Choose g as 

a ( 	r 2  
g = - a I — —) k 	c2  

Where a is a parameter and the boundary condition is satisfied. 
Substituting in (3.5) we get 

	

a2 	2 	1 

	

G (g) = 27t p 	c
a + a

2 
 ) . 

(4.1) 

(4.2) 
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aG 
The externals of (4.2) are got by setting 	= 0: This 'gives 

Oa 

1 

a  -422 	5 c-  Udg and L.G a a s 

Therefore 

71 a- .4 	/2  
G (g) = 	iii 	u •• 	 • 	• 	(4.3) . 	. 

Choose as 

aUn y2  + z2 N y2  + z2  \J 	( 	 } 
2c2 	" 

where fl is a param:tri and (3.2) is satisfied. Sitbstituting in (3.6) we have 

11 Ras 	Rai 	4 2  
c4  + 4 	t  fi 	 (4 .4) 

The extremals of (4.4) are got by setting 

" o. 

This gives 

at I fi = 0 and  ap 
Therefore, 

II na2 	4  
(4 . 5) 

(‘).4 =  96 k2  Ufa C  • 

Thus, we have 

2 act U 	11 ac2  U., 
§ 	 k 	• 

if, however, we take 

a I 	4r 2  r4 N (4.6) 

from (3.5) one obtains 

na2  1 1 	22 G (g) = 10 LT unac2  + T '
2
) • 	 (4 . 7) 

The extremals of (4.7) are obtained by setting 
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which leads to 
a2 G — C 2  U ard — < 0 ir 	alit 	• 

Hence, 
II Ra 2  

G (g) = 96 -k 2-  c4 Ul" 

Tho, we have 

11 ere' U., 	Till s 
 11 ar 2  

4 k 	k • • 
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(4.8) 

(4.9) 

We see that the lower and upper bounds coincide. 

In conclusion, it is noted that the boisnds on the nran temperature can be obtaircd 
for other simple geometries. 
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