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Abstract

Russell introduced the concept of functions of bounded kth variation (B¥, functions) and obtained
some properties, Das and Lahiri gave the definition of functions of related absolute continuity
(AC, functions) and proved interrelations between AC;, and BV, functions. In this paper the authors
consider the concept of BV, and AC, functions on a bounded set E dense in itself and prove that
these functions admit extensions t0 BV, and AC, functions on an interval [, b] containing the
closure of the set E. |

Key words : BV, functions, AC, funciions, A-convex functions, kth Riemann (Riemann*)
derivative,

1., Introduction

Russell' introduced the concept of functions of bounded kth variation (BV, functions) or
[0,b) and studied in detail some of its fundamental properties. Whenever a function
has been defined in the sense of bounded variation (of any type) there is always an
altempt to infroduce the concept of absolutely continuous furctions (in some respects).
This was done by Das and Lahiri? where they defined absolutely kth continuous
_fllnctions (AC; functions) on [a, b] and obtained basic properties of these functions
Including the interrelations with BV, functions as in Russell’. In the last two decades
Many papers were published®® where the authors defined various types of functions of
bounded variation on a set or relative to a set instead of some continuous interval [a, b].
I appears, therefore, reasonable to study BV, functions as well as AC, functions
defined on a set instead of an interval, which we have attempted in this paper. We
ther show that a function which is BV, on a set E can be extended toa function
(not necessarily unique) which is BV} on an interval containing the closure of the set.
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Lel «. b be fixed rcal numbers such that @ < band let & be a positive Integer greater
than 1. By £ wc shall always mcon a sutset of [a, b] dense in itself. The greatest
lower bound and the least upper bound of £ will, respectively, be deroted by a apd
fi. The Lebesgue measure of o set A will be cenolcd by mA. The orcircry kth order
derivative of f at x will be ceroted by ¥ (x).

Definition 1.1 : Let Xq, Xg, ..., Xp be kK + 1 distinct poirts: rot mnecesserily in the
linear order, belonging to {a. b]. Define the kth devicad iflererce of f as

Ql(f s Xoo X o0y X)) = th [f(\i)/ ﬁ (xy — xi”-

i=o i=0
i7#4

Definition 1.2 : A function fis said to be A-convex on E if ard orly if 0, (1 ; x,.
Xy ..., ) 20 for all choices of the points Xo, Xy ..., xp In E. -_

Dcfinition 1.3':  Let X, Xy.....X; be kK + 1 distinct points in [a, b]. Suprcce that
he=x;,—x,i=1,2,....k and that
O<!ili<thl< ... <|l].

Then define the kth Riemann*-cderivetive of fat xby LEf(x) = k! lim lim .., lim

‘ hr=30 k=190 M1-30

Q,(f;x,xy ..., xp) if the iterated limit exists. The right and the left k&th Riemann*-
derivatives D% f(x) and DX f(x) are defined in the obvious way.

When the kth Riemann derivative, in the sense of Bullen®, exists for /i, =0 1t
coincides with the kich Riemann*-derivative. The kth Riemann derivative in Bullen®
will be denoted by 2* f(x). The right 2nd the left kth Riemannr derivatives will be
denoted by 2% f(x) and 2% f(x) respectively.

If in Definition 1.3 the points x, X;, ..., Xy 2re in E, we szy thot D f(x) exists at
x € E over the points of E. The cxistence of 2* f(x) at x over the points of E 18 ana-
logously understood. Whenever we szy B f(x) or D* f(x) or f*(x) exists on E we.mean
their existence over the points of E. -

By a 7 subdivision of E, we mean a finite set of points Xg; Xy. ..., Na in E, With
Xg < X3 < ... <X, and we denote it by n (x, s . A B

l L

Definition 1.4 : The total kth variation of fin E is defined by

¥ =0

| 5 . s
Vil f: E] =.SUP 2 Xy = x) 1O (50 Xeegs o oo X p)l

I Ve[f;El < + o we say that fis of b__oum._l'ed k:i‘h‘} variation (B"Vk) on E and~ write
Je€ BV, [E]. .

