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Abstract

In a linzar system perturbed by Gaussian noise, the state can be estimated from the observations by
using Kalmia filter. However, if a fault develops in the system at any random time, the Kalman
filter will not be able to track the fault and large errors will develop in the state estimate. Conse-
quently, the innovations process will no longer be white. If the random time of occurrence is
considered as a state then the system of state oquations become nonlinear. In this paper, the Fujisaki,
Killianpur and Kunita nonlinear filtering results have been applied to obtain a representation for
the stete estimate given the observations. The non-white nature of the innovations process has been
midelled as an autoregressive process and an adaptive scheme has been proposed to improve the
filter performance.
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1. Iatrodaction

[n a linear system perturbed by Gaussian noise the state can be estimated from the
observations by using the Kalman filter. However, if a fault develops in the system
at any random time¢, the Kalman filter will not be able to track the fault and large
crrofs will d=velop in the state estimate. To limit these large errors the Kalman filtcr
has to be reparametized for which we should have the estimates of the time ard
amount of fault. Thus, the information from the observations has to be used in
both tracking the states and for fault detection. For a certain class of fault detece
tion problems the nonlinear filtering theory developed by Fujisaki et al' can be
used. The white noise nature of the innovations process under optimal corditions 1s
utilized for an adaptive scleme to improve on the Kalman filter performarce.

2. Statement of the problem

The problem will be formulated as a scalar, the generalization to a Vector cace being
straightforward, -
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The state process {X, ¢ € T} is given by an Ito stochastic differential equatio

dX, =j',.¥,dr +g,dW. teT, X, (1)

waere f; and g, are functions of time (not random processes) satisfying the conditjo,

[ 1fildt < o0 [ gidt < o0

g te?T teT s (2)

and {W,, teT} is a Brownian motion process with parameter al. Xy is an any
 nitial condition random variable independent of W;and T is the time .lntt?rval 0, ),

The observation process {Y;, 1eT} is given by another Ito stochastic differenq)
cquation

dY‘=th|d’+dV; ‘GT! Yﬂ=O (3)

where k, is again a function of time satisfying the condition

[ h¥dt < 4
teT

and {V;, t € T} is another Brownian motion process with parameter o?, independent
of both {W,, t 6T} and X,.

Both the state process {X;, feT} and the observation process {Y;, 1¢T}ar
measurable with respect to the g-algebra @, defined by

B, DJ{X'..X,, Y.,Z.,SQI, tﬁT} (5)

Further et F, be the g-algebra generated by the observations, viz.,
Fo=0(Y, s<t,t6T) % | | (6)

{ é

In a general fault problem concerniné eqns. (1) and (3), a fault occurs at some

random time 7 such that I

: : .
(i) the state noise parameter g, changes, = ) |
- (it) the state parameter /', changes, -
(iii) there is an additive bias in the observation tqtiation, . } j,}.

(iv) there is an additive bias in the state equatior,
(V) the observation gain parameter /i, changes,
(v1) there is an increase in the state noise W,,

(vii) there is an increase in the observation noise V.

Among these different fault problems we shall be concerred with (i), Davis® h&
dealt with case (ii) and Chien?® has treated case (iii).
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3. Review of noolinear filtering resalts
We shall first state the Doleans-Dade-Meyer extension to t -
given in (4). ‘on fo the Ito rule. The proof is

Let {X.. Fi, teT} bea g:neral semi martingale (2 sum of a martj
cess of bounded variation). Let y (1, x, ¥) be a continy
partial denvatives -

v 'y oy aty
t’ 3Ix’ 3xt° ayi ?}I'

| ngale anda pro-
ous function having continucus

iciliF CEOEEEE 2. i . , T
':;?c scalar process Z, = y (¢, X, Y,) admits of a stochastic differential cquation given

dZ, =y (1, X, Y) —w (1, X\, Y,)) + g -('--’-;;“ i) dt

aw (r! Xl—s Yl") 350 (’! Xl-—, Y_)
+ P dX, + 7y =2 dY,

I _]_-_ a'W(’s X~y

Y,-
5 P ')d(M;, MS )t

132w (t, X, Y,) ;
Ty

3 32“’(!‘! X!-—! Y!")
axay °-

d( My, My)t

i cadie ' Y (7

wrere M%, MS are t e continuous F-martingalcs associatcd with the semi-martir. gales
X, Y, { M5, M%), is the quadratic variance process associated with the martingale
Mg, ( M%,, ML)t is the quadratic covariance processassociatcd with the martirgele
My, M., AX, AY, are the amounts of jump of Xi, Y; at £ and X, Y,- are the
left hand limits at ¢ of X, Y. .

