J. Indian Inst. Sci., 64 (B), Nov. 19y3, Ppl. 299-. 09. (1) Indian Institute of Science, Printed in India.

## On functions of bounded $\boldsymbol{k}$ th variation

S. DE SARKAR AND A. G. DAS<br>Department of Mathematics, University of Kalyani, Kalyani, Nadia, West Bengal, Indja.

Received on December 18, 1982 ; Revised on April 16, 1983.


#### Abstract

Russell introduced the concept of functions of bounded $k$ th variation ( $B V_{k}$ functions) and obtained some properties. Das and Lahiri gave the definition of functions of related absolute continuity ( $A C_{k}$ functions) and proved interrelations between $A C_{k}$ and $B V_{k}$ functions. In this paper the authors consider the concept of $B V_{k}$ and $A C_{k}$ functions on a bounded set $E$ dense in itself and prove that these functions admit extensions to $B V_{k}$ and $A C_{k}$ functions on an interval $[a, b]$ containing the closure of the set $E$.


Key mords: $B V_{k}$ functions, $A C_{k}$ functions, $k$-convex functions, $k$ th Riemann (Riemann*) derivative.

## 1. Introduction

Russell introduced the concept of functions of bounded $k$ th variation ( $B V_{k}$ functions) on $[a, b]$ and studied in detail some of its fundamental properties. Whenever a function has been defined in the sense of bounded variation (of any type) there is always an attempt to introduce the concept of absolutely contiruous furctions (in some respects). This was done by Das and Lahiri ${ }^{2}$ where they defined absolutely $k$ th continuous functions ( $A C_{k}$ functions) on $[a, b]$ and obtained basic properties of these functions including the interrelations with $B V_{z}$ functions as in Russell ${ }^{1}$. In the last two decades many papers were published ${ }^{3-8}$ where the authors defined various types of functions of bounded variation on a set or relative to a set instead of some continuous interval $[a, b]$. It appears, therefore, reasonable to study $B V_{k}$ functions as well as $A C_{k}$ functions defined on a set instead of an interval, which we have attempted in this paper. We further show that a function which is $B V_{k}$ on a set $E$ can be extended to a function (not necessarily unique) which is $B V_{k}$ on an interval containing the closure of the set.

Let $a, b$ be fixed real numbers suth that $a<b$ and let $k$ be a positive integer greater than 1. By $E$ we shall always meen a sutset of $[a, b]$ cense in itself. The greatest lower bound and the least upper bound of $E$ will, respecticely, be c.eroted by $a$ and $\beta$. The Lebesgue measure of a set $A$ will be cenoiddty mA. The orcirerty $k$ th order derivative of $f$ at $x$ will be cenoted by $f^{k}(x)$.

Definition $1.1^{1}$ : Let $x_{0}, x_{1}, \ldots, x_{z}$ be $k+1$ distinct points: rot mecesscrily in the linear order, belonging to $[a, b]$. Define the $k t h$ devicicd , iffererice of $f$ as

$$
Q_{k}\left(f ; x_{n}, x_{1}, \ldots, x_{k}\right)=\sum_{i=0}^{k}\left[f\left(x_{i}\right) / \prod_{\substack{j=0 \\ j \neq i}}^{k}\left(x_{i}-x_{j}\right)\right] .
$$

Definition 1.2: A function $f$ is said to be $k$-convex on $E$ if ard orly if $Q_{k}\left(f ; x_{0}\right.$. $\left.x_{1}, \ldots, x_{k}\right) \geqslant 0$ for all choices of the points $x_{0}, x_{1} \ldots, x_{k}$ in $E$.
Definition 1.3': Let $x, x_{1}, \ldots, x_{k}$ be $k+1$ distinct points in $[a, b]$. Surycse that $h_{i}=x_{i}-x, i=1,2, \ldots, k$ and that

$$
0<\left|h_{1}\right|<\left|h_{2}\right|<\ldots<\left|h_{k}\right| .
$$

Then define the $k$ th Riemann ${ }^{*}$-derivative of $f$ at $x$ by $L^{k} f(x)=k!\lim _{h_{k \rightarrow 0}} \lim _{h_{k-1} \rightarrow 0} \ldots \lim _{h_{2} \rightarrow 0}$ $Q_{\mathbf{k}}\left(f ; x, x_{1}, \ldots, x_{\mathbf{k}}\right)$ if the iterated limit exists. The right and the left $k$ th Riemenn*derivatives $D_{+}^{k} f(x)$ and $D_{-}^{k} f(x)$ are defined in the obvious way.

When the $k!h$ Riemann derivative, in the sense of Bulle. ${ }^{9}$, exists for $h_{0}=0$ it coincides with the $k$ ih Riemann*-derivative. The $k$ th Riemann derivative in Bullen ${ }^{9}$ will be denoted by $\mathscr{D}^{k} f(x)$. The right and the left $k$ th Riemann derivatives will be denoted by $\mathscr{D}_{+}^{k} f(x)$ and $\mathscr{D}_{-}^{k} f(x)$ respectively.

If in Definition 1.3 the points $x, x_{1}, \ldots, x_{k}$ are in $E$, we say thet $D^{k} f(x)$ exists at $x \in E$ over the points of $E$. The cxistence of $\mathcal{D}^{k} f(x)$ at $x$ over the points of $E$ is analogously understood. Whenever we say $D^{k} f(x)$ or $\mathcal{D}^{k} f(x)$ or $f^{k}(x)$ exists on $E$ we mean their existence over the points of $E$.

