
j.  Indian Inst. Sc., 64 (B), Nov. 19s3, Po. 299-309.  

© Indian Institute of Science, Printed in India. 

• 

Oa functions of bounded kth variation 

s. DE SARKAR AND A. G. DAS 
Department of Mathematics, University of Kalyani, Kalyani, Nadia, West Bengal, India. 

Received on December 18, 1982 ; Revised on April 16, 1983. 

Abstract 

Russell introduced the concept of functions of bounded kth variation (BV k  functions) and obtained 
some properties. Das and Lahiri gave the definition of functions of related absolute continuity 

(Kt  functions) and proved interrelations between A Ck  and BY, :  functions. In this paper the authors 
consider the concept of BV k  and AC k  functions on a bounded set E dense in itself and prove that 
these functions admit extensions to BV 	AC k  functions on an interval ta, 11 containing the 
closure of the set E. 

Key words : BV k  functions, Ac functions, k-convex functions, kth Riemann (Ricmann*) 
derivative. 

I. Introduction 

Russell' introduced the concept of functions of bounded kth variation (BV k  functions) on 
ia,b) and studied in detail some of its fundamental properties. Whenever a function 
has been defined in the sense of bounded variation (of any type) there is always an 
attempt to introduce the concept of absolutely continuous fur.ctions (in some aspects). 
This was done by Das and Lahiri z  where they defined absolutely kth continuous 
functions (ACk  functions) on [a, bj and obtained basic properties of these functions 
including the interrelations with BVk  functions as in Russell'. In the last two decades 
many papers were published 3-8  where the authors defined various types of functions of 
bounded variation on a set or relative to a set instead of some continuous interval [a, b]. 

It appears, therefore, reasonable to study BV k  functions as well as AC k  functions 
defined on a set instead of an interval, which we have attempted in this paper. We 
further show that a function which is BV k  on a set E can be extended to a function 
(not necessarily unique) which is BV4 on an interval containing thc closure of the set. 
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Let a, b be fixed real numbers such that a < b and let k be a positive integer greater 

than I. By E we shall always mevn a suhct of [a, b] dense in. itself. The greatest 
lower bound and the least upper bound of E will, respecthely, be denoted by a and 

The Lebesgue measure of set A will be dere:cc! 	niA. The ordirsty kth order 
derhative of f at x will be denoted by f k  (x). 

Definition 1 	: Let xo, X1 , ...,:vk he k 
linear order, belonging to (a, b]. Define 

Qk(f xo• xi, • • xk) = 0 

+ I distinct poirts: rot necessarily in the 
the kth devidcd tifference off E.g 

- CVO I n cv, 
1=0 

Definition 1 .2 : 	A function I is said to be k-convcx 	on 	E if ar d oily if Qat' 
x i. . .., xk ) )0 for all choices of the points x 0, xi  ..., x0  in E. 

Definition 	1.3': 	Let 	x, xi , . . ., xi, be k 4- 1 	distinct 	points 	in [a, bj. 
hi  = x;  — x, i = I, 2,..., k and 	that 

Sun cc that 

0< h i  < 1 1121 < . •• < hk 1 . 

Then define the kth Riemann*-derivathe of f at x by Lk f (x) = k lirn Lim 	lim 
hk-.0 hke140 	h140 

Qk( f ; x, 	xt) if the iterated limit exists. The right and the left kth Riemanee 
derivatives DI_ fix) and DI f(x) are defined in the obvious way. 

When the kth Riemann derivative, in the sense of Bullei. 9, exists for h. = 0 it 
coincides with the /all Riemannt-derivative. The kth Riernann derivathe in Bull& 
will be denoted by 2k f (x). The right end the left kth Riemann derivathes will be 
denoted by 07.4. f (x) and0..k  j(x) respectively. 

If in Definition 1.3 the points x, x1, ..., xx. ere in E, we say that Dkf (x) exists at 
X E E over the points of E. The existence of 2k f (x) at x over the points of E is ana- 
logously understood. Whenever we say D k f (x) or Lf(x)  or r (x) ex;sts on E we mean 
their existence oNer the points of E. 

