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Abstract 

In this paper, the spaces H.,  b (I) and its dual space j ,  b (1) are given. An extension of the genera- 
lized Meijer-Laplace transformation to a certain space of generalized functions (distributions) is given 
and a structure formula for a class of generalized Meijer-Laplace transformable generalized functions 
is obtained which shows that every element of the dual space of Ho, b (1) is the linear combination of 
the finite order distributional derivative of continuous functions. 
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1. Introduction 

Civil-and and Shilov', Koh? and Pandesig have investigated the representation of diffe- 
reat kinds of generalized functions. The aim of the present paper is to find a repre- 
sentation formula for the generalized Meijer-Laplace transformable generalized functions 

in I ft  ,b (0 space. 

The conventional generalized Meijer-Laplace transformation' F(s) of a suitably restric- 

ted function f (t) is given by 

F(s) = f 11
(1.1) 

co 
(I„, aw Am) 	f(t) dt 	• ::124-4 [St 	B„,), (p, 

0 

Where 87: [4 is Fox's H-function s  which is defined as Mellin-Barves type integral 

and studied in detail by Braaksma6 . 
291 



292 	 S. P. MALGONDE AND it K. SAxENA 

The generalized Meijer-Laplace transformation (1.1) has recently been extended 
to a class of generalized functions by Ma!fon& and Saxer a". The complex inversion 
formula for (1.1) is shown to be valid for the space of generalized functions 
H',b(f) where a and b are restricted in some way 7 . 

The notation and terminology will follow ref. 8. Unless otherwise stated, t and x 
will be understood to be real variables in I = (0, co). 

2. The testing function space Ha, b (I) 

Let C = min Re MgiBl i /anti), where ?7 (J = 1, ..., en) are complex numbers and 

Bi  (j = 1, ..., in) are positive numbers. 
+ 1 and b > 0. H0, 1, (I) is defined as 

= (0, co) such that 

7k (0)4  Ye, bp k OA SUP 
0<t< Co 

eat tl—a+k jyte ffr (0 < co (2.1) 

for each k = 0, 1, 2, ... and Dt  = 
dt 

The topology of 1-4,, b (f) is generated' by the sonf-r orms (ty,', 1:20 . 
converges to a function 0 in the topology of Htb b (0 if and only if 

A sequence ;0,1 

e-b t  t 1-4+k 	ç60 
su0 t  ) -+ eat rag dk 

IP 0  0) 

as n 	co, uniformly in t, for each k = 0, 1, 2, ... 

It turns out that 11,„ b  (I) is countably multinormed space. Ha, b (I) is complete and 
therefore Frechet space. The function 

Hm+14:  [St 	(1" aml Am) 	(0 < t < oo) 
('ins, B.)1 (p • Btn I ) 

for fixed s such that Res > 0 as a function of t belongs to 11„, b (I). Indeed by the 

analyticity of 114°1 [z} for z 0, it follows that 114°  [z] is smooth on 
0 < t < oo. 

By simple computation we have 

It [Cli.1. 1 St (rim  ± am ' Am)  11 
L 	Ons ,  Bs) ,  (/), 13m 

ofra  -Fe a., Am) 1 I enbt t  I -0 -t  k Dki  H971.01+ -02  4, [Si 1 	B.),(p, 	JJ 0 L'it co 

(0, 1), ('ins + ars, A") 	< 433  = sup 	t lea  Hm+la [St I (f.,  Bm ) , 03,  Bm 1 ), (k,1)J 
e 	,„.fisns+2 

act<co 

Let a be a fixed real number satisfying a c. c 
the collection of all cc-functions # (t) on 
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or  fixed $ such that Res > 0 and for each. k = 0, 1, 2, ..., by using the asymptotic 
behaviour of If-function s, Again if {0,441, converges in "al b (I) to zero, then for every 
on_negative integer k, 	0„ (1);„°:, converges to the zero function uniformly on every 

Compact subset of / = (0, co) as ii -÷ co. Thus we have shown that il a, b (/) is a test= 1  
jog function space on ! since the three conditions' are satisfied. The space Di  is con- 
tained in 11.1z, (I) and the topology of DI  is stronger than that induced on it by H 11b 
(!). Hence the restriction of any ffrli g . b  (I) to D5  is in frt . 

