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Abstract 

Tree Adjunct Kolam Array Grammars (TAKAG) are proposed to generate rectangular arrays of 
terminal symbols. These grammars have two phases of derivations as in kolam array grammars of 
Siromoney a at The notion of tree adjunction is made use of in their first phase of derivations. 
The  family of Tree Adjunct Kolam Array Languages (TAKAL) is shown to properly include the family 
of context-free kolam array languages. The family of TAKAL's is closed under the operations of 
union and array eatenations and star. The families of linear and regular kolam array languages are 
shown to be proper subfamilies of the families of linear and one-sided linear TAKAL's. 

Key words : Chornsky grammars, adjunct languages, array languages. 

1. Introduction 

There has been considerable interest in recent years in adapting the techniques and 
In uLilising and extending the existing results of formal language theory, for developing 
methods to study the problem of picture generation and description. Pioneering work 
in suggesting and applying a linguistic model for the solution of problems in picture 
ProcAsing has been done by Narasimhan 3 . Rosenfeld 4  has extensively investigated 
array grammars, whose rewriting rules allow the replacement of a subarray of a picture 
With another subarray. 

Siromoney et al° considered the two-dimensional analogs of strings to be rectangular 
arrays and extended the notion of catenation of strings to row and column catenations 
°I ..rectangular arrays. Siromoney et al° proposed a two-dimensional generathe model, 

d the Matrix grammar, to describe digitized rectangular arrays. This model is 
capable of generating a wide variety of interesting classes of pictures but it cannot 

a. 
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generate pictures which maintain a fixed proportion between the horizontal and th
e  vertical. 

Siromoney et al' introduced array models, which provide a more powerful aPProach 
to defining two-dimensional grammars for rpctangular array languages, necessitated  

as 

by the need to generate picture classes that cannot be generated by the t v, o_d i rn  
sional matrix models. The definitions of thew array models were motivated  y  b en-  the  
patterns found in kolam design, a folk art of India and hence we call the modele. 
kolam array grammars, in order to distinguish than from the array grammars of Rosen_ 
feld4 . These models involve two phases of derivations. The first phase consists of a  
finite set of horizontal or vertical CS, CF or regular rules which involve only the 
nonterminals and intermediates. The intermediates act as terminals of the first phase. 
During the first phase of derivations, derivations proceed making use of the rules, 
introducing parentheses at every stage to avoid ambiguity due to lack of associatisity 
of the column and row catenation operators. The resultant of the first phase will consist 
of strings of intermediates catenated together with row and column catenation ope- 
rators and with parentheses suitably introduced. The second phase consists of 
rules which generate languages, called intermediate array languages —one corresponding 
to eich intermediat e , with the intermediate as the start symbol. The intermediate 
array languages may be CS, CF or regulat over a finite number of arrays all of which 
consist of a fixed number of rows or a fixed number of columns of elements from the 
set of terminal symbols. Instead of enumerating the rules, the intermediate array 
languages are usually given. During the second phase of derivations, starting from 
the innermost parentheses, each intermediate is replaced by the corresponding inter- 
mediate array language subject to the conditions of row and column catenations. When 
all the intermediates are replaced, we arrive at the rectangular arrays of terminals. 

Joshi et al' introduced a new class of formal grammars, called string adjunct grammars, 
as an altern.ate means of describing the generation of formal languages. The rules of 

these grammars have a different formal character than the usual rewrite rules of phrase 
structure grammars of Chomskys. The only operation allowed on stringc in an adjunct 
grammar is the adjoining of a string to the left or right of a distinguished symbol in 
another string. Joshi et cz1 2  have extended the notion of adjunction in strings to trees 
and have studied tree adjunct grammars. In a tree adjunct grammar, each intermediate 
tree in a derivation is a sentential tree, i.e., the derivations proceed from a structured 
sentence to another structured sentence. Thus, 3 tree adjunct grammar is a grammar 
of structural descriptions. 