By a n subdivision of E, we mean a finite set of points x0, 	Xs  in E, with 
xe  < xis  < 	< x, and we denote it by it (xo. 	X,$). 	. 

Definition 1.4: The total kth variation off in E is defined by •  
• 

[ f ; E] = sup E (x4 4, — it s)! Qk ( f ; .x4 , 	..., X4  k)!. 	• 
4cØ 

If 17k 	; El < 
ft BV [E]. 

. 	. 	. 
+ cc. we say that f is of bounded kip variation (.40k) on E and write 

Let xi, 0  < 	< • • . < 	k <, X2, 9 < 	< . . . < 	k 	. . . 	ND , 0 < Xs, 1 

< . . . < X14, I;  be any subdivision of E. We say that tke intervals (x4 , 0 , 	k), 
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1 
..•• n form an elementary sys'em 1, 	sry, 	in E. 	The system is c'er.oted by Hsi . I., 

•
., vi. teo : (Ni . u, xi . 0, i ar- I. 2,..., n. 	The 	elementary 	sys:cm 	cor.sistir.g 	of 	the 

is said to be the 	I i ntervals (a, x t , 01 , (xi. k• X2. 0), • • •• (Xn . t , 1;) 	 esemer.4ry system ccmple- 
mentary to l and will he denoted by I c . 	It is to bc noted thrst I and I, toicher 	feim 
an e l ementary system of EU {a, pl. 

Definition•1.5 : The functionf is said to be absolutely kill contint ous on E if for rn 
arbitrary c > 0 theie exists a (€) > 0 such that for any &mutiny systg m 

x 	• 	0. Xi. ft), 	= 1, 2, ..., n in E with nil = 	(xi, 1 	Xi. 0) < 	the it 1=1 
relation 

C ; n = E (-Yr k 	•*1% 0) I (-P k (f ; xi ,  0, A.4 9  it • • • xi,  k) < 6  
jsj 

is satisfied. In this cl.se, we say that f is AC i  on E z,id we write fe AC k [E]. 

Following Dz.s and Lg hirr, Theorem l, it is easy to prose the follcwir usult : 

Theorem 1.1: If f es AC k  [E]. then f e BV k  [L]. 

That the converse of the above theorem is not necessarily trt.e is shown by an example 
• 

in Section 2. 

2. 13V rand ACk-funetions On E 

Thecrem 2:1: If f is k-conSex on E, and 9Y.rf (a). 	(/J) both exist, tken 
fe BV k  [Ej. (cf: Russell', Corollary following Theorem 17). 

Theorem 2.2 : It the kth Riemann* deriw- tive of a funceon (x) E AC k [E] is zero 
flrnost everywhere in E. then the function 1(x) is a polynomial of degree (k — 1) atmost 
(cf. Di s nd 1..2hiri 2,.Thccrem 2). 

The proofs of the above two theorems :re omitted. 
Remark 2.1: For k = 1, Theo -em 2 2 demands a s'mp!er statement. 

If the CALrisative of a function .1(x) 6 AC [L] is 7cro almost escry,vvhcre in E. then 
f(x) is constz.r.t on E. 

Theorem 2.3 : If I is ACk on E, then .. 	has contir.uous (k 	1)th Riema.ne-deri- 
vatiyes, 	f(x), at cre h point x of E (x 	a. fl). 

Proof : Let c. be a point of E(c a, II) and let c > 0 be arbitrary. Since f is AC„ 
E, there exists oi  (c) > 0 such that the condition of the definition of AC k  or E 

Is satisfied with f replaced by (1(k — 1) ! 3k. We choose points -p-kil < rp- k 2 

< • • • < 	< Z. = r C d = 	< 	< fl k -1 < Za k of E such that ( 6:0  

<(;1. Choose a positive integer i such thrt P 	k 	1 Ci..c.p and consider the 
lelltentr.ry system consis:rj of a s;i File interval 
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1/ • • • s 	:4 	ke-1) 	: (Iti• :4 	,t)• 

Using Lemma 4 of Russell', we get 

Qb-- 1. 	2-3 `1 ,  • • • 5  :4 k) 	Qt -1(  f 14• • • • 2 :4' I-01 

=U4  a  — za I  Qt  (f ; zi , 	 < 0(k - 1) ! 3k. 

