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Abstract 

In a lintar iyitern perturbed by Gaussian noise, the state can be estimated from the observations by 
using K3.1mtn filter. However, if a fault develops in the system at any random time, the Kalman 
filter will not be able to track the fault and large errors will develop in the state estimate. Conse- 
quently, the innovations process will no longer be white. If the random time of occurrence is 
coaiidered as a state then the system of state equations become nonlinear. In this paper, the Fujisaki, 
Killianpur arid Kuria& nonlinear filtering results have been applied to obtain a representation for 
the stage estimite given the observations. The non-white nature of the innovations process has bum 
m3delled as an autoregressive process and an adaptive scheme has been proposed to improvt the 
filter performanoe 

Key words : Fault detection, nonlinear filter, adaptive filter. 

I. Introduction 

In a linear system perturbed by Gaussian noise the state can be estimated from the 
observations by using the Kalraan filter. However, if a fault develops in the systt.m 
at any random time. the Kalman filter will not be able to track the fault and large 
errors will thvelop in the state estimate. To limit these large errors the Kalman filtcr 
has to be reparametized for which we should have the estimates of the time ar_d 
amount of fault. Thus, the information from the observations has to be uscd in 
both tracking the states and for fault detection. For a certain class of fault dt,tt.ce 
tion problems the nonlinear filtering theory developed by Fujisaki a all can be 

used. The white noise nature of the innovations process undo' optimal cor_ditions is 

utilized for an adaptive same to improve on the Kalman filter performance. 

2. Statement of the .problem 

The problem will be formulated as a scalar, the generalization 
straightforward. 

to a vector caf_e bting 
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The state process {X, t 6 T} is given by an Ito stochastic differential equatio n  

dX, fg it dt 	g, 	cr, re, 	 (1) 

where ft  and gt  are functions of time (not random processes) satisfying the conditi on, 

$4 

5 	Ifs ( dt < oo 
ter 

f gf dt < co 
tit  

and {W,, Ea) is a Brownian motion process with parameter or:. X0  is an arbitary  
initial condition random variable independent of W, and T is the time .interval (0, 00) .  

The observation process {Y,, ten is given by another Ito stochastic differential 
equation 

dY, = h,r,dt + dV, Sc)", Yo  = 0 	 (3) 

where h, is again a function of time satisfying the condition 

I h: (It < 03 	 (4) 
se T 

and 071 , t 6 T1 is another Brownian motion process with parameter c, independent 
of both {W„ t 6 7} and X0. 

113th 	the 	state 	process 	{X„ 	t c T) and the observation process 	{Y,, HT} are 
measurable with respect to the ow-algebra 93 1  defined by 

43 1 	{X0 , X„ Y„ Z„ s t, t T) 	 (5) 

Further let 17, be the a-algebra generated by the observations, VIZ., 

Ft  = a (Y,, sCt, t 6 7) 	 I. 	 (6) 

In a general fault problem concerning eqns. (1) and (3), a fault occurs at somt 
random time 'I such that 

L (i) the state noise parameter gt  changes, 	- : 
(ii) the state parameter f • changes, 	 • , • 

4 . 	S. (iii) there is an additive bias in the observation equation, ;• 
(iv) there is an additive bias in the state equation, • 	

(v) the observation gain parameter h, changes, 

(vi) there is an increase in the state noise W„ 

(vii) there is an increase in the observation noise 	Vt . 

Among these different fault problems we shall be concerned with (i). 
dealt with case (ii) and Chiens has treated case (iii). 

Davis' has  

(2) 
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3 •  Review of nonlinear filtering results 

We shall first state the Doleans-Dade-Meyer extension to the Ito rule. The proof is 
given in (4). 

