gian Inst. Sci., 64 (B), Nov. 1983, Pp. 277-289

J. In [ostitute of Science, Printed in India.

o Lo

tree adjunct kolam array languages

K RANGARAJAN anp K. G. SUBRAMANIAN
]};partnmnt of Mathematics, Madras Christian College, Tambaram, Madras 600 059, India.

Received on January 1, 1983, Revised on August 22, 1983.

Abstract

Tree Adjunct Kolam Array Grammars (TAKAG) are proposed to generate rectangular arrays of
erminal symbols. These grammars have two phases of derivations as in kolam array grammars of
siromoney ef al. The notion of tree adjunction is made use of in their first phase of derivations.
The family of Tree Adjunct Kolam Array Languages (TAKAL) is shown to properly include the family
of context-free kolam array languages. The family of TAKAL's is closed under the operations of
unjon and array catenations and star. The families of linear and regular kolam array languages are
shown to be proper subfamilies of the families of linear and one-sided linear TAKAL?’s.

Key words : Chomsky grammars, adjunct languages, array languages.

1. Introduction

;f'her'e-has been considerable interest in recent years in adapting the techniques and
0 udlising and extending the existing results of formal language theory, for developing
fnethods to study the problem of picture generation and description. Pioneering work
in Suggesting and applying a linguistic model for the solution of problems in picture
ocgssing has been done by Narasimhan®. Rosenfeld® has extensively investigated

W13y grammars, whose rewriti ng rules allow the replacement of a subarray of a picture
“th another subarray.

ansi;f;l:ngey et al® considere_d the two-din'fensional_analogs of strings to be rectang!.dar
" na extended the notion of catenation of strings to row agd column Cgtenatlons
“Uangular arrays. Siromoney et al® proposed a two-dimensional generative mocel,
fﬂnglt:h:f Matrix grammar, 1o describe digitizec_l rectangular arrays. This_ model is
generating a wide variety of interesting classes of pictures but it cannot

-
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generate pictures which maintain a fixed proportion between the

horzont
vertical. ntal apg pe

Siromoney et al? introduced array models, which provide a more
to defining two-dimensiongl grammars for ractangular array languages, necessitateg
by the need to generate picture classes that cannot be generated by the two-dj
sional matrix models. The definitions of these array models were motivated bﬁﬁe
patterns found in kolam design, a folk art of India and hence we call these models
kolam array grammars, in order to distinguish them from the array grammars of Rose:f
feld®. These models involve two phases of derivations. The first phase copsists of a
finite set of horizontal or vertical CS, CF or regular rules which involve only the
nonterminals and intermediates. The intermediates act as terminals of the first ];hasc.
During the first phase of derivations, derivations proceed making use of the rules,
introducing parentheses at every stage to avoid ambiguity due to lack of associativity
of the column and row catenation operators. The resultant of the first phase will copgst
of strings of intermediates catenated together with row and column catenation ope-
rators and with parentheses suitably introduced. The second phzse consists of
rules which generate languages, called intermediate array languages—one corresponding
to each intermediate, with the intermediate as the start symbol. The intermediate
array languages may be CS, CF or regular over a finite number of arrays all of which
consist of a fixed number of rows or a fixed number of columns of elements from the
set of terminal symbols. Insltead of enumecrating the rules, the intermediate array
languages are usually given. During the second phase of derivations, starting from
the innermost parentheses, each intermediate is replaced by the corresponding mter-
mediate array language subject to the conditions of row and column catepations. When
all the intermediates are replaced, we arrive at the rectangular arrays of terminals.

Joshi et al' introduced z new class of formal grammars, called string adjunct grammars,
as an alternate means of describing the generation of formal languages. The rules of
these grammars have a different formal character than the usual rewrite rules of phrase
structure grammars of Chomsky®. The only operation allowed on sirings In an adjunct
grammar is the adjoining of a string to the Jeft or right of a distinguished symbol in
another string. Joshi et al? have extended the notion of adjunction in strings to e
and have studied tree adjunct grammars. In a tree edjunct grammar, each intermediate
tree in a derivation isa sentential tree, i.e., the derivations proceed froma structured
sentence to another structured sentence. Thus, 1 tree adjunct grammar is a grammar
of structural descriptions.