1, . . . , p. Proceeding as in the proof 

k +i) — (A-  — I) Qt-i ( 1 d, z, 2. • .. 1 

X E E (x 0 a, ft) (c f . Das and Lahiri 2 , 
0 such that 

This inequality is true for each i = p k 
of Lemma 1 of Das and LahirP, we obtain 

(k 	! Qt.- 1 (f 

c/3,  
Since f E AC k  [E], 	(x) exists at each 

Lemma 1). There exist O2 (C) > 0 and 6 3 (c) > 

	

I Da f (c) 	(k 	! Qb _i (f ; c, z", . . 	1) I < c/3  ; 	(2) 
nt-1 

	

f (d) 	(k — I)! QA,-1 (1;  d, z. 02, . . Si  z , )  I < c/3 

where 	1 < (7 2 and 	d< (13 . 

Let 6 = min OH  62, 63}. Then from (1) and (2) v■ e obtain I 	f(c) - 	 f (d)i < 
whenever d - c < J. This pioNes that B k-lf (x) is continuous n c from the right. 
Similarly, we obtain the left continuity of Lk --1  f (x) at c. Sirce c is an arbitrary point 
of E, the theorem follows. 

Theorem 2.4 : If fe Biik [E], then 	(x) existF aln- ost everywhere in E. 

Proof : Since f E BVk  [E]., we hax e f (x) = p (x) - q (x) where p (x) and q (x) are k-con- 
vex functions on E (cf Russell', Theorem 15). It follows that e(9 and q' (x) exist 
almost everywheie in E [cf. Sullen°, Corollary 15 (b)]. Let pt (x) and q i (x) exist on 
the set E, and £2 respectively. Then'se see that f (x) exists on the set A = E n Es  
and that m(E\A) = 0. This proves the theorem. 

In view of Theorem 1.1, we obtain 
almost everywhere in E. 

Since the existence of ordinary 
we have 

Corollary 2.1. 	If IE ACk [E}, 	then f k  CO exists 

arhative f k  (x) inplks 	the tx:sitixe 	el /kf(A) 

Corollary 2.2 : If f e AC [Li, then 1:01  f (x) exists almost everywhere in E. 

Theorem 2.5 : If f E 	[E], then le AC k in 

Proof : Let f€ BV" [E]. Then, it follows that Ok( .1 ; x0, x1 , ... 4) is bounded where 
x. e E, I = 0, 1, 2, ..., k (cf. Russell', Theorem 4). Hence there exists a constant 
M such that 

Qt (f ;x 0, x 1 , 	< Al 
	

(3) 

where x, e E, i = 0, 1, 	. . •, k. 	Let c > 0 be arbitrary. 	Then for any elemerstfiry systein 

i (xi, 1 , . 	. . , 	X4,1-1) : (xi, 0, 	Xi. g), 	i= 	I / ,2, t t •4 /7 
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E, wc sec, using (3), that 

	

Ii 

(Xii h 	trit o) 	()kV '  ; x001 x4,1, • • •, 	Ol< 
jai 

wh enact 

E 	k 	 < flAl• 
es1 

ihiS 
proves the theorem. Utilising Theorem 1.1 and 2.5 we obtain. 

corollary 2.3 (If Russell', Theorem 10):: 

Remark 
{ACIEED. 