The dual space IC?)  (I) contains all distributions of compact sur port on / = (0, 00). 
Also regular distribution f corresponding to any locally integrable function f(x) 00 

defined over 1 2c (0, co) such that if I f (x)et' tat" dx < co is a member of 114:.11(I). 0 

3. The generalized Meijer-Laplace transformation 

we define the generalized Meijer- l aplace transformation of 	s a For f fratb (1))   
function F(s) obtained by applying f on the kernel 

Hea+13°  [st 	
(th„ 	a„,, A.) 1 ; Le.  

01,04+1 	Bm) ,  (p, fim 41)..1 

F(s) /f(t) 	
(q in  + am, Am) 1\, 

for E , Hm42.0
„„..+1 [st Fos , 	

ct
pm), (/), B 1)..j 

Cs : Res > 0). 

(3: 1) 

4. The space fier , b  (1) 

For fixed real values of a and b > 0, a smooth and 

defined on I = (0, co) is said to be in the space Jt ,) 

order properties: 

as t -+ 0 

complex-valued function 00) 

(I) if it satisfies the following 

= 0(1), 
(4.1) 

for each k = 0, 1, 2, ... 

Lemma 1 : e11,b(J) is a Linear subspace of H1, ) (1) where b > 0. 

 

Proof : The proof is simple and hence omitted. 

Lemma 2 : For 	e ii„, b  (I) and f 	.b  (0 
there exist a positive constant C and a 

Roo-negative integer q such that 

Hse--2 

max 
(t4e-1-1 

x)---4  Dke  0 (x) dx 
0 

(4.2) 
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Proof : For each fE 1-C .1, (I) and in view of boundedness property of generalized 

functions, we have a positive constant C 1  and a non-negative integer q such that 

I ( 	) 1 ■ Cl• max Yk (0) 
oCk< a 

C1 . max 	sup j eat  Xla+k  Dk, 0 (x) 
- 	 o:c..kCa o<s<00 

	

C1 . max 	sup I e- bri x1-0  xk D:çô (x) 
0c_ksq 0<a<co 

Further front elementary calculus we have 

e-" x1-.1  _et Bo: g$ (x) =-- f D I V" 	tk 	(01 1  dt 
• 

Combining (I) and (II) we obtain 
f 

	

1 ( fsb)1( Cr  max 	sup 	If D e  [e-b t 	i k  D'et  # 	dt 
0<kCa OCPC00 0 

S 

	

C C1. max 	sup 	I 5  A [e-b t 	ki D 5 0) di 
0(k-C.a 00<00 0 

+ 	[e—Dt 	 Die +I ØQ)] dt 0 

	

C CI  max 	sup [IS Do  [r"0-6-./. ge Ott) di 
oCktca °Cs< 00 	o 	ic 

+ ii e-Dt t he" M+1  (t) dt ]. 
1_ • 	 0 

Now consider 

	

Dt  [r id  t" -'] Ditg 	dt 
0 

re I e-" xi-tf t  DI; (x) 	
0 

er" tt -a k  Dito 40 (1) dt 

• 

	

4  1 e—D xi—cs k 	(x) + 	e—DO 	f k M+1 (15 	dt 1. 

Therefore 

ICJ 	 max 	sup [ 1 e-br x1-" k  D.k  (4 
0(k<0 0<e<tX) 

I 
+ Ii e-b i t 1-114 k  D it+1  0 (t) dt I ± I S e-k ` tia+i Dr (t) dt 

6 	 • 

let, I  C. CI . max 	sup [ I e-b2 	k 	(x) + 2 1 	
DA+1 	dt I] 

• skrz.-- q 0<acco 	 • 

	

C1 . max sup 	ch Xl—g" k  .0 (x) 
ocksa •<e<co 
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co 

+ 2 sup f 
0<.<00 0 

ro 	M 4-1  0 (1) 1 dt. 