The special case of the above rule relevent to our situation is when w (1, Xi, Y)
= X,Y, where X, and Y, are semi-martingales. In this case eqn. (7) can be rewntten

as

d(X,Y,) = X, Y — X Y- + Y-dX, + X-dY, + d{ Mx, Mrd s B5 S Yt(s)

For details 8 ¢ ref. 4.
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We shall now state the nonlinear filtering result! for the state Process give .
eqn. (1) and the observation process given by eqn. (3). For details see ref, 4, d

Let {Q,F, P} be a complete probability space and let {X,, t ¢ T} and {Y., t6T)
satisfy eqns. (1) and (3) respectively. Then the filtered estimate X, satisfes the

stochastic differential equation

F e » pe 1
dX‘ =f‘x‘df + [EF‘ (XJ hg + 'gt ( Ms V)l];idvh l 6 Tr (9)

where .i", = .i’, — X, error in the estimate
dM‘ = & dWl

and v, the innovations process is given by
dv, = dY, — h.i’-. dt teT (10)

Equation (9) is written for the case when W is not independent of V. Since W, and
V, ate assumed independent in eqns. (1) and (3), eqn. (9) can be rewritten as

a¥, = f R, dt + 5 E* X by dv, €T (11

Equation (9) or (10) is only a representation for the nonlinear filtering problkm.
We can sec from the equations that the first conditional moment i", depends upon

the second conditional moment X7, Similarly, the equation for the second conditioral
momant will d:pend upon the third conditional moment and so on. Therefore,
cloied form solutions, in general, are not possible. Suitable approximations have to
be made so that closed form solutions can be obtained.

4. Fault detection with change in state moise parameter, g

The state process is given by the stochastic differential equation
dX, =fX,dt + gdW,, 1¢T, X, (12)

and the observation process is given by
dY, = hX,dt + dV,, 1T, Y, = 0 (13)
Where the parameters f, g, & are constants and the Brownian motion parametersart

givc_n by 0¢ and 0]. We shall aJso assume as in eqns. (1) and 3), Wi Vi and 4,
are 1qdcpendent. The o-algebras @, and F, are defined as before.

(« In many inertial navigation systems the sttae noise parameter g changes suddcnly
ue to some failure in the system. A fault, therefore, occurs at some random time, T
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so that the state noise parameter, g, changes from gto g+ b. The random time
- o] ‘ . - t
is independent of X,, W,, and ¥V, and {r < ¢} is measurable with respect to @

[ )

As a consequence of the fault, the state process (12) changes to
d¥, =fXdt + (g + 0)dW, > 1, [t,1¢T] (14)

Under normal operating conditions the state estimate will be given by the Kalman
filter equations. The sudden change in the state noise parameter will induce large
errors since the Kalman filter cannot track sudden changes. In order to Teparametize
the Kalmin filter equations, we should know the estimates of the time of fault. z
and the magnitude of the fault, b. T

'In order to characterize the fault, we shall introduce a B,~ measurable indicator func-
tion, £, defined by |

1l 121t .
& = [0 < (15)
Using eqn. (15), eqns. (12) and (14) can be combined to yield
dX,=fXdt+ (g +b2,)dW 1 €T, X, (16)

We have to determine the stochastic differential equation satisfied by the new state
variable Z,. We shall assume that the process of fault occurrence is a Poisson process
N,, with param:ter 4 indcpendent of W, and ¥;. Hence the process N,-Ztis a Poisson
martingale. Z, is a Poisson process stopped at the first fault occurrence 7. Sirce a
stopped martingale is also a martingale, we have Z; — A (¢ A 1) is B;-martingale, where
(t A 1) represents (min (1, 7). Or,

2~ AN T)=M1teT . (17)

waere M, is the discontinuous ®@B,-martingale associated with the stopped Poisson
process Z,. However, the quantity (¢ A 7) can be represented by

(A t= | (1 —2Z)ds t6T " (18)
as shown below.

Case (i) 1 < <.

Since s is also less than 7, we have Z, = 0 and hence
tAT= j:: ds =t
Case (ii) t2 7
Here Jj (1 — 2,) ds can be split as

{ (L—2Z)di=f (U ~Z)ds+ (1 -2Z)ds
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In the first integral in the right hand side s< 7and 2, =0 and in the seconq e
gral s > rand Z, = 1. Hence" |

A t=fds+0=z.