In formal language theory, it has been of interest to obtain and study new families 
of languages. In this paper, we incorporate the notion of tree adjunction in the first  

phase of derivation of a kolam array grammar7,9  and introduce Tree Adjunct K°13111  

Array grammars, generating rectangular arrays of terminal symbols. We compare th e  

family of Tree Adjunct Kolam Array Languages (TAKAL) with other families of kolam 

array languages. We prove that the family of TAICAL's includes properlY the 
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.1), of context-free KAL's. We also define linear and one-sided linear TAKAL's 
that they properly contain the families of linear and regular KAL's respec- ri nrove any r  We also establish closure of the family of TAKAL's under union and the array 

1
uons 	 mn. 01Y% of column and row catenations and colu 	and row star. opera 

Tree Adjunct Kolam Array Grammars 

i
n 

this  section/ we present the necessary definitions and introduce the Tree Adjunct 
Kown  Array Grammars (TAKAG). The readet is referred to Salomaas for standard 

° 
°tins I formal language theory, to Siromon.ey et a1° ' 7 ° for details regarding 
gays and kolarn array grammars and to Josh; et a/2  for the concepts of trees and 
Eijoiaifig of trees. 

Notation: Let er* be the free monoid generated by the set ar of all natural 
numbers, with the binary operation . and identity 0. Forp, q EN*, p < qiff there is 
weir such that q = p.r and p < qiff p < q and p q. 

We first informally describe the notion of a generalized tree. 

A generalized tree is a tree whose leaf nodes are labelled with elements of a nonempty 
tl IC V and interior nodes with elements of V 	%them V is a finite nonempty 
let of symbols. It is a rooted tree with the root at the 'top' node. The descendants 
of any node have a specific order. All the branches at a node, i.e., branches from a 
'ode to its immediate successors are either horizontal or ' vertical ' with reference 
to two fixed horizontal and vertical planes. 

Definition 2.1 : Let V be a finite set of symbols and I be a nonempty subset of V. 
kgeneralized tree t over V is a function from D, into V, where the domain A is a 
finite subset of art such that 

(i)if qeD t , p < q, then p e Dt 
ini if p.jeD t  for j e Of then p.1, p.2, ..., p.(j  

If q and p E Dt  with p = q 
Pain 	i =1, 2 ...,j are 

x D. Wesay that the 
imendants,q.i(i =1, 	, j) 
f(q, q.i), 	= 1, . 	j) are in 

.j and q. 	+ 1) it D t  where fear, then all the ordered 

in Ph or P,„ where Pk and P, are finite subsets of 

branches at the node ci join the node q with its 
and that the branches are horizontal (respy. vertical) 

P1, (respy. 

. 11  4.1e  elements of Dt  are called 'addresses of t. If (p, X) e t, then X is called the 
,  
of the node at the address p in t. We write t (p) X. 

.node q 	t is (i) a leaf node if for all nodes p of 1, we have q4Cp (ii) an 

it: node if q is not a leaf node. A node whose address is 0 is called the root 

We give an example to illustrate the notion of a generalized tree. 
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Example 2.1 : Let V = V, X, A, B, 	I = {A, B, C}. 

Figure 1 shows a generalized tree over V. The address and label of each node are give 
by the first and second components of the pair of elements marked at each node in 
fig. I. For instance, the node marked (0, S) has address 0 and label S. The fixed horizontal and vertical planes are XOZ and XOY. The branches at node 0 ar e  in  
Pb, i.e., horizontal and at 1, 1. 2 are in Pv , i.e., vertical. 

(015) 

1/41.1 .1 • C.,-) 

Re. 1. A generalized tree. 

Given a generalized tree t over V, the notions of (i) the subtree tfr at node p, 

(ii) the super-tree t\p at node p, (iii) p.t, (iv) the front t of t, (v) a path of t, 
can be defined for t, as done in the case of a tree2 . 

Notation : Let V be a finite set of symbols. A horizontal string or word over 1/ is 

of the form w1  = A 1 A 2 	Ak and a vertical word is of the form w2  = 	e Y, for 
A i  

Ak 

I = I . 	k. We write wi  as (A i  0 A2 0 ... 0 AO and wo as (A l  0 A 2 0 ... 0 A k). We  

use the symbols 0, 0 respy. to stand for horizontal and vertical catenations of letters 
of V. We use the symbol 0 to stand for either 0 or 0. We also write a horizontal 
word AA . . . 4 (n letters) as A" or or, and a vertical word A (n letters) as (4. 

A 

A 
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Definition 2.2 : Let V be a finite set of symbols. We define the set 11 recursively 
as follows : 

0) For A i  € V, i = 1, . • k, (At 0 A2 	• • . 	Ak) and (A, 0 A20 . . . 0 Ak) belong tovz for k 1. 