Theorem 2.6 : 

If fe AC k  i  [Et then le ACk [E]. 

decreasing nature 	of the sequence of se s Corollary 2.3 shows the 

if f is AC k 4.1  on E, then/1  is AC k  on E. 

proof: Let c> 0 be arbitrary. There exists a (5(c) > 0 such that the condition of 
the definition of ACk ‘ i  functions on E is satisfied with c replaced by c/2k(5 + 2k) 
We choose points 

Xl , 0 < XII  1 < • • • < XI, as ....‹., X21  0 < X2, 1 < • • • < X2, a C. • • • 

• • 	. < xn, a of E, such that 

Consider an elementary system 

I (X 4 . 3 9 	X i• k-j) : (X i• 09 X4/ 	= 1, 2, 	n. 

In view of Theorem 8 of Russell' 

EI 	 (ft  ; Xis w • . . 1  Xi , 1-0 	Qk_i (.I ' ;x3 1 t, • • • 4. k) 1 

I' 	kei 

= E 1 L Wk(i;xi•o• • - • -tilt, xi r • • •, 
1101. 	t=0 

Qt(f ; Xi, p • • . Xs, $ j, Xi. 1, • • • 7 	01 I 

k-1 
E 1Qh(f ; x, 0, • • • , xt, 	XS** S• • • • • xii• b-1) 

Ka $=0 

Qk(f ; Xi, 1 9  • • 	X49 419 Xii 1+19 • • • 9  

n keit 

CE E {IQk(f Xi' OA • • • Xi' t• Xf• 	• • •i Xi. raj) 

mi Scip 

Qk(f ; X44 0, • • • Xi/ tu• 	t/ • • • / xi/ kal.)  I 

in Qt ( f ; xi „ 1, • • • xs . di-19 XS, Eli, • • • Xi* k) 
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Qk 	Xi/ 1/ • • • / Xi/ it 	ei/ 	1 ,  • • • xi, k) I 

± Qk 	; Xi, 0, • • • • X44 	• . • Y44  k_,.) 

Ok (f ; 	1. • • • • • X t• t 	 • • • X i• k) If 

w here  xi , < ei, < 	a i l  and el. e E for each s = 0. 1, ..., k. The existence off t(A) 
or If is ensurtd by Theorem 2.3 and th, fact thr.,t rev-  = fk  for k =1 if either exists. 

Furthermore 	., 	• . • , C. k ; = 1. 2, ..., n can he chosen such that e74 0 , 	1 ,  

• • .9 Xl• t• Xi/gq• • • Xi. k-,1) 

Qk( 	; 	01 • • • s Xi• t• 	ts • • • s •i/ k-1,) I < 	. 2i * 

and 

ek 	; Xi• j• • • •9 Xi t '19 Xt• t .19 • • •9 Xi, k) 

Qt ( f 	• • • , 	 e1, ,„, • • • ''4'k) I <c m . 2' 2  

Nkfien= 1.2, ....II and t = 0,1. 	k 	I. 

Thercfoic, 
71 

Qk -I CI' ; xi, 0, • • - 	k 	Qk 	f ; 	1, • • • Xi ,  k) 1 
it 

k- 1 n 
< Ci2 	E 	Ok (f Xs- 0) • • • 	t• el/ t• • • • Xi• 

1=0 

	

Qk(1_i ; Xis is • • • • Xi, • - j , 	t - 1, • • • s Xi • k) 1. 	 (4) 

We- now consider 

EI Qk, ( f ; Xi• 0' • • • / Xi+ t/ 4, ,• • • • 9 X4, 
gal 

Qk (1; xi. 1, • • • 	t 	1, • . • xi, k) 

for a fixed t. For the sake of simplicity we present the case for t = 0. Thus trking 

t =0 we have 

E Qk ( f ; xi , 0, 	0, • • • Xi% k-1) 	$21: (f ; Xi ,  11 ell 1, • • • 1 X4, k) I 
IFS I 

/I 
< 	{ I Qk (f ; 	0, 4,o, • • Xi• IG-1) 	Qk(f ; 	0/ Xi's 1/ • • • / Xi. k) 

Val 

± I Q;i( f ; G it, xi. pp • • • : •Ici. z.") — Qk(f ; Xi* V,  Xi4 29 • • • • Xi* k 	I 