Substituting eqn. (18) into eqa. (17) the stochastic differcntial cquation for Z, is given
by

dZ, = A(l — 2Z)dt +dM, teT, 2, =0 . (19)

Due to the occurrence of fault at a random time 7, the state procesces are given by
eqns. (16) and (19) which are renumbered below.

dX, = fX,dt + (g + bZ))dW,, t T, X, | (20 g
dZ, = A(l — 2Z)dt + dM, teT, 2Z2,=0 ) (205)

With the observation process given by eqn. (13)
dY, = hkX,dt +dV, 1¢T (16)

Using the nonlinear filtering formula eqn. () with (g + 52Z,) dt = dM, we can write

the filter equations for the estimates X, and Z,.

d, = fRdt + 2 Pydv, 1< 2, X, - 21g
dZ, = A(1 = Z)di + & Py dv, 1 < %, Z, = 0 (21 b)

where we have defined

Px: "E"f;'

‘-r"

j5.1121 = EF (-flz-l)

In deriving eqns. 21 we have also used the fact that W, Vi, and t are independent

and M, is a discontinuous martingale and hence the quadratic covariarce processes
{#,V)and (M, V), are zero.

It is interesting to note that the filter eqn. (21 @) is the same for the state process

given by (12). Thus, large errors in the estimate manifest jtself after the occurrence
of the fault,

. The unknown quantities in eqns. (21) are the second conditional moments Py, ard

P_'m. To dr:tcrming them we need the stochastic differcntial cquatjon for the propagd”
tion of the error, X,, ' '
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Subtracting cqn. 20 (a) we obtain
PCU * e
dx‘ ==fX',d! G &? ng d\’g - (g - bZ,) dW, (22)
The innovations process v, (eqn. 10) can also be written as
dvy = h (X, = X)dt + dV, = - hX,dt +'th (23)
- which when substituted into eqn, (22) yields ‘
& . o
¥, = fXdi - %b.av. + B p
g = t 0,', x84V, + &? Pdet - (8 + bzl) th (24)
Using Ito-Dolcans-Dade—Meyer rule (cqn. 8) for dX? yields
" - 2R = s o D2 A
R R R R L
- ) s B
+ 5 XiPadV, — 2X, (g + bZ) dw, (25)

Applying the nonlinear filtering eqn. (9) and using the relation Z? = Z,. we obtain

E ]

o 2 . a
Py, = {zfp,,, — P+l + (gb + 5 z,]} dt

+ -;-isx-,dv,, I < 2 ﬁx- (26 a)

where we have defined

. -
$xy = EF X7,

!

In an exa:tly analogous manner we can write the filter equation for dPgz..

: - t . . h . .
dsz‘ = [(f—" ).) sz' it ,Ez"' PXlPXZl‘] dr + &-’ Sx’zldvlf < Ty sz, (26 b)
where we have defined
Sxzi = E¥ sz:-_ i, .
L

We can again find filter equations of sy and sg'z thus yielding an expanding set of
equitions as mentioned earlier. To form a closed set of equations czorr:jspondmg to
a sub-optimal filter we shall use eqgns. 21 and 26 as*the.ﬁlter equations and use atn
adaptive algorithm, as described in the next section, to derive the terms Sx' and sxtz; 10

ZT0, We can substitute an apriori estimat: for b in eqn. 26 (a).
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From eqns. 21 (8) and 26 (6) we arc in a position to cstimate the time of fay¢ By
definition,

Z::E'Ptz,:P(t?rlF.) (27)

H:nce Z, is a probability function conditioned on the observations.

We now define a threshold function ¥ €[0, 1], the value of which can be set by Some
criterion of performance link:d to the probabilities of false and missed alarms.
Having set the threshold valu: p, the estimated time of failure, 7, is obtained from

# =-i::f{z“.> 7}

(28)
After the occurrence of the fault the state equations can be written as
dX, = fX\dt + (g + b)dW, t3 ¢, X, (29 0)

wien: we have introduced a new state b and omitted the state 2Z,.

Using the nonlinear filtering result (eqn. 9) and the Ito-Doleans~-Dade-Meyer rule
(eqn. 8) we can write the fliter equations.