(10 If u and v are in V:, then (u 0 v) e vt, 

Definition 2.3 : Let Tv  be the set of all generalized trees over an alphabet 
V. The yield f is a function from T„ into v U c} (c is the empty word), defined as follows : 

f(t) = t a% if Dt  = (0), t e 71, ; 
f(t) = t (1), if Dt  = {0, 1}, t e T„ ; 

f(t) =(f011)) S 	e(f (ti i)), if I, 	e Di  and j + I * D, for t e T, 

	

and some j e ar and 	is the column catenation operator 0 if the ordered pairs (0, 1)v 

	

(0,j) with 0, 1, . 	DE , are in Ph  and c& is the row catenation operator 0 if they are  in  pr  In other words, f(t) is the string of labels of the leaf node of t, connected 
by suitable column and row catenation operators 0,0 with parentheses introduced 
wherever necessary as e is not associative. We call f(t) as the yield of the generalized 
tree t. 

For instance, we note that in the case of the generalized tree t ir fig. 1, the yield 
f(t) = (A0 C) C) B. 

We now define a rectangular array over an alphabet V and the opernions of column 
and row catenations of arrays. 

Definition 2.4 : An array M over an alphabet V is of the form 

an ... 
(frn, n 	1) 

• • • 

. . . 

Let M1  = and M2 = 

• 

Where b4, 	45. i p, 1 	j 	q) and cis  (1 < 	r, 1 	j s) (p, q, r, s, > 1) are in 
V, 

 

be two given arrays. The column catenation of M1  with M2 is defined when 
P r and is given by 

Mi 0 M2 = 
bit . . • buf ell 

• .• 

• • • 

and 

b  b c 	• • cm p1 . . • 	pa ra • 



• • 
Definition 2.0 : Let t o  be a generalized adjunction tree. Let 
t (p) = t o  (0). 	Then t o  is adjoinable to t at p and t [p, t el is 
obtained from t, by adjoining 1 0  at p, i.e., the generalized tree 

t fp, t al = t\p U P.1, U (p r). (11p) where r e D ta , 
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the row catenation of Mi  with M2 is defined when q = s and is given by 
but  • • • big 

• • • 

• • • 

A11 0 M2 = bp1 • • • kg 
C11 • • • Cis  

• • • 

• • • 

Cr].  • • • Cl.. 

We now introduce the Tree Adjunct Kolam Array model. 

Definition 2.5 : A Tre 
0, uk, .e) where V and 
nonempty subset of V. 
mediates and terminals 
following conditions : 
(i) If t e  e C, then f(t0) e 
of V— I.  

e Adjunct Kolam Array Grammar (TAKAG) is G 07,4E. 
E are finite nonernpty sets of symbols ; V n I = r; I is a 
The elements of V — I, I and S are called nonterminals, inter- 
respectively. e and LA are finite subsets of T, satisfying the 

U 6} and t c  (0) = S, where s is a distinguished symbol 

(ii) if t. e (A 	and 	f t, (0) = X, then XeV — I and foje (It u {(}) e(x)ei: or 
Ist ® (X) e (/: U 16}). 

C is called the set of generalized center trees ; (A, the set of generalized adjurction 
trees and the elements of C U (A are called the generalized basic trees of G. 

.e = {LA /A e I}, where LA is a regular, CF or CS intermediate array language, gene- 
rated by A, over a finite number of arrays over E, each of which has either a fixed 
numbtr of rows or a fixed number of columns. In other words, the rules of the gram- 
mar generating the array language LA are like the rules of a Chomskian stung grammar 
except that the terminal symbols can be a finite number of arrays with the same number 
of rows or the same number of columns. 

In particular, a TAKAG G is a (TA : 
according as (1) all the intermediate 
them is CF but none of them is CS, 

R) KAG, (TA : CF) KAG or (TA : CS) KAG, 
array languages are iegular, (ii) at least one of 

(iii) at least one of them is CS. 

t e To  with pent and 

the generalized tree 

the front 
t, (r) = t o  (0) and (r, t (r)) e t o , i.e., r is the address of that node which is in 

of  t o  and which has label t o  (0). This operation is called adjunction. The branchesi.of 
the node p e t [p, c1 leading to its successors are either horizontal or vertical cording 
as the branches of the node 0 e t, leading s tg its successors are either horizontal Qf 
vertical,  
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We note that if tg  is adjoinable to t at p, 
is  again adjoinable to t Ip, ta at p. We 
adjo ining 	n times, starting with t. 

then : [p, t al(p) = t (p) t (0) and so 7 4  write t [pill for the tree obtained by 

We  now describe derivations in a TAKAG. In the first phase of derivations, giNen 
a  generalized tree t, we say that t derives a generalized tree t' and we write t t' 
iff t' is obtained from t by adjunction such that e = r[p,ro, for p e Dt  and for some 

adjoinable to t at p. t.* is the reflexive, transitive closure of 	In the first phase 
of derivations, we obtsin generalized trees t from the generalized center trees te  by the 
operation of adjunction using the generalized adjunction trees l a. The tree set of G 
obtained in the first phase is T(G) = {t e T,/for some t,e e, te*/}. 