_LCt xl;ﬁ<X1;]< " e <xl,kQX2,q'< A’z,l{ 6w s <x2yk‘-..<;... gx"'ﬂ(xm;
< ... < Xu.; be any subdivision of E. We scy that the intervals (xg o ¢ gh 1= 1
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5 ... n forman clementary svs'em 7, sy, in £, The systam is deroted by 7(x,. 1,
i_,yi. poy) (o Nexh T =102 0 T!u.: clementary system corsisting of the
atervals (@ Xy o) (Vg Xavods coos (Naye ) s s2id to be the elemertity system cemple-
mentary to / and will be denoted by J.. It is to be noted thet fard J, togcther ferm
an elementary system of EU{a, fi.

pefinition 1.5 The function fis said to be ebsolutely kth contintous on E if for on
Lchitrary € > 0 theie exists a 4 (e) > 0 such that for any elemeniery system I (xy. 4,

. = b, |
. Fge) | (Nieo- Xiep), T=0L2, ..., nin E with ml =3 (x,— x.4) <6 the
.o i=1

relation

"
61,1 - izl ("'1‘& - Xi‘ﬂ) IQk(.f;xhﬂ: -thr LIRS | yist)l <€
=

1s satisfied. In this czse, we say that fis AC, on E and we siibe fe ACL[E].
Following Dis arnd Lehiri*, Theorcm 1, it is easy to prove the follcwirg rcsult

Theorem 1.1: If fe AC,[E], then f€ BV, [E].

That the converse of the above theorem is not necessarily trieis shown by an cxample
in Section 2. .

2. BV,-and AC, -functions on E

i

Thecrem 2.1: 1f [ is k-convex on E, and P f(a). DELS(B) both cxist, then
fe BV, [E]. (¢f. Russell!, Corollary following Theorem 17).

Theorem 2.2 - .1t the kth Riemann®* derivitive of 2 fupcton f(x) € AC, [E] is zeto
tImost everywhere in E. then the function f(x) is a polynomizl of degree (k — 1) atmost
(¢. Dis :nd Lahiri2, Thecrem 2).

The proofs of the above two theorcms :tr¢ omitted.
Remark 2.1: For k = 1, Theoem 2 2 demands a s'mpler sta‘ement.

If the derivative of a function f(x)e AC[E] is zcro almost excrywhere in E. then
f(I) Is constent op E.

Theorem 2.3 - If fis AC: on E, then f has contiruous (A — Dth Riecmapn*-deri-
vatives, D¥-1 f(x), at ¢« h point x of E (x # a. ff).

Proof © Let ¢ be a point of E(c # a.f) and let € > 0 be arbitrary. Since f 18 AC,
on E, there exists J, (¢) > 0 such that the condition of the dcfinition of AC, on E
s satisfied with ¢ replaced by ¢/(k — 1)! 3k. We choose points Zppin < Zpy o
SR, <zg=c<d=2,4 < ... <Zyay < Zyy of E such that (Cp 2 — Zp-21)
<&. Choose a positive integer i such thet p—k + 1 < i< p and consider the

c‘fment'-:.ry system consis‘rg of 2 siigle intenval
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I(zi g0 o+ e Sooa-n) 2 (G0 Zaa)-
Using Lemma 4 of Russcll', we get

| Qp~i LT 5 Zpis snas Ty i) = Opal f 1245 s 055 Bpaa) ]
are (zi't —Zi.) IQl:(f;:i‘ I zi‘k)l < 6/(1\' - 1) ' 34,

This incquality is true for each i=p— A+ 1,..., p. Proceeding as in the proof
of Lemma | of Das and Lahiri®, we obtain

|(k - l) ! Ql:-l (f;(".. ‘--*p_‘l)ar SR :ﬁ'l+1) - (k T l) ! Qt-l (f,d, :p $i. w5
o) 155 6l 3

(1)
Since f€ AC,[E], L*'f(x) exists at cach xe E(x #a,8) (cf.Das and Lahiri?,
Lemma 1). There exist ¢.(¢) > 0 and ¢3(c) > 0 such that

l Dl—lf((.) = (k - l) ! Ql—-l (f;(', zp-l: ) @09 zr-k*l)' < 6/3 ,
IDt_lf(d) e (k - ]) ' Qk"‘l (f;d, ZptQy o+ vy Z,J},)l < 6/3

2)
where ¢ — Z,2 1 < ¢3 and 2y, — d < ds.
Let = min {J,, &3, d3}. Then from (1) and (2) we obtain | L*1 f(c) — D*1 f(d)} < ¢
whenever d — ¢ < . This pioves that L¥! f(x) is continuous 2t ¢ from the right.

Similarly, we obtein the left continuity of L* ! f(x) atc. Sirce ¢ is an arbitrary point
of E, the theorem follows.