Let {Z. Fe, I T) be a gimeral semi martingale (a sum of a martingale anda pro. 
cos of bounded variation). Let w(t,x, y) be a continuous function having colitinucus 
partial derivatives  

dig aVi 	aw Pig ax ax" ay ' 

	

The scalar process Z, VI 	X„ Ys) admits of a stochastic differential equation given 
by 

•

dZ i  a  vbf (t, Xi , Ye) 	(t, X,_, Y,_) + avl(t P xai " 	dt 

aw  X,-, (t X  Y 
 dY dX, + 	' " 	, 

	

8.x 	 8y 

vont, x,-, 	dowl, Ain t +. 

pi Int,  
+ 	Xt_,_ Yt4 d  m y , A,g,) ay g 

a 2 yr Xg— t  IPA d( 	itic)  
at ay • - 

av (t, Xt-2J1-1 AX, 
dx 

dig (t,y,7 ,_ _Yir) A  ye 	 (7) ay 

where AG, Ng, arc Vic continuous Frmartingales associated with the semi-ma/lit:gales 
X„ Y„ ( AG, MI ), is the quadratic variance process associated with the martingale 
All, M;70, M ) t is the quadratic covariance process associatcd with the maniEgEle 

Afb Agn AX„ AY, are the amounts of jump of X„ Y, at t and Xt., Yt_ are the 

left hand limits at t of X,, 

The special case of the above rule relevent to our situation is whcn it/ (t, X I, Ys) 

Xil's where X, and irg are semi-martingales. In this case eqn. (7) can be rewritten 
as 

d (X, yi) = y, Afit- ire. yr.dX, + XrdY, + d(Mefc , An.), + X, Y, 

For details si e ref. 4. 
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We shall now state the nonlinear filtering result' for the state process  
given by 

eqn. (1) and the observation process given by eqn. (3). For details see ref. 4. 

Let {0, F, P} be a complete probability space 
satisfy eqns. (1) and (3) respectively. Then the 
stochastic differential equation 

and let {kb  t T} and {}71 , 6 T 
filtered estimate X, satisfies the  

ef, =-- f e ic,dt +[En (id It s  + c4t ( Af, V ),1-clr idv,, 1 6 T 

where is  = 	Xi error in the estimate 

g, dW, 

and v, the innovations process is given by 

dv, = dY, 	dt t T 

(9) 

(10) 

Equation (9) is written for the case when W is not independent of V. Since W1  and 
V, are assumed independent in eqns. (1) and (3), eqn. (9) can be rewritten as 

=f 	dt + EF 1 	h, dv, t T 	 (11) 
a: 

Equation (9) or (10) is only a representation for the nonlinear filtering problcm. 

We can see from the equations that the first conditional moment X, depends upon 

the second conditional moment XI. Similarly, thc equation for the second conditioral 
moment will depend upon the third conditional moment and so on. Therefore, 
doled form solutions, in general, are not possible. Suitable approximations have to 
be made so that closed form solutions can be obtained. 

4. Fault detection with change in state noise parameter, g 

The state process is given by the stochastic differential equation 

(12) dX, fX, dt + g dW,, t 6 T, X0  

and the observation process is given by 

dY, hX,dt + 	6 T, Yo  = 0 

where the parameters f, g, h are constants and the Brownian motion 
given by c and GI . We shall also assume as in eqns. (1) and (3), 
are independent. The asalgebras it, and F, are defined as before. 

(13) 

parameters arc  
W„ v, and X. 

L In many inertial navigation systems the sttae noise parameter g changes suddcra 
atm to some failure in the system. 	A fault, therefore, occurs at some random time, 1.1 



FAULT DETECTION BY ADAPTIVE NONLINEAR FILTERING 	
253 

so that the state noise parameter, g, changes from g to g + b. The random time z 
is indvendent of As., Wt, and Vs and {r ‘. 0 is measurable with respect to cBt. 