In  the second phase of derivations, we consider only those generalized trees I e (G) 
obtained in the first phase whose yields are words over intermediates connected by a 
0symbols and with parentheses suitably introduced. In the second phase of derivations, 

an array Af is said to be derived from 1(0, for I e T (G), if M is obtained by replacing 
each intermediate A in f (t) by elements of LA, subject to the conditions imposcd by 
the row and column catenation operators, the replacements starting from the inner- 
most parentheses and proceeding outwards. The replacements come to a dead erd 

if the conditions for row or column catenation are not satisfied. 

The Tree Adjunct Kolam Array Language (TAKAL) is L (G) = {M et" I M is 

derived from some f (t), is (G)). 

In particular, a TAKAL is a (TA : I?) KAL, (TA 
if the TAKAG G generating it is a (TA R) KAG, 

KAG. We denote the family of (TA : X) KAL's 

X e{R, CF, CS}. 

: CF) KAL or (TA : CS) KAL, 
(TA : CF) KAG or (TA : CS) 
by (TA : X) KAL itself, for 

We illustrate TAKAG with an example. 

Example 2.2 : Let G = (V, I, E, 0, LA, .e) be a (TA : .R) KAG where V = {S, 

E =i {.,x} ,0 =-- {}, k = {1.} 

{LA, LB, La where LA = {Olin )1), LB = {(x),In >, 1), Lc  = {x} 

We describe a sample derivation. In the first phase, 



AM 
a 

I 
I • 

S 

il 
• 
• 

li 

.6 N.11:4,  

-9te r-k- 	' o 

9,  

7-:-, -;_ re )) 1  [ 1.2. 1  tal Tz 

1M, 
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%.• 

c. 

Thus f (v2) = ((A 0 ((A 0 C) 0 B)) 0 B) 

In the second phase 1(v2) yields an array (fig. 2) on replacement of the intermediates 
A, B, C by elements from Lib LB, Lc  respectively, from the innermost parentheses 



to t 2  
toe % 

3 5 
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subject to conditions for colum n  and row caterations. The (TA : R) KAL gererated 
by G consists of rectangular arrays describing right triangles of x's. 

..x 

so , 2.  A right triangle of x's. 

3. Hierarchy and comparisons 

In this section, we exhibit a hierarchy of the families of TAKArs and compare them 
with other families of KAL's. 

Theorem 3.1: (TA : R) KAL C (TA CF) KAL C (TA : CS) KAL. 

Proof: The inclusions follow from the definition of a TAKAL. The proper inclLsions 
can be seen as follows : 

Consider the (TA : CS) KAG G = 	{A, B, C, 14, {., x, i-}, {4}, {z e}, 

{LA , LB, Lc, L}) where 

It). 
and LA = (X)n I n ? 1 

C L 

(X)on  
LB = 	1} , Lc = {03.in 1}, 

= 	)3aIn 	1 }. 

The array language generated by G1  is a (TA : CS) KAL and this cannot be generated 
by any (TA 	KAG, as the intermediate language LA is a CSL, requiring context 

sensitive rules to generate it. This proves that (TA : CF) KAL C (TA : CS) KAL. 

By changing the intermediate language LA in G1  as 	in )1} , we can obtain 

a (TA :CF)KAG G2. The array language generated by G2 is then a (TA : CE) KAL 

aad this cannot be generated by any (TA : 	
KAO. Thus (TA : R) KAL c 

: CF) KAL, 	

at 
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We now recall the definition of a CFKAG 70 9  and then prove that the family of CFKAL's is properly included in the family of TAKAL's. 

Definition 3.1 : A Context-free Kolam Array Grammar (CFKAG) is G =_- (y,1 E p 
se, 5) where V and I are finite sets of symbols ; V 11 	TS and / c V ; the elements' 
of I, V--1-  and E are respectively called intermediates, nonterminals and terminals. 
P is a finite set of rules of the form 

A -4 (Bi 	. . . 0 Bk) or A —+ (I31 0 . 0 Bk), 

AEI/—I, Bi el':  for i = I, 	k. SET 	/ is the start symbol. For each A in 
I, LA is a regular, CF or CS intermediate array language generated by A, over a  finite  
number of arrays in En, each of which has the same number of rows or columns. 