Theerem 2.4 @ If fe BVi[E], then f¥(x) exists almost everywhere in E.

Proof : Since fe BV, [E], we have f(x) = p(x)—¢q (x) where p (x)and ¢ (x) are k-con-
veX functions on E (¢f- Russelll, Theorem 15). It follows that p*(x) and ¢*(x) exist
almost everywheie in E [¢f. Bullen?, Corollary 15 (b)]. Let p*(x) and ¢* (x) exist on

the set E; and E, respectively. Then we sce that f*(x) exists on the set 4 = E, N E;
and that m(EN\A) = 0. This proves the theorem.

In view of Theorem 1.1, we obtain Corollary 2.1. If fe AC,[E], then f*(x) eXists
almost everywhere ip E.

Since the existence of ordinary derivative f*(x) implies the «xistaree of I¥f(3)
we have

Corollary 2.2 : If fe AC, [E], then D*f(x) exists almost everywhere in E.
Theorem 2.5 : 1If f€ BV,., [E], then fe& AC, [E].

Proof : Let fe BV, [E]. Then, it follows that Q, ([ ; Xg, X5 - .. Xa) is bounded wheré

x,€E i=0,1,2, ...,k (¢f. Russell!; Theorem 4). Hence there exists a consten!
M such that

Q) i B svs ) | € M (3)
where x,€ E, i =0,1,...,k. Let ¢ > Obearbitrary. Then for any elemer1cry system

I(xi! Xy &

. uy x‘-k-]):(xiaﬂa xi-])s i-=192: vess M
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i E, WC sce, using (3), that

"
21 (-\"11 = xi*(l) lQI{f;xi‘ 05 Xy 15 o0y X¢s k)l < €&
, '

whenevel
;]
2 (xin — Xpo) < €/M.

=1

This proves the theorem. Uulising Theorem 1.1 and 2.5 we obtain.
coroliary 2.3 (¢f Russelll, Theorem 10):2 11 fe AC, | [£], then f€ AG, [E].

gemark 2.2 Corollary 2.3 shows the «ecreasing nature of the s€quence of se's
(AGET}

Theorent 2.6 : If f1s AC,+y on E, then f' is AC, on E.

Proof : Let ¢ > 0 be arbitrm:y. There exists a §(¢) > 0 such that the condition of
the definition of ACy., functions on E is satisfied with ¢ replaced by ¢/2k(5 + 2k)

We choose points

xl"ﬁ‘::xl’l{"'<'\-l!2l"<-.'r2!0<*r3a]_<-.a <x2,2.é._.

N

A
< Xgrp < oo < Xn, ;¢ Of E, such that

2 (X b — X129) < 0

fus ]

Consider an elementary system

T ys ooy Xpozmp) (X oo Xpea) 3 i =12, ..., 1.

In view of Theorem 8 of Russell!

n
I I 0 (fIr s Xgs 09 ¢ = o9 Vg t—l) = Qi:—].(f' s Xgs 1y 000 Xy I:)I

{m]

k=1
o 2 l 2 [Qk(f;-r‘.ﬂ. eow Xgs gs N gooee s xi,,_l)

fm) (=0

== Ql:(f;xhl! ---;xpi ) B xh! 1 --wx‘!t)]l

n k-1

<D T 1O 3 X0 oon Koo ts Xergr oo ov Xirw)

=}l =0

— Qﬁ(f;xi! Ly ¢ = X 1+, Xs g+l = * 0o Xy k)|

k—1
QZ‘ 2 {1Qk(f;xi~{|q vou oy .r{-t. Xgao gy 2000 'Yi‘l"])

i=1 I=®
— Ou(f i X0 ooes Xoots Ciner oo on Yoo r-1) |

-'- l Qt(f ; x{w s "9 '\.i" i1 ‘xi, gtdsy + .T\'{. k)
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— L 2 X5 s s Dppips Gty prgs v en N o |
= | Q; (/ s Ais 0y » 0 vy Ko go é{- TECIETIAN k-—-',)
i Qk (f;.r\:" I * =9 Xy $+1s lf{. g1 .- - .X'p k] ‘ }

where Y s < €08 < Xoan and &.,€e Eforeach s =0.1, ...,k The existence of /" (x)
on E is ensurced by Theorem 2.3 and the fact thet L¥ f = f* for k=1 if cither eXists

Tt

Furthermore Cppe Cisto v Sk 3! = .2, ..., n can be chosen such that

1O (F 5000 000 Voo 0 X 00 =0 o5 Xge -1)

and
Qk(f;-r{-]u . YRR T XNgo g 1s v & o9 Ny I:)

_Qt(f;xi’ Is o Vgt 1 fiwﬁ-l& e v ooy Xygy k)l < C;';k..?‘ =

wheni=1.2.....nand +t =0,1....,k — I.