4" I Qk(.f ; xi, 1, 4 1, • • • a xi. k) — Qk(f ; 	11 xi. 2. • . '9 Xi' k '1) I 

+ I Ql..(f ; 	1 / Xi• 2, • • • t X4. k hi) — Qk,(f ;X i , ro  X4. 3, • • • 1 Xi• 1 . 2./ I 

+ I Qtti, ( f ; xi• 2, Xi. CI • • • 1 Xi. k :1) 	Qk (1 •/ Xi/ 11 Xi/ 29 • • • ' X. k F L)  I 1. 
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Consider now elementary system s  

(44 (), • • • , Xi` k-?..) (Xi• 	Xi• J; 

/2 (xi, XI • • • Xi. k) 	 k 0 ; 

13 gi• 1. • ' • Xi, 	ti x1 . 

14 (x4,0 • • • •Yi• k 	a. VII 1,1 	k 	; 

(Xt, 2, • • • 	k ' 	(xi• 11 Xi' k 2) ; 

i s  I. 	..., i t. We t hcn h ave 

a l I < eak (5 + 2A) 

for each = 1, I, 	c,• 

Hence 
t: 

LI I QS I; Xi, 0, 4 0, • • • xi, L-0 	Qkt ( f ; xv ei• 41 • • ., Xis 0 < c/2k. 

Now let t vary betwcen 0 -A.-2z.: / C k e1 and consider 5 + 21 elementEry systems so 
that the sum 

2 I Qk(f ; 	0 • • • 1 Xi,/ 	Clif • t t • • • XI k-0 

; x .1 ,  • • • 	t• 12 ei, t 1, .• . , Xt. k) I < 	El2k 

for each t. 0 C  t 	k - 1. Hence the double sum on the right of .(4) is less than 
Thus from (4) 

E 	; Ydt 01 • • • Xi% k-0 	Q-1 (r ; xvI, • • • 	1 < e 
gal 

whenever E 	k 	<5 and the theorem is proved. 
ing 

corollary 2.4 : If fe Ack, [E], then Tik - UeAC[E]. 

We now present examples of Mit t  and ACk  functions (on a relevant set). 

Example 2.1 : We considtr the function f(s) = •N "  arI 	+ • • • ± akx + au on 

a eense set E. If n < k, then by Lemma I of Russell' it fiollows immediately that 

WEAC L  [El. we, therefore, a.sume ti k. To show that /(y) is AC k  on E it 

Is sufficient to show that .‘" ;s ACk  on E. Let xo, 	xk  be zi set of (k 4 1) points 

On E. Then by § I .31 (p.7) of Milne—Thomson." it follows that 

-(2): (An ; x 0, 	. . 	E au :kat; 
o • 1 	k 

the 	
the summatio n  is extended to all positise integtrs including zero which satisfy h  

e 1'636°n ao 	al 	 = 	k. Since the above sum contains finite 
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numter of terms it follows that there exists a positive number Al such that 

(A. ;x0 , evil • • • Xk) < MSC es n• I aft = Mir k , /3 king the 1.u.b. of E. 
Let c > 0 bc nrbitrary and consider an elementary system I (x4 , 1 , es ., 	_ 	:" 

(v4 , 0, Ns „ k ), = 1, 2, 	p in E. Then we must have 	 '" 

x . I < M lima` I ki  (xi, 	xi, < 6  0) 1 Qk(X"  ; X 	Xi ,  1) • • • 
4 4=1 	 =1  

froles that ex, is ACk  on E and whencver 	k Xi) 0) < 	I /3"  j• This 

hence, (x) is AC k  on E. 

Wc next present an example which is a BV k  [El function but not an ACk  [E] function 
To construct thL, example we need the following two results ftom Russell' which we 
state tor ready reference. 