. 4 -
" B = -
db, = — Py, 122 b (305)

where the conditional error covariances

E’x: P Embr ﬁxu = EF‘;’: 3: are given by

. - K. " -
dbn = fPai~ 53 B+t (e 4 B + B

+-&% Sxuwdvy 124, Py, @314)
P py e LB k & N
X = fPXH - E? PIIP.I'H dt + ;; Sx'nd‘l’, t; 'P, PII'F (31 b)

wic p ) & = - T s 2w
The conditional covariance matrix Py, = E*+ b} is again given by =L

o % ) | N
P, =[ o2 Py | dt +0.T31i’ldvt f?'?, Py v (3‘1 f)

*y

e 4
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where we have defined

s = EF X, Se'se = EF' X3p
and

soy = EF X b®

We can now apply the adiptive algorit - ;
Y ed Rt sub-OptimfR e gorithm to be dascribed jn the next section to yjeld

Note : There is no stochastic differential equation corresponding to Py, in the set f
¢ 0O

eqns. 26 because Z9 = Z,, whereas we do hav e oxe
5. since b # b, have a stochastic differential equation for

5§, Sammary of sab-optimal filter scheme
The system equations before fault are

d¥, = fX,dt + (g + bZ)dW, 1< 1 X,
dZ, = A(l — Z,) dt + dM, t< 12, =0
dY, = hX, dt + dV. teT Y, =0 (32)
The corresponding filter equations are
2 s
di" =ji’gdt + ;E"‘ ﬁx‘dv‘ ! < "'F, 2;

di ’A(l—il)dr+£‘ﬁxz;dV; 1< T, i'=0

R

- F 2 - | -
dPy, = {2fo, . g—, P, +a3[g* + (28D + b%) z,l} dt
k £, P
+ a_:'sx'ld"n I < 7y I'xe
a & h’ A A k 5
dPyz = [(f_ A) Pxz, — &TPXthzs:l dt + pry Sz @V 1 < 7, Pyzo (33)

The system equitions after the occurrence of fault are

db, =0 1zt b (34)
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The corresponding filter equations are

B B2, 4 a2[(g + B)t + Pu) } dt

Ge

di;x: — {fﬁxu e

h . oA
> 5 Ei Sx* dvy, t 27, PJﬁ'

- « . I J A
dPxn =[folt "g—.' Py, Pxn] dt +o,i.3x'm dv, f?‘?: be-? 5
A h® - h s
dP” = . E‘i Px“ dr + ;' Sxalt dl»’h { = ‘?, Pﬁ"- (35)

In the next section, we shall describe an adaptive scheme to obtain better estimates
of the Kalman filter eqns. (33) and (35).

6. Adaptive algorithm
Different types of adaptive algorithms for Kalman filters have been dsscribed by
Mehra®. We shall illustrate an adaptive algorithm for the problem under discussion,
Let the signal process {X,, t 6T} be given by

dX, = fX, dt + g (X)) dW, (3¢)
and the observation process {Y,, # ¢ T} by

dY, = hX,dt + dV, (37)

where fand k are constants and the o-algebras {3, t 6T} and {F,, t 6T} afe as
defined previously.

The optimal filter equations are

d¥, = fX,dt + N dv, 1 T, %, (%)

~ - h® - -
aiy = [th —ws I i3 B gt (x,)] dt + f,s.dv. teT, P, )
¥

oi
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. where

K‘ = P,h, S = EF: -",

o} and 63 are the vanziance parameters associated with the Brownian motion processes
{V:} end {Wy} respectively and v, is the innovations process given by

We can again write an optimal filter equation for s by the now familiar method

} of writing the stochastic differential equation for dXE’ using the Ito-Dol:ans-Dade-
~ Meyer rule and then using the nonlinear filtering equation. Thus,

3pt - s s
o= { o = - Bus 3o R kgt Q1 e+ 5 [ e -8t an

41)

. Several approXimation schemes are in cxistence for eqn. 39 or 41. We can set
Ertg*(X,) = g"(X,) (Extended Kalman) in which case 5, = 0. A second approxi-
mation (Jazwinski®) is to set ' '

E™ gt (X) = g (X) +[22 (X)) + g (X)) .. (X))] P,

lnd 5 = 0.

; A third approximation (Gran and Kozin?) is to set EF, X = 3PA,' and expand g* (X))
to any suitable order. The essentia]l feature of the above schemes is that orce the
approximations are mades the gain K in eqn. 38 is fixed. The resulting filters perform
adequiatcly in certain ranges of state space and system parameters. In certain other
case they may diverge.