Therefoie,

n
Z Qe (f sxn0 oo X)) = Qe (75300 00 X500 |

=1
k=1 =
< C/2 o Z Z l Qk(f;.\".ﬁ, e éi,g. . .,.r;.;,_.l)
1=0 1=1
= Qk (f .; 'rl'! 1y % 2 5y "r{'! t-1- Cfi‘ VYN ¥y 'xi" k) !' (4j

We now corsicer

"
2 | Qk (f s Xgo0e o v ey o gy g‘a fs « o oy Ngn ;:-—1)

i=l

— O ([ s X1y o oa Xgeto1s Ciotigs + o0 Voo 1) |

for a fixed 1. For the sake of simplicity we present the case for 1 = 0. Thus teking
t =0 we have

Zv: IQl:(f;ths Cpn o3« www X p=1) = Qe (S 5 X0 1s Gta 1 ---:-\'hx-.)l
‘.

n

< ? {le(f;X;, 6y Gbsiin ..-,x{-t—-ﬂ - Qk(f; s 05 Xtv s a--,-"-';-;:”

(=1
+ 10 (f5¢ mXeonn oo X w) — O (5 X 10 Xivae e )
+10:(f X014 Coons oo on Ny 2) — O ([ 5 &4 10 X4 26 -.-,_-1‘;”.-#1)'
10T 3 & 1s Bias v ws Fivgia) = OslT 130w Xpsgs 565 Fewn -2 |
e § DT 5 0550 B 25 oon Bt 2) =20 UF5 Xo g By gt L
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Consider now clementary systems

|
!1 (é"‘ u., ¢ ooy .\“. k-—'_l) : (.\.‘- fha .\“. L) ;
Lo A 15 5 v X ) (Se 05 Xy B i) 4
Y (R TR Y B 6 P k+1) ;

Lo oz oo Neg 1) i gy X g o) ;
Is (Ve as v ooy oo gg) TN 1 Ny ) ;

i 1.2, o tte We then have

forezch i= 1,2, ..., 3

Hence

1.
Z I Q;(f ; -\'u 0y 5{5 03 * v r -‘-.i& f..—l) = Qk (f a Ii' i1+ E.fi* 14 20y Ny k) l < 6/2"

{e=]

Now let ¢t vary between 0 << f <. k — | and consicer 5 + 21 clementzry systems so
that the sum -

]}
E | Qk(f : "\'f! Oy o ¢ "‘.1',': & ':{* fr o+ 49 .\.i. k"'])

= Qe (L i Xuts oo on Mot Gosg v so V) | < 2K
foreach 1. 0 <1<k — 1. Hence the double sum on the right of (4) is less then €/2.
Thus {rom (4)

" e L] = -
2 | Q- (f' M O IR Y 1 i-1) = Qi bF ™ 3 Bsidn wany Xea) | < €

im]

whenever X (X, x — Xp o) < ¢ and the theorem is proved.

-1

Corollary 2.4 : If f'€ AC, [E], then D¥1fe AC[E]
We now present cxamples of BV, and AC; furctions (on 2 relevant set).

Example 2.1+ We consider the furction f(x) = a, A"+ t’{,_l.'"'l s -+ a{.\ + a, oin
acense set £. If n < k, then by Lemma | of Russell! it fiollows immeciatcly that

{(-’i')‘EACt [E]. We, thercfore, assume n2 K. To show that f(x) is AC; on E it
S sufficient to show that a® is AC, on E. Let No. Xy, -0 X be a set of (k + 1) points
on E. Then by § 1.31 (p.7) of Milne=Thomson!" it follows thit

" a a a
Qb(-’i" s TR, o Xp) = 2! :lo".\l' o s N

Ry w3 ‘1S | i - ‘hic 1sfv
Where the summation is extenced to all positive INICELTS including Z(rt? 'ﬂ?].lt.h Sfl; i,;
the relation a, + «, + + ap =n— k. Since the above sum contains AN
1 O >
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numter of terms it follows that there exists a positive number M such that