Theotem A (cf. Russell', Theorem 13) : If k 0 and f is k-corncx on [a, bj, then 

f(x) = f0) di, wheie a < c < b, is (k 1)-convex on [a, N. 
• 

Theorem B (cf. Russell', Corollary to Theorem 17) : If k I, f is kconvex on 
[a, 14 and Dr'.  f (a) and Dk.:1  (b) both exist, then f e BVt  

Example 2.2: To simplify the situation we assume that k = 2. Let Po  be th: Cantor 
perfect set and Go  be the Cantor open set. Let 1(x) be the function 0 (x) as 
described in Natansonu, (Example, p. 213). Then f (x) is defined everywhere On [0, 1] 
and is nonedecrez. s:ng and hence BY on [0, 11. 

By Theorems A end B, it follows that the function F (x) defined by 
• 

F (x) = f (t) dt, 0 x I , 
• 

is B V2 On [0, 1]. We now observe that F' (x) — f(x)  on a certain set, say E c [0, 1] with 
mE = 1. Clearly then F(x) is Bit!. on E. If possible, let F (x) be AC2  on E. Then 
by Corollary 2.4, F' (x) =1(x) is AC on E. Since f (x) = Oon E U Go , by Remark 
2.1, f(x) is constant on E which however is not the cne. This contradiction proves that 
F(x) is not AC2  on E. 

3. Problems of extensions 

In this section we prove three theorems of which the first two generalise two results in 
Lemma 4 .1 of Saks" (p. 221). 

Theorem 3.1 : If f is keeonvex on E and 2/4.-1  f (a), 21-1  f(ft) exists, then I admits 
an extension to F on [a, 14 where F (x) is a function k-convex on [a, bi. 
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mop It is easy to show that 
and Dka f(x) is non-decreasing 
there exists a function G (x) w hi 
coincides with D" f(x) on F. 
the function 

f(x) exists on a set E c E such that nit = nrE 
on F. Therefore by Lemma 4.1 of Saksil(p. 221), 

ch is non-decreasing on the whole real line R 1  and 
By repeated application of Theortm 13 of Russell' 

• sk., 	esapt 
g (x) = 	• • • cf G (t) dt 	dx,„3  dxk _2, 

Co f 

a  < c  < b, is k-eonvoi on [a, 14. We see that Dk-s g (x) = 6 (x) = 	f(x) on 
E r where E" C C and ntE' = 	= ntE. This implies 

[f (x) g(x)1 = 0 	
(5) 

on L. 
In fact g (x) is k -convex on any closed interval containing [a, bi and so by Theorem 7 

of Sullen* Drs t(a) 	zind 	D1' g (b) 	aist. 	This 	by Cotollaty 	to Theorem 17 of 
Russell' g (x) is BVk  on [a, bil and hence, by Theorem 2.5, g (x) is ACk -1  on [a, 14. 	Ake 
by Theorem 2.1 and 2.5, f (x) is ACk _ i  on E. 	Therefore from (5) and Tf.eorem 2.2, 
it follows that for x E E. f (x) - g (x) = a polynomial of degree (k - 2) atmost = p (x) 
say. 

Clearly p (x) is k-convex on [a, b]. Now we see that the function F (x) defined by 
1(x) = g (x) p (x) is k-convex on [a, b] and f (x) = F (x) on E. This proves the 

theorem. 

Theorem 3.2 : 	If f is B V, on E, then f admits an extension to 1 on [a, b] where 
F. 00 is BVk  on [a, M. 

' Proof : Let f be BV k  on E. It is easy to show that D1-1  f(x) exists on a set E' C E such 
that mE' = niE and Dk--1  f(x) is BY on E'. For each x, let E;,)  = ( cc, 4 n P 
For each x we define 

V(x) = v grit f; go) for ELI  0 # 

— o 	 for Et —A 

Clearly V(x) is non-decreasing on the whole real line 111 . For ail  > x2  and xj , x2  e E• 

we have 

[I/ (xi ) — Dk -' f(x1)1 — EV (x 2) — 	f (41 

[I' (xi ) — V (x 2)] — 	I fix' ) — Dk f ( x 

= EV (OA f; E(10) — V (D k- ' n,:01 	[Di" f 	D" f (x2)] 