- . , il1es
In formal language theory, it has been of interest to obtain and study new fam;irs :
nction In the

of languages. In this paper, we incorporate the notion of tree adju . ¥ ol
phase of derivation of a kolam array grammar?® and introduce TFree Adjunct Othc
Array grammars, generating rectangular arrays of terminal symbols. We (foml}a;]am
family of Tree Adjunct Kolam Array Languages (TAKAL) with other families 0 v the
array languages. We prove that the family of TAKAL’s ipcludes property
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1o of context-free KAL’s. We also define
i yro\’f-‘ that they properly contain the familj
p we also establish closure of the family
gely: of column and row catenations an

linear and one-sided linear TAKAL’s

€s of linear and re | :
gular KAL’s respec-
of TAKAL’s under union and th

° € array
column and row star.

: ntroduce the Tree Adiunct
(olam Array Grammars (TAKAG). The reade: is referred to Salomaa® for Staﬂ-,‘d!:l]l'd

gtons i formal language theory, to Siromoney et al®?? for details regarding
gays and kolam array grammars and to Joshi et al® for the concepts of trees and

Nougtion : Let H'* be the frge monoid generatea by the set & of all natural
gnbers, with the binary operation . and identity 0. Forp, ge &/*, p < giff there is
red* such that ¢ = p.r and p < qiff p < g and p # ¢.

we first informally describe the notion of a generalized tree.

A geperalized tree is a tree whose leaf nodes are labelled with elements of a nonempty

¢ 1C V and interior nodes with elements of V — I, whete V is a finite nonempty
mf_symbols. It is a rooted tree with the root at the ‘top’ node. The descendants
dany node have a specific order. All the branches at a node, i.e., branches from a
wie to its immediate successors are either ‘ horizontal ' or *vertical’ with reference
o two fixed horizontal and vertical planes.

Dinition 2.1 : Let ¥ be a finite set of symbols and 7 bc a nonempty subset of V.
Ageneralized tree ¢ over V is a function from D, into V, where the domain D; 1s a
wte subset of H'* such that

BifgeD,, p < g, then pe D,
Wifp.jeD, for je H then p.1, p.2, ..., p. (j—1)eD;

E’“fq and pe D, with p = g.j and q. (j + 1) ¢ D; where j € &, then a.llthe ordered
NS (g, g.d),i=1,2...,jare in P, or P,, where P, and P, are finite sub§els ‘of
hx D, We say that the branches at the node ¢ join the node ¢ with 1s
Sendants, g.i (i = 1, ..., j) and that the branches are horizontal (respy. vertical)

MaiG=1,... j) are in P, (respy.Ps)-

.l;hcﬂﬂm&nts of D, are called addresses of t. If (p,X)€1, then Xis called the
lof the node at the address pin t. We write {(p) = X.

of 1, we have g<<p (i1) an

Atode g in s ic ¢ *
- ®4in tis (i) a leaf node if for all nodes pddrcss i< 0 is called the roo!

'ﬂdcur node if ¢ is not a leaf node. A node whose 2

I i ! c.
“8ive ap eXample to illustrate the notion of a generalized tre
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Example 2.1 : Lel V ={S, X, A4, B,C}, I = {4, B, C}.

Figure 1 shows a gencralized tree over V. The address and label of ¢cach nog :

by the first and sccond components of the pair of elements marked at eac;are Biven
fig. I. For instance, the node marked (O.S) has address O and label \) TE"de in
horizontal and vertical planes are XOZ and XOY. The branches at no;le OEﬁxe.d
Py, i.e., horizontal and at 1,1.2 are in Py, i.e., vertical. ar¢ In

(0.5) X o)

Fig- 1. A generalized tree.

Given a generalized tree ¢ over V, the notions of (i) the subtree t/p at node p.

(i) the super-tree £\ p at node p, (iii) p.#, (iv) the front 7 of ¢, (v) a path of &
can be defined for 1, as done in the case of a tree®.