Qr (A% 5 Xgy Xps o0 oy X)) < MPB®e: Bt e = MB™E B being the Lu.b. of £

Let ¢ > 0 be arbitrary and consider ap clementary system 7 (x,, |,

. ey xi- &__]) b
., pin E. Then we must have

(xh 0: xl' k)? ,- - ]3 2’ ™5

P n
2 (‘xll,k — xﬂ' 0) | Q’ﬂ (x.; X‘g 0- xi' 15 % %y x“ k) I < M ' B-_t l {2 (xi* e xi, 0} < ¢
=1

=1

whencver Zﬂ' (X k= Xiro) < e/M|p-*|. This rroves that a* is AC, on E and

=1
henee f(x) is AC, on E.

We next present an cxample which ts a BV, [£] [unction but not an AC, [E] function
To construct the cxample we necd the following two results fiom Russell! which we

state for readv refcrence.
Theotem A (¢f. Russell’, Thcorem 13) : If &> 0 and fis k-convex on [a, 5], thep

f(x) = ff(t) di, wheie a < ¢ < b, is (k + 1)-convex on [a, b].

Theorem B (c¢f. Russell’, Corollary to Theorem 17): If k=1, f is k-convex on
[a, b], and D5 f(a) and D f(b) both exist, then f & BV, [a.b].

Example 2.2 : To simplify the situation we assume that k = 2. Let P, be thz Cantor
perfect set and G, be the Cantor open set. Let f(x) be the function 8 (x) as
described 1n Natanson!!, (Example, p. 213). Then f(x) is cdefined everywhere on [0, 1]
and is non-decrezsing and hence BV on [0, 1].

By Theorems A and B, it follows that the function F (x) defined by

F(x)=(f(t)yd, 0<x<].

s BV, on [0, 1]. We now observe that F’ (x) = f(x) on a certain set, say £ C [0, 1] with
mE = 1. Clearly then F(x) is BV, on E. If possible, let F (x)be AC; on E. Then
by Corollary 2.4, F'(x) = f(x) is AC on E. Since f’(x) = 0 on E N G,. by Remark
2.1, f(x) is constant on E which however is not the czse. This contradiction proves thal
F(x) is not AC, on E.

3. Problems of extensions

'n this section we prove three theorems of which the first two generalise two results in
Lemmﬂ 4.1 of Sll.kslf.‘ (p- 221)'

Theorem 3.1 : 1f f is k-convex on E and D4 f(a), D f(B) cxists, then [ admits -
A0 exlension to F on [a, b] where F(x) is a function k-convex on [a, b].
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proof - It is easy to show that D¥! f(x) exists on a set E’' C E such that mE’ = mE

-1 f(x) is non-decreasi ‘
and D*” J(x) : ng on E° Therefore by Lemma 4. ] 12
et exisls a function G (x) which is nor-decreasing on the whole rrf:lk;nc(r;.? 25:11;
1

coincides with D¥% f(x) on E’. By rcpeated applicati ‘
he function priication of Theorem 13 of Russell

PoL-q 3y ¥y

g(x) =::.'5|' S {!G(I)dt'“dxt-adxg—m

g<c< b is k-convex on [o, b). We sce that D! g (x) = G (x) = pr-!
g7 where E"CE" and  mE" = mL’ = mE. This implics 7} =07 S0 on

D*-1 - )] =0 s
[f (%) — & (x)] : )

onL”.

In fact g () is K-convex on any closcd interval containing [a, 4] and so by Theorem 7
of Bullen® D5* g(a) end DXt g(b) cxist. This by Corollaty to Theorem 17 of
Russell! g (x) is BV, on [a, b] and hencc, by Theorem 2.5, g (x) is AC;—; on [4, b]. Also
by Theorem 2.1 and 2.5, f(x) is ACy_, on E. Thersfore from (5) and Tteorem 2.2
it follows that for x € E, f{x) — g (x) = a polynomial of degree (k — 2) atmost = p(x;

say. -
Clearly p (x) is k-convex on [a, b]. Now we sce that the function F(x) defined by

F(x) = g(x) + p(x) is k-comex on [a, b] and f(x) = F(x) on E. This proves the
theorem.
Theorem 3.2 : If fis BV, on E, then f admits an cxtcnsion to F on [a, b] where
F(x) is BV, on [a, b].
Proof : Let fbe BV, on E. It )s easy té show that D*-! f(x) exists ona set E' C E such
that mE' = mE and D*! f(x) is BV on E’. For cach x, let E,, =(— o, x] N E".
For each x we define