By a $\pi$ subdivision of $E$, we mean a finite set of points $x_{0}, x_{1}, \ldots, x_{n}$ in $E$, with $x_{\theta}<x_{1}<\ldots<x_{n}$ and we denote it by $\pi\left(x_{0}, x_{1}, \ldots, x_{n}\right)$,

Definition 1.4: The total $k$ th variation of $f$ in $E$ is defined by

$$
\dot{V}_{k}[f ; E]=\sup _{\pi} \sum_{i=0}^{n-k}\left(x_{i+2}-x_{i}\right) \mid Q_{k}\left(f ; x_{i}, x_{i+1}, \ldots, x_{i}\right)!.
$$

If $V_{k}[\dot{f} ; E]<+\infty$ we say that $f$ is of bounded $k i h$ variation $\left(B V_{k}\right)$ on $E$ and write $f \in B V_{k}[E]$.

[^0]$2, \ldots, n$ form an elementary sys ${ }^{2} \mathrm{~cm} I$, sity, in $E$. The system is cinoted by $/\left(x_{i}, \ldots\right.$, $\left.\ldots, x_{i} \cdot k-1\right):\left(x_{i}, 0, x_{i} \cdot k^{\prime}, i=1,2, \ldots, n\right.$. The elementary system corsistin:g of the intervals ( $\alpha, x_{1}, 0,\left(x_{1}, k, x_{2}, 0\right), \ldots,\left(x_{n}, k, f\right)$ is seid to be the elenicr. $1 ;$ ry system complementary to $I$ and will be denoted by $I_{c}$. It is to te noted thet $I$ ard $I_{\text {e }}$ logelher foim an elementary system of $E \cup\{a, f ;$ ?.
Definition 1.5 : The function $f$ is said to be absolutely $k \nmid h_{1}$ contint ous on $E$ if for en arbitrary $\epsilon>0$ theie exists a $\delta(\epsilon)>0$ such that for any elementary systim $/\left(x_{i} \cdot 1\right.$, $\left.\ldots, x_{i+k-1}\right):\left(x_{i \cdot 0} \cdot x_{i \cdot k}\right), i=1,2, \ldots, n$ in $E$ with $m I=\sum_{i=1}^{n}\left(x_{i}, k-x_{i \cdot n}\right)<0$ the relation
$$
\sigma ; I\left|=\sum_{i=1}^{n}\left(x_{i-k}-x_{i, 0}\right) \quad\right| C_{k}\left(f ; x_{i}, 0, x_{i}, 1, \ldots, x_{i}, k\right) \mid<\epsilon
$$
is satisfied. In this cese, we say that $f$ is $A C_{k}$ on $E$ and we write $f \in A C_{k}[E]$.
Following Dis and Lahirit, Theorm 1, it is easy to prove the followirg rcsult :
Theorem 1.1: If $f \in A C_{k}[E]$, then $f \in B V_{k}[E]$.
That the converse of the above theorem is not necessarily tree is shown by an cxample in Section 2.

## 2. $B V_{k}$-and $A C_{k}$-functions on $E$

Thecrem 2.1: If $f$ is $k$-convex on $E$, and $\mathscr{D}_{+}^{x-1} f(\alpha), \mathscr{D}_{-}^{k-1} f(\beta)$ both cxist, then $f \in B V_{k}[E]$. (cf. Russell ${ }^{1}$, Corollary following Theorem 17).

Theorem 2.2: If the $k$ th Riemann* derivitive of a funct on $f(x) \in A C_{k}[E]$ is zeto ilmost everywhere in $E$. then the function $f(x)$ is a polynomial of degree $(k-1)$ atmost (cf. Dis and Lahiri², Thocrem 2).
The proofs of the above two theorens are omited.
Remark 2.1: For $k=1$, Theo em 22 demands a simp!er s'a'ement.
If the ciciaative of a function $f(x) \in A C[E]$ is zoro almost elcryuhere in $E$, then $f(x)$ is conslent on $E$.

Theorem 2.3: If $f$ is $A C_{k}$ on $E$, then $f$ has contiruous $(k-1)$ th Ricmarn*-derivatives, $D^{k-1} f(x)$, at cerh point $x$ of $E(x \neq \alpha, \beta)$.
Proof : Let $c$ be a point of $E(c \neq \alpha, \beta)$ and let $\epsilon>0$ be arbitrary. Since $f$ is $A C_{k}$ on $E$, there exis!s $\delta_{1}(c)>0$ such that the condition of the cefinition of $A C_{k}$ on $E$ is satisfied with $\epsilon$ replaced by $c /(k-1)!3 k$. We choose points $z_{p-k+1}<z_{p-k}$. $<\ldots<z_{p-1}<z_{p}=c<d=z_{p \cdot 1}<\ldots<z_{p z-1}<z_{p} \cdot k$ of $E$ such that $\left(z_{p z}-z_{p-k \cdot 1}\right)$ $<\delta_{1}$. Choose a positive integer $i$ such thet $p-k+1 \leqslant i \leqslant p$ and consider the elementory system consisirg of a sigle interval

$$
I\left(z_{i}, \ldots, z_{i k-1}\right):\left(z_{i}, z_{i k}\right) .
$$

Using Lemma 4 of Russell ${ }^{1}$, we get

$$
\begin{aligned}
& \left|Q_{k-1}\left(f ; z_{i}, \ldots, z_{i k}\right)-Q_{k-1}\left(f ; z_{i} \ldots, z_{i k-1}\right)\right| \\
& \quad=\left(z_{i z}-z_{i}\right)\left|Q_{k}\left(f ; z_{1} \ldots, z_{i k}\right)\right|<\epsilon /(k-1)!3 k .
\end{aligned}
$$