Notation : Let V be a finite set of symbols. A horizontal string or word OVer &

A,
of the form wy, = A;4, ... A, and a vertical word is of the form wp = A A€ v, for

A

i .
; : . We
I = ], S wh k. We write W; 4§ (Al @ Az @ S ® Ai) and W, as (A]_G Agg U ¥ A;‘)leﬂem

use the symbols (@, 0 respy. tostand for horizontal and vertical catenations © izontal
of V. We use the symbol @ to stand for either O orf. We also wnte 2 hor

word AA ... A (n letters) as A" or (4)" and a vertical word 4 (# letters) as (A
A

A
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Definitiont 2.2 : Let ¥V be a finite set of symbols,
a5 follows :

() For A€V, i=L ... (M QA4D...04) and (4,040
o Vi, for k> 1. -

i) If w and v are in V¥, then (W @ v)e V#

We define the set Vi recursively

.. 0 4;) belong

pefinition 2.3 = Let T, be the set of all generalized tre
yield fisafunction from T, into V¥ U{¢} (cis '

f(t) = 10), if D, = {0}, teT, ;

?

f(t)'—'f(l): irDt‘:‘{O:l}: IETU;
JO=(fU1)® ... D(f@)), if 1, -+»J€Diandj + 1¢D,, forteT,

and some je ¥ and @ 1s the column catenation operator @ if the ordered pairs (0 1)
..,(0,)) with O, 1, ... je D,, are in P, and @ is the row catenation operator § if t,he;
are in P, In other words, f(¢) is the string of labels of the leaf node of t, connected
by suitable column and Tow catenation operators (D,0 with parentheses introduced
wherever necessary as @ Is not associative. We call f(r) as the yield of the generzlized
tree £.

€S over an alphabet V. The
the empty word), defined as follows :

For instance, we note that in the case of the generalized trce ¢ ip fig. 1, the yield

f()=(46 C)® B.

We now define a rectangular array over an zlphabet ¥ and the operations of column
and row catenations of arrays.

Definition 2.4 : An array M over an alphabet V is of the form

an -i-aln
M= ... ageViorlgisml<j<sn (mnz=l)
dmy Qmn
b]_] PO blq C],l C1s
Lﬁt Ml = e and M2=
bpl & ¥ bpq crl .y cr. =

Where b, (1 < i<pl<j<@Pandey(1<i<r 1€j€9) (P,q,r.,s,>l) are in
V. be two given arrays. The column catenation of M, with M, is defined when
P=rand is given by

b]_]_ & E . bqu']_l veo (18
M1®M2= " *.w aﬂd
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the row catenation of M; with M, is defined when g = s and is given by
bll . e = blq

M]9M2= pl-.-bpq

We now introduce the Tree Adjunct Kolam Array model.

Definition 2.5 : A Tree Adjunct Kolam Array Grammar (TAKAG) is G = (V,LX.
C, A, L) where V and I are finite nonempty sets of symbols ; VN T = 6 Iisa
nonempty subset of V. The elements of ¥ — J, I and Z are called nonterminals, ipter-
mediates and terminals respectively. € and A are finite subscts of T, satisfying the
following conditions :

(i) If 1,€C, then f(t.)e/f U{e} and 7.(0) = S, where S is a distinguished symbol
of V—1

(i) ift,e A and 7,(0) =X, then XeV — 171 and f()e (iU { EXQI} o
It ® () @ (U} U {e).

C is called the set of generalized center trees ; (A, the set of generalized adjurction
trees and the elements of @ U A are called the generalized basic trees of G.

L = {Ls/A el}, where L, is a regular, CF or CS intermediale array language, gene
rated by A4, over 3 finite number of arrays over X, each of which has either a fixed
numbear of rows or a fixed number of columns. In other words, the rules of the gram-
mar generating the array language I 4 are like the rules of a Chomskian string grammar
except that the terminal symbols can be a finite number of arrays with the same number
of rows or the same number of columns.

In particular, a TAKAG Gis a(TA : R) KAG, (TA : CF) KAG or (TA : C5) KAG»f
according as (i) all the intermediate array languages are 1egular, (1) at least on¢ 0
them is CF but none of them is CS, (iii) at least one of them is CS.