" In the adaptive filtering algorithm to be described below the gain K is varied by
feeding back the present information about the filter.  This information 1is obtaine::l
~ from the innovations process which is 2 Brownian motion process under optimal condi-
tions, having the same statistics® as the observation nois: process {V:}. With a su13_
optimal filter, X, is no longer an optimal estimate and hence the innovations process is
no long:r a Brownian motion. The non-Brownian motion nature of the innovation
- process is utilized to vary the gain K. It is expected that the sub-optiaml filter .may
not be too far away from the optimal filter and as a consequence the S_ub-OPtlmal
Innovations process v, can be modelled by a simple first order autoregressive process

42
dv;=a.v: dt + dV; Vie ( )

‘ : - s the
Where o, is a parameter which is varying slowly with respect to time. .Ift;clstim
time interval of estimation then o, may beconsidered to be a constant In pserved
interval » and can be estimated by matching vi as closely as possible to the o
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innovations process v, in the mean squafe sense in the tme interval [to

[f v, is the solution to the differential equation (42) given by s to +1
f
Vi = % ¢4 i + t{ e8¢ (1-4) dve (43)
then a,, the cstimate of a, is obtained from
84T
8 o ; .
ar = arg {HEH;E f(ve-vg) df} "
J

If we teeat s, in eqn. (39) as the control then setting it to any given value contigl

K, incqn. (38)and thus X, which in turn produces an innovations process v, (eqn. 4(

which again can be mod:lied by an a (vqn. (42)). However, the exact Rlationship
between @, and s, i1s unkoown and hence we can mode] o, by

o = Aoy + Ak(s —3) o | 49

where A, k, s, ar: parame:ters to be determined using the mean square efror crnteriop,
We have already stated that a; 15 slowly varying with respect to time and hence the
estimition interval T, of cqn. (45) is an integral multiple of = the cstimation interval

of eqn. (42). Thus the estimates A, k, s, are obtained from

- o A - t+7Te
A, k, 5, = arg {?41:[!1, ;‘ 'J' (a.i — a‘)z df} N (46)

{.

.

Having obtained 4, k, s,, we can solve 2qn. (45) for the new control s from the cordi-

tion, that a; must be driven to zero in the time interval T, i.e., af4r, = 0. This condi-
tion vields the result

~ ‘T. : 2 .
O il | + 5 ¢ o - (47)
k(l — et%s) e

The estimation intervals 7 and 7, must be properly chosen.

The sequence of operations for the algorithm can be given as follows and shown
in fig. 1. -

1. Choose the observation interval = and the update interval T, (7, is 2n integral
multiple of 7).

2. Initialize the procedure by choosing a *suitable * value for s in eqn. 39 for the
imitial time ¢,.

3. Observe and record the resulting innovations process v, from the jnitial time %

to the tims £, + T, = 1. Estimate the coefficient &, from éqn. (44) for. each
observation interval = ¢ T,. o, L :

‘l
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Choose observation
interval T and update
interval T,

Initial time t,
A
Initial gain, s

Observe Yy trom
to to t0+T°= 11

A
Estimate aC-[ for edch
observation interval T

A
Estimate A,k S,

during the update .

interval T, '

A A

Compute new value

of ¢ to drive oC'( tO-I'To)
to O

Update initial
time to t‘

Fio. 1. The sequence of operations for the algorithm suggested as a possible method to improve the
Kalman fijter estimates for the fault detection problem,
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4. E;timate the coefficiznts 4, X, s, in eqo. (4?) during the update interyy
[t., , + T,], using the least squares minimization procedure of eqn, 46

5. Compute the ncw value of s which will drive af to z:ro in the interva] 7
6. Consider #, to be the initial time and repeat the proccdure frcm 3 onwards

Tae above algorithm is sugg:sted as a possible m:thod of improving the Kalmay
filter estimites for the fault d:tection problem. It has not been implemented nor it

stability analysed.

7. Canclasions

We have here presented for a class of fault detection problems how one firds the estimate
for the time of fault and the magnitude of the fault. Even though the Kalman filter o
eqn. (12), given the observation process, will eventually track after the occurrence of the
fault, the problem will be the presence of unusually large errors immediately after the
occurrence of th: fault. Therefote, th: estimate of the amount of fault is important
so that the Kalman filter can be reparametized after the occurrence of the fault as given
by eqn. 34. The question of setting the threshold value y by some other criterion of per-
formance is necessary to find the estimate of favlttim:. The adaptive algorithm described
here gives a closed form solution to the nonlinear filtsr problera. In any case simula-
tion studics have to be performed to verify the stability of che adagtive filter schems at
least in a practical situvation.
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