This incquality is true for each $i=p-k+1, \ldots, p$. Proceeding as in the proof of Lemma 1 of Das and Lahiri ${ }^{-}$, we obtain

$$
\begin{align*}
& \left.\mid(k-1)!Q_{k-1}\left(f ; c, z_{p-1}\right), \ldots, z_{p-k+1}\right)-(k-1)!Q_{k-1}\left(f ; d, z_{p 2} \ldots,\right. \\
& \left.\quad z_{p-2}\right) \mid<c / 3 . \tag{1}
\end{align*}
$$

Since $f \in A C_{k}[E], \quad L^{k-1} f(x)$ exists at cach $x \in E(x \neq \alpha, \beta) \quad(c f$. Das and Lahiri2, Lemma 1). There exist $\delta_{g}(c)>0$ and $\delta_{3}(c)>0$ such that

$$
\begin{align*}
& \left|D^{z-1} f(c)-(k-1)!Q_{v-1}\left(f ; c, z_{p-1}, \ldots, z_{p-k+1}\right)\right|<\epsilon / 3  \tag{2}\\
& \left|D^{k-1} f(d)-(k-1)!Q_{k-1}\left(f ; d, z_{p+2}, \ldots, z_{p}+k\right)\right|<\epsilon / 3
\end{align*}
$$

where $c-z_{p-z}<\delta_{2}$ and $z_{9} k-d<\delta_{3}$.
Let $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. Then from (1) and (2) we obtain $\left|D^{k-1} f(c)-D^{k-1} f(d)\right|<\epsilon$ whenever $d-c<\delta$. This pioves that $L^{k-1} f(x)$ is continuous a.t $c$ from the right. Similarly, we obtain the left continuity of $L^{k-1} f(x)$ at $c$. Sirce $c$ is an arbitrary point of $E$, the theorem follows.

Theorem 2.4 : If $f \in B V_{k}[E]$, then $f^{k}(x)$ exists alnost everywhere in $E$.
Proof : Since $f \in B V_{z}[E]$, we have $f(x)=p(x)-q(x)$ where $p(x)$ and $q(x)$ are $k$-convex functions on $E$ (cf. Russell ${ }^{1}$, Theorem 15). It follows that $p^{k}(x)$ and $q^{k}(x)$ exist almost everywhere in $E\left[c f\right.$. Bullen ${ }^{9}$, Corollary $\left.15(b)\right]$. Let $p^{k}(x)$ and $y_{1}{ }^{2}(x)$ exist on the set $E_{1}$ and $E_{2}$ respectively. Then we see that $f^{k}(x)$ exists on the set $A=E_{1} \cap E_{2}$ and that $m(E \backslash A)=0$. This proves the theorem.

In view of Theorem 1.1, we obtain Corollary 2.1. If $f \in A C_{z}[E]$, then $f^{k}(x)$ exists almost everywhere in $E$.

Since the existence of ordinary cierivative $f^{k}(x)$ in plics the axistocice of $I^{k} f(x)$ we have

Corollary 2.2: If $f \in A C_{k}[E]$, then $D^{2} f(x)$ exists almost everywhere in $E$.
Theorem 2.5 : If $f \in B V_{k+1}[E]$, then $f \in A C_{k}[E]$.
Proof: Let $f \in B V_{k^{+}+1}[E]$. Then, it follows that $Q_{k}\left(f ; x_{0}, x_{1}, \ldots x_{z}\right)$ is bounded where $x_{1} \in E, i=0,1,2, \ldots, k$ (cf. Russell ${ }^{1}$, Theorem 4). Hence there exists a constant $M$ such that

$$
\begin{equation*}
\left|Q_{k}\left(f ; x_{0}, x_{1}, \ldots, x_{k}\right)\right| \leqslant M \tag{3}
\end{equation*}
$$

where $x_{i} \in E, i=0,1, \ldots, k$. Let $c>0$ be arbitrary. Then for any elemertary system

$$
I\left(x_{i}, 1, \ldots, x_{i}, k-1\right):\left(x_{i}, 0, x_{i} \cdot z\right), \quad i=1,2, \ldots, n
$$

in $E$, we sce, using (3), that

$$
\sum_{i=1}^{n}\left(x_{i, 1}-x_{i, 0}\right)\left|Q_{2}\left(f ; x_{i, 0}, x_{i}, 1, \ldots, x_{i}, k\right)\right|<\epsilon
$$

whenever

$$
\sum_{i=1}^{n}\left(x_{i, z}-x_{i, 0}\right)<\epsilon / M
$$

This proves the theorem. Utilising Theorem 1.1 and 2.5 we obtain.
Corollary 2.3 (cf. Russell', Theorem 10) $\because$ : If $f \in A C_{z} ;[E]$, then $f \in A C_{z}[E]$.
Remark 2.2: Corollary 2.3 shows the decreasing nature of the sequence of ses $\left\{A C_{3}[E]\right\}$.
Theorem 2.6 : If $f$ is $A C_{k+1}$ on $E$, then $f^{\prime}$ is $A C_{z}$ on $E$.
Proof: Let $c>0$ be arbitrary. There exists a $\delta(c)>0$ such that the condition of the definition of $A C_{z+1}$ functions on $E$ is satisfied with $c$ replaced by $c / 2 k(5+2 k)$ We choose points

$$
\begin{aligned}
& x_{1}, 0<x_{1}, 1<\ldots<x_{1}, 2 \leqslant x_{2,0}<x_{3}, 1<\ldots<x_{2}, 2 \leqslant \ldots \leqslant x_{n} \leqslant 0 \\
& <x_{n}, 1<\ldots<x_{n}, 2 k \text { of } E, \text { such that } \\
& \sum_{i=1}^{n}\left(x_{1}, g_{k}-x_{1}, 0\right)<\delta .
\end{aligned}
$$