But for 0 e 11,46  (/) C H a, 6( 1) we have 

sup I eebi  t at e  D (x) I < co (= M, say) 
• <.•<00 

co) 
I ( .1, ) 	C1 . max EM + 2f e-b• x1-- °4- 4  D:+ 1  (x) I (Ix] 

	

04/1 1CQ 	 0 

< C,. max [(p + 2) I ch tat k li; +1  0 (x)I dx], 
°cite 	0 

where 
to 

M = p I I e-s" 	a  gen (x) dx 
• 

—ba 1-14 k D:+1  # (X) dx < max Si 	x (lace • 
co 

" Xk—e  I)! # (X) I dx• (C max J 
ick.c.0+1 0 

00 
:. I CI; 0) I C. C. max fl  e's zit' 	(x) dx 

ick<0+1 0 

which proves Lemma 2. 

Now we are in a position to state and prove the main representation formula. 

Theorem : Let I s H: 96 (1) and 0 e H r, , (I), then there exist N-bounded measurable 

functions igt  (x), 1 C k C q + 1, defined on (0, oo) such that 

0+1 
= S (g(x), es' x" 	(x)). 

Proof : On account of Lemma 2, we have 
co 

(f, ) 	C. max 	rbs 	nx) I dx 
iske+1 0 

 

(4.3) 

r 

 

C c. max 11 cc" 	D: 0 (x) L i (e, c0) 
icke+1 

 

(4.4) 

Where L 1  (0, co) is the space of all equivalence classes of Lebesgue integrable func- 
tions on (0, 0o) whose topology is defined through the norm 

lly (x)L(o,&=7kV(X)I d1<00, 	e 140, co). 
	 (4.5) 

Ine result (4.4) defines a linear one-to-one and into mapping 

: 11,40 -* 	, c'4 
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as 

95 	raiz xk-° Dka  tfi (x), I 	k 	q + 1. 

Since lia, b (0 is a linear subspace of L 1 (0, co), (4.4) further states that f is cbntinuotic 
linear functional °  on en:0 M in the topology induced on it by L 1 (0, oo). Hence by 
Hahn-Banach theorem", f can be extended as a continuous linear functional in the 

whole of L, (0, oo). But the conjugate of L 1 (0, oo) is L.(0, co). Therefore on 
account of Riesz-representation theorem's° there exist N-bounded measurable functiors 

sit, (x) e L c., (0, op), 1 -, k . q + 1 such that 

c+1 
= E (gk(x), e— te ,4:ta  D: 0 (x)) 

= 
	 (4.6) 

k1  

This completes the proof. 

Corollary : Let f e Nj b (I) and # e D„ the space of smooth functions with compact 
support on = (0, oe). Then there exist N-bounded mea-surable functions St  (x) 
L. (0, oo), 1 	k 	q + 1 such that • 

0+1 
(1 	= ( 	(4— 	Dk 	e's  tx -S gh (t) dt., flx)) 	 (4.7) 

Proof : Let 95  e D,. Then in view of the Theorem, there exist N-bounded measurthle 
functions gt (x) ELes (0, CO), 1 	k j q + 1 satisfying the relation 

q+1 
(f,#)= ( 	 ( f e-" tk --* grk (t) dt, D: 0). 

kw]. 	0 

Again, since M 	e DI  and the regular distribution corresponding to the integral 
appearing in (4.7) belongs to Di', the relation (4.7) follows immediately using the 
rules of distributional differentiation". 

Note : The result (4.7) can be 

"If f e H. . Then I is 

put in Koh's form, viz., 

equal to a finite sum 

d 
C le a* xa-1  F, (x) F i (x)} 

1-u• 

where the F, (x) are continuous on (0, cc) and the P I  (x) are polynomials of degree q. 

In a view of the general nature of the kernel involved in (1. 1), we base been able to 
extend the representation formulae of the conventional integral tramsfoi mations .like 
Meijer-Laplace transformation 4  and the other generalizations of Laplace transformation s  

given by Varma and Meijer to generalized functions. 
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