As a consequence of the fault, the state process (12) changes to 

= frith + (g + b) dW, t > r, Et, sr € 	 (14) 

Under norml operating conditions the state estimate will be given by the Kalman 
filter equations. The sudden change in the state noise parameter will induce large 
errors since the Kalman filter cannot track sudden changes. In order to reparametize 
the Kalm in filter equations, we should know the estimates of the time of fault, r, 
and the magnitude of the fault, b. 

'In order to characterize the fault, we shall introduce a cg s- measurable indicator fume 
tion, Z, defined by 

te?) 

Lo t< T 
	 (15) 

Using eqn. (15), eqns. (12) and (14) can be combined to yield 
• 

thrt  = fr, dt (g + b Z e) dW t 67; I. 

We have to determine the stochastic differential equation satisfied by the new state 
variable Z. We shall assume that the process of fault occurrence is a Poisson process 
N„ with parant:ter A independent of PI, and V,. Hence the process N1—At is a Poisson 
martingale. Zr, is a Poisson process stopped at the first fault occurrence r. Sirce a 

stopped martingale is aLso a martingale, we have Z 	A r) is 431-martingale, where 

(t A r) represents (min (4 er). Or, 

Z — AO A r) = M t  t T 
	

(17) 

where Aft  is the discontinuous cgrn2artingale associated with the stopped Poisson 
process Z. However, the quantity (t A r) can be represented by 

— Zs) ds :T (18) 

as shown below. 

  

Case (i) t < r. 

Since s is also less than r, we have Z. a 0 and hence 

t A air = f ds 	t 
• 

Cage 

Here f (1 — ZOds can be split as 
• 

I 
• • 
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In the first integral in the right hand side s < r and Z, = 0 and in the second i nk.  

gral s > r and Z, = 1. Hence 

í A rricis+ 0 = T. 
• 

SuSitituting eqn. (18) into eqn. (17) the stochastic differential equation for Z, is given  
by 

dZ = AO — Zjdt dM, t T, Z 0 	 (19) 

Due to the occurrence of fault at a random time r, the state processes are give n  by  
eqns. (16) and (19) which are renumbered below. 

dr, ni fX, dt + (4g + bZ,) dW,, t c T, X. 

dZ = AO — Z) dt + dl ti e 	t c T, Z, or 0 

With the observation process given by eqn. (13) 

dY, hX, dr + dV, ic T 

(20 a) 

(20 b) 

(16) 

Using the nonlinear filtering formula eqn. (9) with g  + bZ,) dt dM, we can write 

the filter equations for the estimates 	and 2,. 

die, = fi 	
h 

g  d r + 	Px,dv, t < st, X4, 	 (21a) 

n A (1 a 2,) dr + 	Pry  dv, t< Z. = 0 
	

(210 

where we have defined 

frit it  EF1  

Pxy = E (1121) 

In &riving cqns. 21 we have also used the fact that W, VI, and r are independent 
and M, is a discontinuous martingale and hence the quadratic covariance processes 

V)1  and (M, V), are zero.  

It is interesting to note that the filter cqn. (21 a) is the 
given by (12). Thus, large errors in the estimate manifest 
of the fault. 

same for the state process 
itself after the occurrerce 

The unknown quantities in eqns. (21) are the second conditional moments fix, and  
Pzz ,• To de,htermine them we need the stochastic differential equation for the propaPA 
tion of the error, mkt, 
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Subtracting cqn :  20(a) we obtain 

dX = fk.tdi ± -aft fix:  dy e 	+ bZ i) 
	I . • 	

• 	

(22) 

The innovations process v, (eqn. 10) can. also be written as 
a. 

dvt  = h (Aftt 	Ale) dt + dV. = 	h a,ke dt + 

vitich when substituted into eqn. (22) yields 
r 	. 	. 