Consider an elementary system

$$
I\left(x_{i} \cdot 1, \ldots, x_{i \cdot 2-1}\right):\left(x_{i, 0}, x_{i}, k\right) ; i=1,2, \ldots, n
$$

In view of Theorem 8 of Russell ${ }^{1}$

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|Q_{k-1}\left(f^{\prime} ; x_{i}, 0, \ldots, x_{i}, z-1\right)-Q_{k-1}\left(f^{\prime} ; x_{i}, \ldots, \ldots x_{i}, k\right)\right| \\
& =\sum_{i=1}^{N} \mid \sum_{i=0}^{k-1}\left[Q_{k}\left(f ; x_{i}, \ldots \ldots x_{i}, t, x_{i}, \ldots, x_{i}, z-1\right)\right. \\
& \left.-Q_{k}\left(f ; x_{i}, 1, \ldots, x_{1}, t, x_{i}, 1, \ldots, x_{i}, k\right)\right] \mid \\
& \leqslant \sum_{i=1}^{n} \sum_{i=0}^{k=1} \mid Q_{i}\left(f ; x_{i}, 0, \ldots, x_{i}, i, x_{i}, \ldots, x_{i}, k-1\right) \\
& -Q_{k}\left(f ; x_{i}, 1, \ldots, x_{i, t+1}, x_{i, t+1}, \ldots, x_{i, k}\right) \mid \\
& \leqslant \sum_{i=1}^{n} \sum_{i=0}^{k=1}\left\{\mid Q_{k}\left(f ; x_{i}, 0, \ldots, x_{i}, t, x_{i, k}, \ldots, x_{i, z-1}\right)\right. \\
& -Q_{k}\left(f ; x_{i}, \cup, \ldots, x_{i}, t, \xi_{i, z}, \ldots, x_{i}, k-1\right) \mid \\
& +\mid Q_{k}\left(f ; x_{i}, 1, \ldots, x_{i}, 1,1, x_{i}, t+1, \ldots, x_{i}, k\right)
\end{aligned}
$$

$$
\begin{aligned}
& -Q_{k}\left(f ; x_{i}, 1, \ldots, x_{i},+1, \xi_{i, t 1}, \ldots, x_{i, k}\right) \mid \\
& +\mid Q_{k}\left(f ; x_{i}, \ldots, \ldots, x_{i, t} . \xi_{i, t}, \ldots, x_{i, k-!}\right) \\
& \left.-Q_{k}\left(f ; x_{i, 1}, \ldots, x_{i, t+1}, \xi_{i, t: 1}, \ldots, x_{i, k}\right) \mid\right\}
\end{aligned}
$$

where $x_{i, s}<\xi_{i}, z<x_{i, s_{1}}$ and $\xi_{k, s} \in E$ for each $s=0,1, \ldots, k$. The existence of $f^{\prime}(x)$ on $E$ is ensured by Theorem 2.3 and the fact that $L^{k} f=f^{k}$ for $k=1$ if either exists.

Furthermore $\xi_{i}, \xi_{i}, \ldots, \ldots, \bar{\varepsilon}_{i, k} ; i=1,2, \ldots, n$ can be chosen such that

$$
\begin{aligned}
& \mid Q_{k}\left(f ; x_{i}, 0, \ldots, x_{i}, x_{i}, \ldots, \ldots, x_{i} \cdot k-1\right) \\
& \quad-Q_{k}\left(f: x_{i}, 0, \ldots, x_{i} \cdot t . \xi_{i}, t, \ldots, x_{i}, k-1\right) \mid<c / k .2^{i, z}
\end{aligned}
$$

and

$$
\begin{aligned}
& Q_{k}\left(f ; x_{i, 1}, \ldots, x_{i}, t 1, x_{i, t 1}, \ldots, x_{i}, k\right) \\
& \quad-Q_{k}\left(f ; x_{i}, 1, \ldots, x_{i, t 1}, \xi_{i}, t+1, \ldots, x_{i},{ }_{k}\right) \mid<c_{i}^{\prime} k .2^{\prime}
\end{aligned}
$$

when $i=1.2, \ldots n$ and $t=0,1, \ldots, k-1$.
Therefoie,

$$
\begin{align*}
& \quad \sum_{i=1}^{n} Q_{k-1}\left(f^{\prime} ; x_{i}, 0, \ldots, x_{i}, k-1\right)-Q_{k-1}\left(f^{\prime} ; x_{i}, 1, \ldots, x_{i, k}\right) \mid \\
& <c / 2+\sum_{i=0}^{k=1} \sum_{i=1}^{n} \mid Q_{k}\left(f ; x_{i}, 0, \ldots, x_{i} t, \xi_{i}, t, \ldots, x_{i, k-1}\right) \\
& \quad-Q_{k}\left(f ; x_{i}, 1, \ldots, x_{i, t-1}, \xi_{i, t 1}, \ldots, x_{i}, k\right) \mid . \tag{4}
\end{align*}
$$

We now corsider

$$
\begin{aligned}
& \sum_{i=1}^{n} \mid Q_{k}\left(f ; x_{i, 0}, \ldots, x_{i, t}, \xi_{i}, t \ldots, x_{i, k-1}\right) \\
& \quad-Q_{k}\left(f ; x_{1,1}, \ldots, x_{i, t: 1}, \xi_{i, t+1}, \ldots, x_{i}, k\right) \mid
\end{aligned}
$$

for a fixed $t$. For the sake of simplicity we present the case for $t=0$. This tiking $t=0$ we have