Derivations proceed as follows. In the first phase of derivations starting with the 
start symbol S. rules are applied just as in a string CF grammar till all the nonter- 
mina's are replaced, introducing parentheses wherever necessary, since the operators 
0, 0 are not associative. Then, in the second phase of derivations, each intermediate 
A in a string generated in the first phase is replaced by elements from the inter- 
mediate array language LA, subject to the conditions for row and column catenation 
operators. The replacements start from theY innermost parentheses and prcceed 
outwards. The derivation comes to a dead end if the condition for row or column 
catenation is not satisfied. 

The CF Kolam Array Language (CFKAL) generated by G is L, (G) = {Al etnIS 

Definition 3•2 : 	Let G = (V, 1,5, P, .e, S) be a CFKAG. 	Let 	DG be 	the smallest 
subset of T„ such that (i) # e DG, (ii) if A e V, then {0, AD e DG, 	(iii) if X --, Ale • • • 
C) Ak is a rule in P, XEV- I, Ai  e V for i = 1, . . ., k, 0 € {01,0} and t i  e DG )  t AO) 
= ili, i = 1 3  . • ., k, then t = {(0, X)} U( U k  j. t i) e DG and the ordered pairs (0,1) ..., 

5=1 
(04) with 0, 1, .. . , j in Di  are in Ph or P, according as 0 is ® or 0, where Pi or 
P, are finite subsets of Dt  X D. 

if t e DG, 1(0) = X and f 0) = we 11: U 	b then we say that t is the generalized 
derivation tree of X =4w. We write t : X c4 w. Let T (G) ={t/t : S4 W 
U {c}}. T (G) is the set of all generalized sentential derivation trees of G 	trees  
whose roots are labelled with S, the start symbol of G and whose leaf nodes are labelled 
with terminal symbols of G. 

Theorem 3.2 : For any CF1CAG Gb  there is a TAICAG G2 such that T (G1) = T 
and I, (G1 ) = L (G2) such that the generalized basic trees of G2 satisfy the following 
restrictions : if t e  is a generalized center tree of G2 and t 0  is a generalized adjunct. tree o  

of G21  then (i) no nonterminal appears more than once in any path in 
non.terminal appears more than once in any path in t., not counting the nontermina' 

t e  and (1 1).  n i  

labelling the root node of t.. 
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proof : Let V be the collection of nonterminals and intermediates of Gt  and I be the set of intermediates of G1 . 

We describe the construction of the sets C and uk of the required TAKAG G2 as follows : Define 
= ft, c DGit e  S 4 w 6 Pit U {4 and l e  satisfies restriction (1) in the 

theorem) 
=-- U tAx. where 

Xe V-1 
tik x  = fr e DGit a  : X = (Iv]) C) vo e (wo , wi , w, e fl U {c}, 

XE V 	/ and t o  satisfies restriction (ii) in the theorem) . 
It is easy to see that T (G) = T (G 2) and L(G 1) = L (G2). 

Theorem 3.3 : For X = R, CF or CS, the family of (CF : X) KAL's is properly 
contained in the family of (TA : X)KAL's. 

proof: The inclusion in this theorem follows from Theorem 3.2. For X = CF or 
CS, proper inclusions in the theorem follow from examples given in Theorem 3.1 noting 
that the array languages generated by G 1  and G2 are respectively (CS : CS)KAL and 
(CS : CF) KAL. For X = K we can modify Gi  in Theorem 3.1 by changing LA as 
{03,In 1}, LB = {(x)3,In 1), and obtain a (TA I?) KAG G3 generating a (TA : R) 
KAL. This array language is a (CS :R) KAL and this proves that (CF : R)KAL. 
C (TA : R) KAL. 

Theorem 3.4 : The family of (TA : X)KAL's for X = R, CF or CS, is closed under 
union, column and row catenations and column star and row star. 

Proof : Closure under union is obvious. We outline the proof of closure under array 
catenations. 