11 1 _a: *Lk 	h = 	— 	Ace riedV t  + 	Pxe dV — (g + bZi) di of t  a. 	 a: 

• 

(23) 

(24) 

thing Ito-Doleans-Dade-Meyer rule (eqn. 8) for di7 yields 

[ 2d-x) . a  210 	r ta 	
a

h 2  2  
et 	a 	ran + 	Pitt (g + bZ 1 )2 a:]dt 

+ -2:-h  dir 	dr/ — 	+ bZ, )dW, 0: 	xt (25) 

Applying the nonlinear filtering eqn. (9) and using the relation X = Z. we obtain 

dist" = (2/fix t  — 	+ [g2  + (2gb + b 2) 44}} dt 

Ix 	j 
S IS Cat I < T 9  Cr. 	 (26 a) 

where we have defined 

i 
sxle = EPt At. 

In an exattly analogous manner we can write the filter equation for Az,. 

hi be pa 	 h 
dPxzt  =[(1 — 1) P xze 0.—:  A XII XV] at + 	dt it t < 	PXZo 	 (26 b) 

where we have defined 

sea = En XjZ. 	 . 	 . 

We can again find filter equations of se, and sez , thus yielding an expanding set of 
egontions as mentioned earlier. To Lamm a closed set of equations cornsponding to 
a sub-optimal filter we shall use eqns. 21 and 26 as the filter equations and use an 
adaptive algorithm, as described in the next section, to derive the terms se, and s irtzt  to 

zero. We can substitute an ape  riori estimatz. for b in eqn. 26(a). 

• 
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From eqns. 21 (b) and 26 (b) we are in a position to estimate the time of faults 
By 

definition, 

Et, = EPt z P(f r Fs) 	 (27) 

FUnce Z is a probability function conditioned on the observations. 

We now define a threshold function y 6[0, 11, the value of which can lxs set by some  
criterion of performance linlo:d to the probabilities of false and missed ala rms. 
Having set the threshold value 7, the estimated time of failure, ar, is obtained from 

f 	inf{Z 7} 	 (28) 

After the occurrence of the fault the state equations can lx written as 

dX, •= fr,dt + (g + b) (IT*, t ) r, Air (29a) 

A - 0 I> r, b (29b) 

where we have introduced a new state b and omitted the state Z • 

Using the nonlinear filtering result (eqn. 9) and the Ito-Dokans-Dade-Meyer rule 
(eqa. 8) we can write the filter equations. 

dig a  fit dt + Ta  extdv, t 

Ar 0 t  9 g 	 (30 b) 

where the conditional error covariances 

lext 	P 	PX64 = Enimart ebs are given by 

dikv [2fin "sr: 	10t ± fin] di 

+ 	sx*, dv, (3 1 a) 

h A  ftha = [ fPX bl IP  (77 PziPrbt]dt + s iebi dv, t> ginf at  (31b) 

I The conditional covariance matrix PH  = 	in is again given by 

- hl a dr b, =[— P 2  idt + 0j SndYt 
	

f, Prp xes a, 
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where we have defined 

7  s, = En ill, sebt E" X7; e  

and 

sxbi, = EFtig2  

W‘: can now apply the adiptive algorithm to be &scribed in the next section to yield 
a closed form sub-optimll filter. 

Note 	There is no stochastic differential equation comsponding to iz, in the set of 
eqns. 26 because 	= z, whereas we do have a stochastic differential equation for 
A, since /4 # b,. 

5. Summary of sub-optimal filter scheme 

The system equations before fault are 

Al, nfX,dt + (g + bZ,) dri", 	t< tX0  

at ft —Z)dt + dM, 	t< t Z. 0 

dY, nhX 1 dt + dV, 	 t T Y. r 0 
	

(32) 

The corresponding filter equations are 
' 

di', = ji,dt 	h-f  Px,dv, t < le; a   

4 	A (1 — 2,) dt + fi xz,dv, t < 	= 0 

'S 

(fix, 	t2fiesx , 	PL 4- a t: [g2  (2gb + bt) a]} dt 

+s 'Avg, I < *fy a: I  

ditxz, =[(1 — itxzi —1ci; P xtPxzsidt + ;.2-11  slezdv, < 41 ) Afro 

The system equitiorts after the occurrence of fault are 

(33) 

dX, = at, dt + (g + b) dWe 

db, 	0 

t?--̀ 	Xr  
(34) 

t> b 
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• 

The corresponding filter equations are 

= t  di + 	fir  ((vs, I 	k; 