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|Q_{k}\left(f ; x_{i}, 0, \xi_{i, 0}, \ldots, x_{i, k-1}\right)-Q_{k}\left(f ; x_{i}, 1, \xi_{i}, 1, \ldots, x_{i}, k\right)\right| \\
& <\sum_{i=1}^{n}\left\{\left|Q_{k}\left(f ; x_{i}, 0, \xi_{i}, 0, \ldots, x_{i \cdot k-1}\right)-Q_{k}\left(f ; \xi_{i}, 0, x_{i \cdot 1}, \ldots, x_{i \cdot k}\right)\right|\right. \\
& +\left|Q_{i}\left(f ; \xi_{i}, n, x_{i}, 1, \ldots, x_{i, z}\right)-Q_{k}\left(f ; x_{i}, 1, x_{i}, 2, \ldots, x_{i, k^{-1}}\right)\right| \\
& +\left|Q_{k}\left(f ; x_{i}, 1, \xi_{i}, 1, \ldots . x_{i \cdot k}\right)-Q_{k}\left(f ; \xi_{i}, 1, x_{i}, 2, \ldots, x_{i}, k_{k}\right)\right| \\
& +\left|Q_{k}\left(f ; \xi_{i}, 1, x_{i, 2}, \ldots, x_{i \cdot k \cdot 1}\right)-Q_{k}\left(f ; x_{i, 2}, x_{i \cdot 3}, \ldots, x_{i \cdot 2,2}\right)\right| \\
& \left.+\left|Q_{k}\left(f ; x_{i \cdot 2}, x_{i}, \varepsilon, \ldots, x_{i \cdot k}\right)-Q_{k}\left(f ; x_{i}, 1, x_{i}, 2, \ldots, x_{6 \cdot k+1}\right)\right|\right\} \text {. }
\end{aligned}
$$

# on functions of bounded $k_{\text {th }}$ variation 

Consider now clementary systems

$$
\begin{aligned}
& I_{1}\left(\xi_{i}, 0, \ldots, x_{i, k-2}\right):\left(x_{i}, \ldots, x_{i-k}^{\prime}\right) ; \\
& I_{2}\left(x_{i}, 1, \ldots, x_{i \cdot k}\right):\left(\xi_{k, 0}, x_{i-k, 1}\right) ; \\
& I_{3}\left(\underline{\xi}_{i}, \ldots, x_{i}, k_{k}\right):\left(x_{i-2}, x_{i \cdot k^{\prime} 1}\right) \text {; } \\
& I_{4}\left(x_{i}, 2, \ldots, x_{i-k, j}\right):\left(\tilde{\epsilon}_{i, 1}, x_{i}, k_{2}\right) ; \\
& I_{5}\left(x_{i}, 2, \ldots, x_{i \cdot k_{1}}\right):\left(x_{i-1}, x_{i \cdot k}\right) ;
\end{aligned}
$$

$i=1,2, \ldots, n$. We then hatve

$$
\sigma|I,|<\epsilon / 2 k(5+2 h)
$$

for each $i=1,2, \ldots, 5$.
Hence

$$
\sum_{i=1}^{\dot{\Sigma}}\left|Q_{k}\left(f ; x_{i}, 0, \xi_{i}, 0, \ldots, x_{i}, k-1\right)-Q_{k}\left(f ; x_{i-1}, \tilde{\xi}_{i}, 1, \ldots, x_{i-k}\right)\right|<\epsilon / 2 k .
$$

Now let $t$ vary between $0 \leqslant t \leqslant k-1$ and consicier $5+2 t$ clementary systems so that the sum

$$
\begin{aligned}
\sum_{i=1}^{n} \mid & Q_{k}\left(f ; x_{i}, 0, \ldots, x_{i}, t, \xi_{i \cdot t}, \ldots, x_{i \cdot k-1}\right) \\
& -Q_{k}\left(f ; x_{i}, 1, \ldots, x_{i}, t \cdot 1, \xi_{i}, t, 1, \ldots, x_{i \cdot k}\right) \mid<\epsilon / 2 k
\end{aligned}
$$

for each $t, 0 \leqslant t \leqslant k-1$. Hence the double sum on the right of (4) is less than $\epsilon / 2$. Thus from (4)

$$
\sum_{i=1}^{n}\left|Q_{k-1}\left(f^{\prime} ; x_{i}, 0, \ldots, x_{i, k-1}\right)-Q_{k-1}\left(f^{\prime} ; x_{i}, 1, \ldots, x_{i, k}\right)\right|<\epsilon
$$

whenever $\sum_{i=1}^{n}\left(x_{i}, k-x_{i},{ }_{0}\right)<\delta$ and the theorem is proved.
Corollary 2.4 : If $f \in A C_{\boldsymbol{k}}[E]$, then $r^{\boldsymbol{k}-1} f \in A C[E]$.
We now present cxamples of $B V_{k}^{\prime}$ and $A C_{k}$ functions (on a relevant set).
Example 2.1 : We consider the furction $f(x)=a_{n} \cdot x^{n}+a_{n-1} \cdot x^{n-1}+\ldots+a_{1} x+a_{0}$ on a dense set $E$. If $n<k$, then by Lemmal of Russell ${ }^{1}$ it fiollows immeciatcly that $f(x) \in A C_{k}[E]$. We, therefore, assume $n \geqslant k$. To show that $f(x)$ is $A C_{z}$ on $E$ it is sufficient to show that $\lambda^{n}$ is $A C_{k}$ on $E$. Let $x_{0}, x_{1}, \ldots, x_{k}$ be a set of $(k+1)$ points on $E$. Then by $\$ 1.31$ (p.7) of Milne-Thomson ${ }^{10}$ it follows the:

$$
Q_{k}\left(\lambda^{n} ; x_{0}, x_{1}, \ldots, x_{k}\right)=\sum x_{0}^{a_{0}} \lambda_{1}^{a_{1}} \ldots \lambda_{k}^{a_{k}}
$$