If Li  and L2 are (TA : A')KAL's generated respectively by (TA :X)KAG's G1  = 
z, taJ, 	A) and G2 = V2, 12,z, e2, a2, 22), V1  fl V2 =4  and X = R, CF or 

CS, then a (TA : X) KAG G = (V, I, Z, C, 	.,e) can be formed to generate L 1  e  L2 

as follows : 

V  = U V2 U {S}, S 111  U V2; i= 11u 4; 	= 	u 	; = se, U 4e2 . For 

116 C1  and /2  € e2, t = (0, S)u 1.11 U 2.t 2  is in C, such that the branches (0, 1), 

(0,2) of t are horizontal or vertical according as ® is C) or O. It is clear that 

L (G) = 0 L2* 

Closure under star can be proved in a similar manner. 

, Pi nallY,  we define the notions of linear and one-sided linear TAKAG's and compare 

ne families of TAKAL's generated by them with the families of linear' and regular 

KAL's, 
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Definition 3.3 : 	A generalized tree is linear if at any 

terminal. 	A TAICAG is linear iff all of its basic trees 
generated by a linear TAKAG is a linear TAICAL. 

depth there is atmost one non- 
are linear. The array language 

Therorem 3.5: For X = R, CF or CS, the family of (Linear : X) ICAL is properly  
included in the family of (Linear TA : X) KAL. 

Proof : 	The theorem follows from Theorem 3.3 noting that the trees t e  and t in theo 
examples of Theorem 3.1 are, in fact, linear. 

Definition 3.4 : A generalized tree is up-right linear if it is linear ard at any depth 
the nonterminal is (i) the left most symbol at that depth if the branch connecting it 
to its predecessor is vertical and (ii) the right most symbol at that depth if the branch 
connecting it to its predecessor is horizontal. We can similarly define generalized 
up-left, down-right, down-left linear trees. A generalized tree is one-sided linear if it 
is up-right or up-left or down-right or down-left linear. A TAICAG is one-sided lirear 
if its basic trees are one-sided linear. The language generated by it is a one-sided 
linear TAKAL. 

Theorem 3.6 : 	For 	X = R, 	CF or CS, 	the family of (R . X) !CAL 
included in the family of (one-sided linear TA : X) KAL. 

is properly 

Proof : The inclusion can be seen by noting that if L is a regular kolam array language 
then it can be generated by either an up-right or up-left or down-right or down-left 
linear KAG and hence can be generated by a one-sided linear TAKAG. 

To prove the proper inclusion for X = R, consider the one-sided linear TAKAG 
G = ({S, S i , S2), {A, B}, { . , x), {t.}, {tie , t2}, {LA , La} where 

and LA = {(.)./n I}, LB = {( x)/n 	Clearly the array language generated by 

this one-sided TAKAG cannot be generated by any (R : J KAG, since the language 
generated in the first phase is non-regular 2. Similarly, for the cases, X = CF or CS. 



TREE ADJUNCT KOLAM ARRAY LANGUAGES 	
289 

Acknowledgements 

The authors would like to thank Prof. Rani Siromoney and the referees for useful 
comments which improved the presentation of the paper. The first author acknow- 
ledges the kind encouragement of Prof. R. Narasimhan and Dr. R. K. Shya.masundar 
and the financial support from the UGC. 

References 

1. JOSHI, A. K., 
KOSARAJU, S. R. AND 

String adjunct grammars, Inf. Coutrol, 1972, 21, 93 -116. 

YAMADA, H. 

2. JOSH', A. K. AND Tree adjunct grammars, J. Comput. Sys. Sci., 1975, 10, 136-163. 
LEVY, L. S. 

3. NARASIN4HAN, R. Labelling schemata and syntactic description of pictures, Inf. 
Control, 1964, i , 151-179. 

4. RosENFELD, A. Array grammar normal forms, Inf. Control, 1973, 23, 173-182. 

5. SALOMAA, A. Formal languages, Academic Press, 1973. 

6. SIROMONEY, G., 
SIROMONEY, R. AND 

Abstract families of matrices and picture languages, 	Comput. 
Graph. Image Processing, 1972, 1, 284-307. 

KRITklIVASAN, K. 

7. SIROMONEY, G., 
SIROMONEY R. AND 

Picture languages with array rewriting rules, Inf.  Control, 1973, 
22, 447-470. 

KRITHIVASAN, K. 

8. SIROMONEY, R., 
SUBRAMANIAN, K. G. AND 

Control on kolam arrays, 14.  Control, 1976, 32, 272-275. 

RANGARAJAN, K. 

9. Stn3RmitamAN, K. G. 	Studies in array languages, Ph.D. Thesis, University of Madras, 

1979. 