= v(Dt-i f E n (x„ x2 1) 	[Dk-i f(x) D" 1(x2)] 

This shows that V(x) 	Dk-i f(x) is non-decreasirg on E'. Hence. by Lemma 4.1 

Saksn (p. 221) there txists a furetior. G (x) which is tor-eeerev.sirg or R 1  and coin- 

cides with V (x) 	Bkel f (x) on E'. By repealed ipplicatior of Theorcm 13 of Russell
]  

vie see that the functions 
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nr2 	•2 02 
g (x) 	... j.  G 	di 	dxk.3  dxk _2, 

o r 	00 
rk-2 	es ft 

v  (x) =5 j • ... I J V (t) di' . . . dx k.3  dXk-2 1  
c 

a 

a < < b, 

and 

, 

arc k-convex on [a, bi. Also we sec that 	 • 

DI; - 1  g (x) = G (9 = V (.v) 	1(x) = Vs' v (4 — Dk - ' .1(x) 

on r where r c E' and mE''=z in = mE. 

Dk [g (x) f (x) v (x)] = 0 (6)  
Now g (x) and v (x) 	k-convex on to, bj and by the same argument as in the on El  

proof of the previous theorem, tr" g (a) , 	g I  ki 	) 	v (a), 	(b) exist. 
So by Theorem 19 of Russell' the function s(x) = v 	— g (x) is BV on [a; b]. Also 
Rev) is BV k  or. E. Thus by Tneorem 2.5, s(x) and f(x) are AC k ei  on E. Henre by 
Theorem 2.2 and the relation in (6) it follows that for x E E (x) - s (x) = a polynomial 
of degree (k - 2) almost = q (x), say. 

A polynomial of degree (k - 2) atmost is always a B Vk  function and hence the 
theorem is proNed with F (x) = s 	+ (x) on [a, b]. 

Theorem 3.3 : If f is AC k  on E, then j admits an cx elision to F on [a, b] where T(x) 
is AC k  on [a, b]. 

Proof : By Theorem 1.1, it follows that fe BV k [E]. Also one may get analogues of 
Theorems 13 and 19 of Russell' by replacing the interval [a, b] by the set E. The prod 
now follows taking into consideration Theorems 2.4 and 2.5,. 

We now demonstrate below an ex2mple of a function defined on a derse subset 
showing the behaviour of the function after crension. Before going to the cxrrnple we 
further remark that it comes out easily that an erension of a polynomial function 
is the polyn.omial function. 

Example 3.1 : For simplicity of presentation we assume that k = 2. 	Let E be the 
rational 	subset 	of [— 4, A]. 	Consider the 	function 	= 	- \ 	— 	E. i Cr) 	I 	/0 	x2) on 
Clearly 1(x) is BK.  on E. 	We now obtain an extension of f(x).on kb bit 

We see that f' (x) = x;1/(1 --x9 on E. Clearly f' (x) is increasing on E and is 
bounded on E. We take Em  = [ - cc, x] 11 E and for each x let 

G(x) = I.u.b. of ft (x) on E(,), if E(s) 	§6, 
= g.l.b. of J.' (x) on E, if E(s) 

Then we have 

G(x) = 	I _ 	 I.  

A/3 ' 	< x < 	 • • 
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x/V(1 — x 2), — < x 
_ I 

< X < CC . 

Clearly G (x) is increasing on ( — cc, cc) and hence, by Theorem 13 of Russell', it 
follows that the function F (x) defined by 

F (x) --= f G 	dt, a .< x b 
• 

is  %convex on [a, b]. This implies 

1 

= 1 	— x2), — 1 x 1, 
1 =  

il3  
is 2-convex on [a, b]. Further F' (x) exists at a and b and so, by Theorem 19 of Russell' 
F(x) is BV2  on [a, b]. Therefore F(x) is an extension of f(x) on [a, bj. 
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