Where the summation is extenced to all positive integers including zero which satisfy the relation $a_{0}+a_{1}+\ldots+a_{k}=n-k$. Since the above sum contains finite
number of terms it follows that there exists a positive number $M$ such that

$$
Q_{k}\left(\lambda^{n} ; x_{0}, x_{1}, \ldots, x_{k}\right)<M \beta^{a_{0}} \cdot a_{1} ; \cdots, a_{k}=M \beta^{n-k}, \beta \text { bcing the l.u.b. of } E .
$$

Let $c>0$ be arbitrary and consider an elementary system $I\left(x_{i}, \ldots, \ldots, x_{i-k-1}\right)$ : $\left(x_{i}, 0, x_{i}, k\right), i=1,2, \ldots, p$ in $E$. Then we must have

$$
\sum_{i=1}^{n}\left(x_{i, k}-x_{i}, 0\right)\left|Q_{k}\left(x^{n} ; x_{i}, 0, x_{i}, 1, \ldots, x_{i, k}\right)\right|<M\left|\beta^{n-k}\right| \sum_{i=1}^{n}\left(x_{i, i}-x_{i, 0}\right)<\epsilon
$$

whencere $\sum_{i=1}^{n}\left(x_{i}, k-x_{i}, 0\right)<\epsilon / M\left|\beta^{n-k}\right|$. This rroves that $\lambda^{n}$ is $A C_{k}$ on $E$ and hence $f(x)$ is $A C_{k}$ on $E$.

We next present an example which is a $B V_{k}[E]$ function but not an $A C_{k}[E]$ function To construct the example we necd the following two results fiom Russell ${ }^{1}$ which we state for ready refcrence.
Theorem $A$ (cf. Russell ${ }^{\text {, }}$, Theorem 13) : If $k \geqslant 0$ and $f$ is $k$-conlex on $[a, b]$, then

$$
f(x)=\int_{0}^{0} f(t) d t \text {, where } a<c<b \text {, is }(k+1) \text {-convex on }[a, b] \text {. }
$$

Theorem $B$ (cf. Russell ${ }^{1}$, Corollary to Theorem 17): If $k \geqslant 1, f$ is $k$-convex on $[a, b]$, and $D_{+}^{k-1} f(a)$ and $D_{-}^{k-1} f(b)$ both exist, then $f \in B V_{k}[a, b]$.

Example 2.2: To simplify the situation we assume that $k=2$. Lct $P_{0}$ be the Cantor perfect set and $G_{0}$ be the Cantor open set. Let $f(x)$ be the function $\theta(x)$ as described in Natanson ${ }^{11}$, (Example, p. 213). Then $f(x)$ is defined everywhere on $[0,1]$ and is non-decrersing and hence $B V$ on $[0,1]$.

By Theorems $A$ and $B$, it follows that the function $F(x)$ defined by

$$
F(x)=\int_{0}^{0} f(t) d t, \quad 0 \leqslant x \leqslant 1,
$$

is $B V_{2}$ on $[0,1]$. We now observe that $F^{\prime}(x)=f(x)$ on a certain set, say $E \subset[0,1]$ with $m E=1$. Clearly then $F(x)$ is $B V_{\leq}$on $E$. If possible, let $F(x)$ be $A C_{2}$ on $E$. Then by Corollary 2.4, $F^{\prime}(x)=f(x)$ is $A C$ on $E$. Since $f^{\prime}(x)=0$ on $E \cap G_{0}$, by Remark $2.1, f(x)$ is constant on $E$ which however is not the case. This contradiction proves that $F(x)$ is not $A C_{\varepsilon}$ on $E$.

## 3. Problems of extensions

In this section we prove three theorems of which the first two generalise two results in Lemma 4.1 of $\mathrm{Saks}^{29}$ (p. 221).
Theorem 3.1: If $f$ is $k$-convex on $E$ and $\mathscr{D}_{+}^{k-1} f(a), \mathscr{D}_{-}^{x-1} f(\beta)$ exists, then $f$ admits an extension to $F$ on $[a, b]$ where $F(x)$ is a function $k$-convex on $[a, b]$.

Proof: It is easy to show thet $D^{k-1} f(x)$ exists on a set $E^{\prime} \subset E$ such that $m E^{\prime}=m E$ and $D^{k-1} f(x)$ is non-decreasing on $E^{\prime}$. Therefore by Lemma 4.1 of $\operatorname{Saks}^{1 x}$ (p. 221), there exists a function $G(x)$ which is nor-decreasing on the whole real line $R_{1}$ and coincides with $D^{2-1} f(x)$ on $E^{\prime}$. By repeated application of Theorem 13 of Russell ${ }^{1}$ the function

$$
g(x)=\int_{e}^{\infty} \int_{0}^{\infty k-2} \cdots \int_{0}^{\infty} \int_{0}^{\infty} G(t) d t \ldots d x_{k-3} d x_{k-2}
$$

$a<c<b$, is $k$-convex on $[a, b]$. We see that $D^{k-1} g(x)=G(x)=D^{k-1} f(x)$ on $E^{\prime \prime}$ where $E^{\prime \prime} \subset E^{\prime}$ and $m E^{\prime \prime}=m E^{\prime}=m E$. This implics

$$
\begin{equation*}
D^{k-1}[f(x)-g(x)]=0 \tag{5}
\end{equation*}
$$

on $L^{\prime \prime}$.
In fact $g(x)$ is $k$-convex on any closed interval containing $[a, b]$ and so by Theorem 7 of Bullen ${ }^{9} D_{+}^{k-1} g(a)$ and $D_{-}^{k-1} g(b)$ csist. This by Corollaty to Theorem 17 of Russell $g(x)$ is $B V_{z}$ on $[a, b]$ and hence, by Theorem 2.5, $g(x)$ is $A C_{i-1}$ on $[a, b]$. Also by Theorem 2.1 and $2.5, f(x)$ is $A C_{k-1}$ on $E$. Therefore from (5) and Th.eorem 2.2, it follows that for $x \in E, f(x)-g(x)=a$ polynomial of degree $(k-2)$ atmost $=p(x)$ say.