V(x) = V(D' f; Ely) for E # ¢
Clearly ¥ (x) is non-decrecsing on the whole real line R,. For x; > X and x, Xs € E7
we have

[V (x) = D' f(x)] — [V (x) = D' S (0]
= [V(x) — V(x)] — 1D5 1 f(x)~ Dt ! f(x:)]
= [V(D*'f; E,) — V(DS E, ) — [D"! f{x) - D! f(x2)]
>0 = V(D f; E N [y, x) = (55 S(0) = D]

easirg on E’. Hence. by Lemma 4.1

hich is ror-cecreesirg or. R, and coin-
of Theorcm 13 of Russell’

This shows that ¥V (x) — D*'f(x) is non-decs
of Saks!2 (p. 221) there exists a furctior. G (¥) W S 10
Gdes with ¥ (x) — D¥1 f(x) on E’. By repected ¢ pplicetior

¥¢ see that the functions
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& BL-3 # Fq

g =1 ...V §G@dt ... dyg dXpp, a<c<b, and

Th=2

X £3 "1
v () =f [ ...V V@) d ... dagygdy, a<cxb - 1 .
e & ¢ @

nre k-copvex on [a, b]. Also wc sec that _
D1 g(v) = G (x) = V(x) = D1 f(x) = L*1 o (x) = D& [(y)

on E7, where E” ¢ E' and mL™ =2 mbL" = mL.

Henee
Dr1 (g () +f(.1‘) — P (\)] = () (6)

on £”. Now g () and v (x) are k-convex on [o, b] end by the same argument as in the
proof of the previous theorem, LY g(a). DY g (b), D v (@), DXt » (b) exist
So by Theorem 19 of Russell' the furction s(x) = v (x) — g(x) is BV, on [q; b]. Also
f(x)is BV, or E. Thus by Taeorem 2.5, s(x) and f(x) are AC,_; on E. Henrc by
Theorem 2.2 2r.d the relation in (6) it follows that for xe€ E f(x) — 5(x) = ¢ polynomial
of degrce (K —2) atmost = ¢ (x), szy.

A polynomicl of degree (kK — 2) atmost 1s always a BV, (unction and hence the
theorem is proved with F(x) = s(x) + ¢ (x) on [a, b]. .

Theorem 3.3 : Il fis AC, on £, then f admits an ex’ension to F on [¢, b] where F(x)
1s AC, on [a, b).

Proof : By Theorem 1.1, it follows that fe BV, [E]. Also one may get inalogucs of
Theorems 13 and 19 of Russell! by replacing the interval [a, b] by the set E. The procf
now follows taking into consideration Thcorems 2.4 and 2.5.

We now demonstrate below on example of a function defined on a derse subset
showing the behaviour of the function after ex'ersion. Before going to the exemple we
furcher remark that it comes out easily that an ex’ension of a polynomial function
is the polynomial function.

Exfzmple 3.1 : Por simplicity ol presentation we assume that k = 2. Let E be the
rational subset of [— 4, 3]. Consider the function f(x) =1 — 4/l — x%) on E
Clearly f(x) is BV, on E. We now obtain an extension of f(x)-on [g. b,

~x <a<~-}<i<b<a

We see that f*(x) = x/+/(1 = x*) on E. Clearly f’ (x) is increasing on E and 18
bounded on E. We take E;y =[— oc, x] N E and for each x lef

G(’(’) = Lu.b. Of‘f.jr (X) on E(,), 1f E(n) ¥ 9{';
= g.lb. of f"(x) on E, if E,, = b.
Then we have | »
l l..
G(x)=-—ﬁ',—-cc<x<—1.—, “
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= xVl - ), -} <xgy,
B ‘£7“ > '} < X < g,
Clearly G (x) 18 increasing on (— cc, o) and b
follows that the function F(x) defined by ence, by Theorem 13 of Russellt, it

F(x)=fG'(t) dt, a<x<b

is 2-convex on [a, b]. This implies

!
Fx)==“pm% asx< -},

= 1 —4/(1 - x2), - x<,

|
=‘-\'/_3'x9%<x*~<-.b

is 2-convex on [, b]. Further F’ (x) exists at @ and b and $0, by Theorem 19 of Russellt
F(x)is BV, on [a, b]. Therefore F(x) is an extension of f (x) on {[a, b].
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