Definition 2.6 : Let t, be a g:eileralized adjunction tree. Let reT, with peD; ?;2
t(p) =1,(0). Then t,is adjoinable to # at p and 7 [p, 1] is the generallzed
obtained from ¢, by adjoining ¢, at p, i.e., the generalized tiee

t{p,t = t\pU p.t, U(p.n. (t/p) where r €Dy,

te(r) = t,(0) and (r,¢,(r)) €t,, i.e., ris the address of that node whichisn thchi:'gt
of t, and which has label 7,(0). This operation is called adjunction. The bran¢ ing
the node petp, t,] leading to its successors, are either horizontal or vertical .396‘:&1 o
as the branches of the node 0 e?, leading.tq its successors are either horizon
vertical,
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we note that if f, 1s adjoinable to 7 at P, then ¢ [p,1)(p) = t(p) =t,(0) and
R | = — a an SO fﬂ

. i joinable to ¢ [p,¢,] at w :
. again adjomné Pslo) al p. We write ¢ [p,1,]* f .
adjoining e ¥ times, starting with ¢. P, 1" for the tree obtained by

we nO“f describe derivations in a TAKAG. In the first phase of derivations, giv
a generallzetil tree £, we say that ¢ derives a generalized tree ¢’ and we writ’ given
g 1 is obtained from 7 by adjunction such that ¢’ = ¢[p ) e 1=t
? 3

1 . for peD 9
f, adjoinable to fat p. =% is the reflexive, transitive closure P €L, and for some

i j : of =. In the fir
of derivations, we obtain generalized trees ffrom the generalized center trees rSth;hfﬁz
¢

opcrﬂﬁ"“ of adjunction usi_ng the generalized adjunction trees te- The tree set of G
biained in the first phase 1s 7(G) = {t e T,/for some 1,eC, t,=* 1}.

In the second phase of derivations, we consider only those generalized trees 1 e T(G)
obtained in the ﬁrst phase whose_ yields are words over intermediates connecied by @
g symbols and Wl.th parenthes_;es suitably introduced. fn the second phase of derivations’
an array M is said to be derived from f (1), for te T(G), if M is obtained by replaciné
sach intermediate A in f(¢) by elements of L,, subject to the conditions imposed by
the row and column catenation operators, the replacements starting from the inner-
nost parentheses and proceeding outwards. The replacements come to a dead erd
i the conditions for row or column catenation are not satisfied.

The Tree Adjunct Kolam Array Language (TAKAL) s L(G) ={MeZ**/M is
derived from some f(?), 1€ T(G)}

In particular, 2 TAKAL is a (TA : R) KAL, (TA : CF)KAL or (TA : CS)KAL,
it the TAKAG G generating it is a (TA :R)KAG, (TA : CF) XKAG or (TA : CS5)
KAG. We denote the family of (TA :X) KAL’s by (TA : X) KAL itself, for
Xe{R, CF, CS}.

We illustrate TAKAG with an example.

Example 2.2 : Let G =(V, L, C, &4, £) be a (TA:RKAG where V = {S, Si}
I={A1 B: C}! z =’{'! x} ?'Ca — {tﬂ}? d = {rﬂ}

t:rl ll £ =

c

£={L, La, L} where Ly = {(.)"/n 21), Ls = {()afn 21), Le = t}
¢ describe a sample derivation. In the first phase,
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Thus f(v;) = (40 (40 C) © B)) © B)

In the second phase f(v,) yields an array (fig. 2) on replacement of th e
A,B,C by elements from Ly, Ly, Lc tespectively, from the innermost P

€ intermedates
ntheses
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bject 1O conditions for column and row caterations. The (TA : R

» : " K
by G consists of rectangular arrays describing right tnargles of x's } KAL gereraind

4 # x
» xx
XXX

fG. 2. A right triangle of x’s.

3, Hierarchy and comparisons

[q this section, we exhibil a hierarchy of the families of TAKAL’s and compare them
w+ith other families of KAL’s.

Theorem 3.1 1 (TA : R) KAL ('i (TA : CF) KAL C (TA : CS)KAL.
+

proof - The inclusions follow from the definition of a TAKAL. The proper inclusions
can be seen as follows :

COHSidcr the (TA : CS) KAG Gl — ({S}! {A: B: C} D}# {-: x: +}1 {rc}: {t.}!
{Ls, Ls, Lc, Lp}) where

S s

i \\\\ A N VAN WA
D A .
| B 5 <
(i .
nd Ly = {(x)./n > 1] , Lp = {Ex;" [n 2 l}, Le ={(.)s/n 2 1},
(.)n "
Lp = {( + )sa/n 2 1}.