Clearly $p(x)$ is $k$-contex on $[a, b]$. Now we sce that the function $F(x)$ defined by $F(x)=g(x)+p(x)$ is $k$-conlex on $[a, b]$ and $f(x)=F(x)$ on $E$. This proves the theorem.
Theorem 3.2: If $f$ is $B V_{k}$ on $E$, then $f$ admits an extension to $F$ on $[a, b]$ where $F(x)$ is $B V_{k}$ on $[a, b]$.
Proof: Let $f$ be $B V_{k}$ on $E$. It is easy to show that $D^{\mathbf{2}} f(x)$ exists on a set $E^{\prime} \subset E$ such that $m E^{\prime}=m E$ and $D^{k-1} f(x)$ is $B V$ on $E^{\prime}$. For each $x$, let $E_{(\rightarrow)}^{\prime}=(-\propto, x] \cap E^{*}$. For each $x$ we define

$$
\begin{aligned}
V(x) & =V\left(D^{t-1} f ; E_{(0)}^{\prime}\right) & & \text { for } E_{(0)}^{\prime} \neq \phi \\
& =0 & & \text { for } E_{(0)}^{\prime}=\phi .
\end{aligned}
$$

Clearly $V(x)$ is non-decreasing on the whole real line $\mathrm{R}_{1}$. For $\dot{x}_{1}>x_{2}$ and $x_{1}, x_{2} \in E^{\prime}$ we have

$$
\begin{aligned}
& {\left[V\left(x_{1}\right)-D^{k-1} f\left(x_{1}\right)\right]-\left[V\left(x_{2}\right)-D^{k-1} f\left(x_{9}\right)\right]} \\
& \quad=\left[V\left(x_{1}\right)-V\left(x_{2}\right)\right]-\left[D^{k-1} f\left(x_{1}\right)-D^{k}{ }^{k} f\left(x_{2}\right)\right] \\
& \quad=\left[V\left(D^{k-1} f ; E_{\left(0_{1}\right)}^{\prime}\right)-V\left(D^{k-1} f ; E_{\left(b_{2}\right)}^{\prime}\right)\right]-\left[D^{k-1} f\left(x_{1}\right)-D^{k-1} f\left(x_{2}\right)\right] \\
& \quad=V\left(D^{k-1} f ; E^{\prime} \cap\left[x_{1}, x_{2}\right]\right)-\left[D^{k-1} f\left(x_{1}\right)-D^{k-1} f\left(x_{2}\right)\right]
\end{aligned}
$$

$\geq 0$.
This shows that $V(x)-D^{k-1} f(x)$ is non-decreasirg on $E^{\prime}$. Hence, by Lemma 4.1 of Saks ${ }^{12}(\mathrm{p} .221)$ there exists a furctior $G(x)$ which is ror-c'ecreasirg or $R_{1}$ and coincides with $V(x)-D^{k-1} f(x)$ on $E^{\prime}$. By repeated spplication of Theorm 13 of Russell ${ }^{1}$ we see that the functions

$$
\begin{aligned}
& g(x)=\int_{c}^{\int_{c} \int_{c}^{2} \ldots \int_{0}^{0} \int_{0}^{2} G(t) d t \ldots d x_{k-3} d x_{k-2}, \quad a<c<b, \quad \text { and }} \\
& v(x)=\int_{0}^{x} \int_{c}^{x_{k}^{2}} \ldots \int_{0}^{f_{2}^{2}} \int_{0}^{1} V(t) d t \ldots d x_{k-3} d x_{k-2}, \quad a<c<b,
\end{aligned}
$$

are $k$-convex on $[a, b]$. Also we sec that

$$
D^{k-1} g(x)=G(x)=V(x)-D^{k-1} f(x)=L^{k-1} v(x)-D^{k-1} f(x)
$$

on $E^{\prime \prime}$, where $E^{\prime \prime} \subset E^{\prime}$ and $m E^{\prime \prime}=m E^{\prime}=m E$.
Hence

$$
\begin{equation*}
D^{k-1}[g(x)+f(x)-v(x)]=0 \tag{6}
\end{equation*}
$$

on $E^{\prime \prime}$. Now $g(x)$ and $v(x)$ are $k$-convex on $[r, b]$ and by the same argument as in the proof of the previous theorem, $L_{+}^{k-1} g(a), D_{-}^{k-1} g(b), D_{+}^{k-1} v(a), D_{-}^{k-1} v(b)$ exist. So by Theorem 19 of Russell ${ }^{1}$ the furction $s(x)=v(x)-g(x)$ is $B V_{k}$ on $[a ; b]$. Also $f(x)$ is $B V_{k}$ or. $E$. Thus by Theorem 2.5, $s(x)$ and $f(x)$ are $A C_{k-1}$ on $E$. Henre by Theorem 2.2 ard the relation in (6) it follows thet for $x \in E f(x)-s(x)=a$ polynomial of degree $(k-2)$ atmost $=q(x)$, sey.

A polynomial of degree $(k-2)$ atmost is always a. $B V_{k}$ function and hence the theorem is proved with $F(x)=s(x)+q(x)$ on $[a, b]$.