4=1; fixte 	t>, it:. is 

h 2  a 
dPx, = If Px,, 	Pic t + (71: Rg LY Pit] 	dt 

a; 

sxs, dv„ 
a, 

h 2  
dasPint  P = [ PX1. 	Px. I'm] + —

h 
s dv, 	9, xbt 

c v  
2 X bt 

elf  tog =[ —1-10; Ph.] dt + 	cxest dv t or>.r. 	fra bf- (35) 

In the next section, we shall describe an adaptive scheme to obtain better estimates 
of the Kalman filter cqns. (33) and (35). 

6. Adaptive algorithm 

Different types of adaptive algorithms for Kalman filters have been described by 
Mehra'. We shall illustrate an adaptive algorithm for the problem under discussion. 
Let the signal process {X„ t 671 be given by 

dr, = fX, dt + g (X,) car, 	 (30 

and the observation process { Y„ t 7} by 

dY, = hr,dt + (We 
	

(37) 

where l and It are constants and the asalgebras Pin  t 71 and {Fs , t 6 1) are as 
defined previously. 

The optimal filter equations are 

ire  =fX,dt + 	t ET, ic 	 (38) a, 

h2 	
(39) dPa  = [2fP, — 	+ or: 	g 2  (Xs)] dt + save  ET, A a- , 	 (7, 
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where 

= Pik s, = Et 

co and g4; ar,t the variance parameters associated with the Brownian motion processes 
r pc) end {W,) respectively and v, is the innovations process given by 

dv, = di', 	
(40) 

We can again write an optimal filter equation for s, by the now familiar method 
I of writing the stochastic diffrential equation for &Ks using the Ito-Dolians-Dade- 
' Mortis rule and then using the nonlinear filtering equation. Thus, 

3ht  s, {Vs, 	a
+ 30: Pit [ 	(X,)1} di + T  ji [EFt 	— 312] dv, 

(41) 

, Several approximation schemes are in existence for eqn. 39 or 41. We can set 
e (X,) 	(k) (Extended Kalman) in which case s, = 0. A second approxi-• 

mation (Jazwinskii) is to set 

g2  (X,) = g2 (j'?) + [ Ed (k,) + g (k%  ,) g„ (*)] 

and s, =0. 

- 
Fe A third approximation (Gran and Kozin 7) is to set El', X: = 3Pat and expand g2  (X,) 

to any suitable order. The essential feature of the above schemes is that orce the 
approximations are made the gain K. in eqn. 38 is fixed. The resulting filters perform 
adequitely in certain ranges of state space and system parameters. In certain other 
case they may diverge. 

In the adaptive filtering algorithm to be described below the gain K, is varied by 
feeding back the present information about the filter. • This information is obtained 
from the innovations process which is a Brownian motion process under optimal condi- 
tions, having the sant statistics 4  as the observation noise: process {1 1,}. With a sub. 

optimal filter, X, is no longer an optimal estimate and hence the innovations process i s  

no longer a Brownian motion. The non-Brownian motion nature of the innovation 

process is utilized to vary the gain Ke. It is expected that the subsoptiaml filter may 
not be too far away from the optimal filter and as a consequence the sub-optimal 
innovations process v, can be modelled by a simple first order autoregressive process 

dv; = a, vs, dr + 	 (42) 

Where a, is a parameter which is varying slowly with respect to time. If T is the 

, time interval of estimation then a, may be considered to be a constant in the time 

i nterval T 
and can be estimated by matching vs, as closely as possible to the observed 
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innovations process v, in the m.-,an square sense in the time interval [to, t o +1. 
If v; is the solution to the differential equation (42) given by 

v 't  = eat (S-40)19:0 	f eat (tA )  dVg 
S. (43) 

then act„, the estimate of ar  is obtained from 

at = arg 
{

min —1  E 
a i• 

t-4-7 

111  (vi 	11) :  rg 
• 

(44) 

If we treat s, in eqn. (39) as the control then setting it to any given value contio1. 