The array language generated by G, is a (TA - CS) KAL and this cannot be generated

by any (TA : CF) KAG, as the intermediate language L, is a CSL, I‘equiﬂﬁ;mtﬁt
sensitive rules to generate it. This proves that (TA : CF)KAL < (TA : CS) '

. (-)n ‘l bt i
By changing the intermediate language Ly in Gy s {(x)E. [n>1p, we can Obldm

ted by G,1s thena (TA : CF) KAL

2 (TA - -
(TA :CF) KAG G,. The array language gencr ) KAG. Thus (TA : R) KALE

nd this cannot be generated by any (TA:R
TA: CF) KAL,
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We now recall the definition of a CFKAG™?® and then prove that t

; . he :
CEKAL’s is properly included in the family of TAKAL’s. family of

Definition 3.1 : A Context-free Kolam Array Grammar (CFKAG) is G = Ly
£, 5) where ¥ and X are finite sets of symbols ; ¥ NE =4 and IC ¥ the ;Ie;é::’
e 2 S

of I, V—I and X are respectively called intermediates, nonterminals and termiggls
P is a finite set of rules of the form .

A= (B,® ... DB or A—> (B0 ...0B,),

AeV -1 BeV.fori=1,....,k. SeV —1TI1is the start symbol. For each 4 in
I, L, is a regular, CF or CS intermediate array language generated by 4, over 3 finite
number of arrays in Z*¥, each of which has the same number of rows or columns.

Derivations proceed as follows. In the first phase of derivations starting with the
start symbol S, rules are applied just as in a string CF grammar till all the nonter-
minals are replaced, introducing parenthcses wherever necessary, since the operators
@, 0 are not associative. Then, in the second phase of derivations, each intermediate
A in a string generated in the first phase i1s replaced by ¢lements from the inter-
mediate array language Lj subject to the conditions for row and columpn catenation
operators. The replacements start from the innermost parentheses and proceed
outwards. The derivation comes to a dead end if the condition for row or column
catenation 1s not satisfied.

The CF Kolam Array Language (CFKAL) generated by G is L(G) = {M€X**/S
=>eM}.

Definition 3-2: Let G=(V.ILZ, P, .£,S) be a CFKAG. Let Dg be the smallest
subset of T, such that (i) ¢ € Dg, (ii) if A € ¥, then {(0, A)} € D¢, (iii) if X = A4, O ...
@ Ade isarulein P, XeV— 1, A,eV fori=1,...,k @®e€{D,0} and t,€Ds, 1;,(0)
=Apj=1,...,k then t = {0, X)} U ( U* j.1,)€ Dg and the ordered pairs (0,1) ...,

=1
(0,)) with 0,1, ..., jin D, are in P, or P, according as @ is  or 0, Where P, Of
P, are finite subsets of D, X D,.

lf tf?‘DG, t(0) =X and f (1) = we V} U { ¢}, then we say that ¢ is the ge;.}eralizeil
derivation tree of X=gw. We write 7:X=gw. Let T(G)={t/t :S>c¥E £
Uid} T(G)is the set of all generalized sentential derivation trces of G i.e- trees

Whose roots arz labelled with S, the start symbol of G and whose leaf nodes are labelled
with terminal symbols of G.

Theorem 3.2 : For any CFKAG G, there is 2 TAKAG G, such that T (G)) = T (C:
and -L (G1) = L (G,) such that the generalized basic trees of G, satisfy the following
restrictions : if 7, is a generalized center tree of G, and 1, is a generalized adjunc.t- tre¢
of Gy, then (i) no nonterminal appears mofc than once in any path in fe and () 2°

nonterminal appears more than once in any path in #,, not counting the nontermind
labelling the root node of ¢,
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proof : Let V be the collection of nonterminals and Intermediates

cet of intermediates of G,. of G; and 1 be the

we describe the construction of the sets
follows : Define

C ={tceDgft::S=>gweltU{c and t, satisfies restriction () in

€ and 4 of the required TAKAG G, as

thcorem} the

(.)Q - U U‘(x where

XeV=I

Ax ={1,€Dgft, : X =6 (1) D (X) D (wy), w1, We € IT U {¢},

X € ¥V — I and 1, satisfies restriction (i) in the theorem} .
It is easy to see that T (G)) = T(G,) and L(G,) = L (G,).