Theorem 3.3: If $f$ is $A C_{k}$ on $E$, then $f$ admits an ex ension to $F$ on $[a, b]$ where $F(x)$ is $A C_{k}$ on $[a, b]$.

Proof: By Theorem 1.1, it follows thet $f \in B V_{k}[E]$. Also one may get :nalogues of Theorems 13 and 19 of Russell ${ }^{1}$ by replacing the interval $[a, b]$ by the set $E$. The procf now follows taking into consideration Thcorems 2.4 and 2.5 .

We now demonstrate below an example of a function defined on a derse subset showing the behaviour of the function after extersion. Before going to the example we furiher remark that it comes out easily that an ex'ension of a polynomial function is the polynomial function.

Example 3.1: For simplicity of presentation we assume that $k=2$. Let $E$ be the rational subset of $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Consider the function $f(x)=1-1^{\prime}\left(1-x^{4}\right)$ on $E$. Clearly $f(x)$ is $B V_{\Sigma}$ on $E$. We now obtain an extension of $f(x)$ on $[a, b]$,

$$
-\propto<a \leqslant-\frac{1}{2}<\frac{1}{2} \leqslant b<\propto .
$$

We see that $f^{\prime}(x)=x_{i}^{\prime} \sqrt{ }\left(1-x^{2}\right)$ on $E$. Clearly $f^{\prime}(x)$ is increasing on $E$ and is bounded on $E$. We take $E_{(z)}=[-\infty, x] \cap E$ and for each $x$ let

$$
\begin{aligned}
& G(x)=\text { l.u.b. of } f^{\prime}(x) \text { on } E_{(x)} \text {, if } E_{(x)} \neq \phi, \\
& =\text { g.l.b. of } f^{\prime}(x) \text { on } E \text {, if } E_{(s)}=\phi .
\end{aligned}
$$

Then we have

$$
G(x)=-\frac{1}{\sqrt{3}},-\infty<x<-\frac{1}{2},
$$

$$
\begin{aligned}
& =x / \sqrt{ }\left(1-x^{2}\right),-\frac{1}{2} \leqslant x \leqslant \frac{1}{2} \\
& =\frac{1}{\sqrt{3}}, \frac{1}{2}<x<\propto .
\end{aligned}
$$

Clearly $G(x)$ is increasing on ( $-\infty, \propto$ ) and hence, by Theorem 13 of Russell ${ }^{1}$, it follows that the function $F(x)$ defined by

$$
F(x)=\int_{0}^{0} G(t) d t, \quad a \leqslant x \leqslant b
$$

is 2 -convex on $[a, b]$. This implies

$$
\begin{aligned}
F(x) & =-\frac{1}{\sqrt{3}} x, \quad a \leqslant x<-\frac{1}{2}, \\
& =1-\sqrt{ }\left(1-x^{2}\right),-\frac{1}{2} \leqslant x \leqslant \frac{1}{2}, \\
& =\frac{1}{\sqrt{3}} x, \frac{1}{2}<x \leqslant b
\end{aligned}
$$

is 2 -convex on $[a, b]$. Further $F^{\prime}(x)$ exists at $a$ and $b$ and so, by Theorem 19 of Russell ${ }^{1}$ $F(x)$ is $B V_{2}$ on $[a, b]$. Therefore $F(x)$ is an extension of $f(x)$ on $[a, b]$.

## Acknowledgements

The authors wish to express their heartiest gratitude to Prof. B. K. Lahiri for his kind and helpful suggestions for the improvement of the paper.

## References

1. Russell, A. M.
2. Das, A. G. AND LaHiri, B. K.
3. Bhakta, P. C.
4. Bhakta, P. C. and Mukhopadhyay, D. K.
5. Cybertowicz, Z. and Matuszewska, W.
6. DAS, A. G. AND Lahira, B. K.
7. Jeffery, R. L.
8. SARKHEL, D. N.
9. Bullen, P. S.
10. Milne-Thomson, L. M.
11. Natanson, I. P.
12. SAKS, S .

Functions of bounded $k$ th variation, Proc. Lond. Math. Soc., 1978, 26 (3), 547-563.
On absolutely $k$ th continuous functions, Fund. Math., 1980, 105, 159-169.
On functions of bounded variation relative to a set, J. Ause. Math. Soc., 1972, 13, 313-322.
On approximate strong and approximate uniform differentiability, J. Indian Inst. Sci. 1979, 61 (B), 103-118.

Functions of bounded generalized variation, Comment, Matho Prace Mat. 1977, 20, 29-52.
On functions of bounded essential variation, communicated to Comment. Math. Prace Mat.
Generalised integrals with respect to functions of bounded variation, Can. J. Math., 1958, 10, 617-628.
On measure induced by an arbitrary function and integrals relative to a function of bounded residual variation, Rev. Roum. Math. Pures Appl., 1973, 18 (6), 927-949.
A criterion for $n$-convexity, Pacific J. Math., 1971, 36, 81-98.
The calculus of finite differences, Macmillan, London, 1933.
Theory of functions of a real variable, Vol. 1, Ungar, New York, 1961.

Theory of the integrals, Dover, New York, Warsaw, 1937.
I.I.Sci- -3


[^0]:    Let $x_{1, \theta}<x_{1,1}<\ldots<x_{1, k} \leqslant x_{2,0}<x_{2},{ }_{1}<\ldots<x_{2, k} \leqslant \ldots \leqslant x_{n, 0}<x_{n, 1}$ $<\ldots<x_{n}, k$ be any subdivision of $E$. We say that the intervals $\left(x_{i}, 0, x_{i}, k\right), i=1$,