K, in eq n. (38) and thus Al, which in turn produces an innovations process v e  (eqn. 40) 
which again can be m)delled by an 04  (eqrt. (42)). However, the exact rtlationship 
between a, and s, is unknown and hence we can model cti  by 

as, = 4a; 	Ak (3 - 	 4 	 (45) 

where A, k, 	paramters to be determined using the mean square error criterion, 
We have already stated that at is slowly varying with respect to time and hence the 
eitimItion interval 7; of eqn. (45) is an integral multiple of T the estimation interval 

a a a 
of eqn. (42). Thus the estimates A, k, s, are obtained from 

a A '+7.
k, 	arg t m, ' 

Ar
I a f 	aty 	 (46) 

ji Se 	I 

Having obtained A, k, s,, we can solve eqn. (45) for the new control s from the cacti - 
filar), that ct; rau:t be driven to zero in the tirae interval T„ i.e., sa: +n, = 0. This condi- 
tion yields the result 

eAr. att. 
5 = -' 	

(1 
: 	 (47) 
• i f  

The estinntion intervals T and T. must be properly chosen. 

The sequence of operations for the algorithm can be given as follows and shown 
in fig. 1. 

I. Caoose the observation interval T and the update interval 	(z, is an integral 
multiple of 7). 

2. Initialim the procedure by choosing a 'suitable ' value for sa  in cqn. 39 for the  
initial time t. 

3. Observe and record the resulting innovations process v, from the initial time t' 
to the tini t0  + 77, 	t1 . Estimate the coefficient a, from eqn. (44) for. each  
ob;ervation interval T 6 T,. 	 . ' 
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Choose observa tion 
interval et and update 
interval To  

Initial time )  t o  
A 

Initial gain, s 

Observe V t  from 
t o  to to+ To = s t i  

A 
Estimate 0C T  for each 

observation interval et 

A AA A 
Estimate A i k,s 0  

during the update. 
interval To  

Compute new value 

of s to drive 0C (to-I- To ) 
to 0 

Update initial 
time to t i  

Fla i s The sequence of operations for thc algorithm suggested as a possible method to improve the 
Kalman filter estimates for the fault detection problem, 
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4. &Ornate the coca:lugs A. k, so  in ego. (45) during the update i nterval  
P., I. + T.J, u;ing the least squares minimization procedure of eqn. 46. 

a  5. Compute the new value of s which will drive a: to zero in the interval T.  

6. Consider t1  to be the initial time and repeat the procedure frcm 3 onwards. 

Tne above algorithm is suggested as a possible ms -Ahcx1 of improving the Kai raan  
filter estimites for the fault thtection problem. It has not been implentmted nor it s  
stability analysed. 

7. Conclusions 

We have hem presented for a class of fault detection problems how one finds the estima te  
for the time of fault and the magnitude or the fault. Even though the Kalman filter for  
eqn. (12), given the observat'on Process, will eventually track after the occurrence of the 
fault, the problem will be the presence of unusually large errors immediately after the 
occurrence of tit: fault. Themfoie, tht estimate of the amount of fault is important 
so that the Kalman filter can be reparametized after the occurrence of the fault as given 
by eqn. 34. The question of setting the threshold value y by some other criterion of per- 
formance is neeessar) to find the estimate of fault tiny. The adaptive algorithm described 
here givcs a closed foim solution to the nonlinear filtc.r problem. In any case simula- 
tion studies have to be performed to verify the stability of the adartive filtdr scheme at 
least in a practical situation. 
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