Theorem 3.3 : For X =R, CF or CS, the family of (CE : X) KAL’s is properly
contained in the family of (TA : X)KAL’s.
Proof : The inclusion ir. this theorem follows from Theorem 3.2. For X = CF or
CS, proper inclusions in the theorem follow from examples given in Theorem 3.1 noting
that the array languages generated by G, and G, are respectively (CS : CS)KAL and
(CS :CF)KAL. For X = R. we can modify G, in Theorem 3.1 by changing L, as
{(.)sa/n 2 1}, L = {(x)sa/n = 1}, and obtaina (TA * R)KAG G; generating 2 (TA : R)
KAL. This array language is a (CS : R) KAL and this proves that (CF : R) KAL.
C (TA : R) KAL.

+

Theorem 3.4 : The family of (TA : X)KAL’s for X = R, CF or CS, is closed under
union, column and row catenations and column star and row star.

Proof : Closure under union is obvious. We outline the proof of closure under array
catenations.

If L, and L, are (TA : X)KAL’s generated respectively by (TA : X)KAG’s G, =
Vi I, Z, Cy, &y, L) and Gg = (Va, I, Z, Co. A, L), Vi N Vy=¢ and X' = R, CF or
CS, then a (TA : X)KAG G =(V, LE, €, &, £) can be formed to generate L&l
as follows :

V=V,UV,U{S), S¢V,UV,; I=hUlL; A=HUA; £=LUL For
heCy and 1,€C,, t =(0,S)U 1.1y U 2.5 is in €, such that the brgnches 0, 1),
(0,2) of ¢t are horizontal or vertical according as @ is O or 0. It is clear that

LG) =L, @ L,.
Closure under star can be proved in a similar manncr.

Finally, we define the notions of linear and one-sided lin_e,t}r TAK_AG"‘S8 anddcom]:;.:;
the families of TAKAL’s gcneratcd by them with the families of linear” an reg
KAL,
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Definition 3.3 : A generalized tree is linear iff at any depth there is atmogt one no
n-

terminal. A TAKAG is linear iff all of its basic trees are linear. The array lap
generated by a linear TAKAG 1is a linear TAKAL. Buage

Therorem 3.5 : For X =R, CF or CS, the family of (Linear : X) KAL is proper]
included in the family of (Linear TA : X) KAL. y
Proof : The theorem follows from Theorem 3.3 noting that the trees 7, ang {, in the
examples of Theorem 3.1 are, in fact, linear.

Definition 3.4 : A generalized tree 1s up-right linear iff it is linear ard at any depth
the nonterminal is (i) the left most symbol at that depth if the branch connecting it
to its predecessor is vertical and (i1) the right most symbol at that depth if the branch
connecting it to its predecessor is horizontal. We can similarly define generalized
up-left, down-right, down-left linear trees. A generalized tree is ore-sided lirear if it
is up-right or up-left or down-right or down-left linear. A TAKAG is one-sided lirezar
iff its basic trees are one-sided linear. The language generated by it is a one-sided
linear TAKAL.

Theorem 3.6 : For X =R, CF or CS, the family of (R - X)KAL 1is properly
included in the family of (one-sided linear TA : X) KAL.

Proof : The inclusion can be seen by noting that if L is a regular kolam array language
then it can be generated by either an up-right or up-left or down-right or down-leit
linear KAG and hence can be generated by a one-sided linear TAKAG.

To prove the proper inclusion for X = R, consider the one-sided linear TAKAG
G = ({Ss Sl! SE)! {A: B}s {-: x}# {re}: {t],: 1‘2}! {LA: Lﬂ} where

and Ly ={(.)s/n> 1}, Lg = {(x)as/n>1}. Clearly the array language generated by
this one-sided TAKAG cannot be generated by zny (R : R)KAG, since the languagc
generated in the first phase is non-regular?. Similerly, for the cases, X = CF of Cs-
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