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Abstract 

The surface elevation of the wave produced by the applied shearing stress of the general type 
admitting of the transient and spatially periodic has been obtained in a closed form by a method 
involving integral representation. The integral has been numerically evaluated in particular case by 
Filon's method. 
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1. Introduction 

The classical problem of the effect of viscosity on infinitesimal waves in deep sea was 
solved by Basset' and Lamb 2 . Basset assumed that both the normal and shear stresses 
()lithe surface were zero and the wave motion was propagated by a train of disturbances 
a.tt. nbuted to the velocities. Lamb' considered the effect of surface stresses in two- 
dmiensional wave motion of a viscous liquid. 

Wave motion of liquid in a rectangular duct due to variable pressure has been investi- 
gated by Das'. It is well known that in a non-rotating system deep water waves are 
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dispersive whereas the shallow water WEN CS ire res-v-e- 7.:ctruatit and Rosenb1at 4  
have made initial value investigation into tbz eatcpantig eat= waves on a homo- 
geneous ocean of finite and infinite depth wtorna a mil= -74s ar in uniform motion. 
They have investigated the dispersive wave pitezaancra unr mai the principal 
features of the steady and the transient war arnica Tag mares on a rotating sea 
due to atmospheric disturbances has been ineszinget -ray  CTnrk 3aachi and Debnath 6  
considered travelling wind stress distributions as Car sithn at the oceans. Debnath 7  
considered the wind driven currents in a Dom-aaiits:mt 3iscanig shallow ocean with 
dissipating effect due to the bottom frietiestc. 

The present paper is concerned with the smcy 41 scat= -net fl aviscous incom- 
pressible fluid of infinite depth. The lanetagall sacs scr za act the surface is 
assumed to be of general type admirtirE cif de nuisitzda mar spanally reriodic. Thi s  
problem is considered in connection with the frier swiact 1r 1/12:111 WhC11 in blows over 
its free surface. 

2. Formulation of the problem 

We take the origin of coordinates on the Err. ata.-z.Litic sus tit and taxis 
vertically upwards. The x and z axes are talaa :air wrist. Cm acme:ming equations 
of motion are (cf. Lambl) 

1 
vV: u 	 (1) 

p 

= 	1 )p 

P 	g  ± V  V t7 (2) 

where u and v are velocities in x and y dir&itus 	 a _idle tacit coefficient 
of viscosity, p is the pressure and v: &rows tic zuctair 

VI! = 
)1" ay2  

The equation of continuity is 

(3) 

introducing the non-dimensional quantities 

, 	vL, 	x 	 it es* 	gras u 	=-3 x t = - 	--- 	g ----= 	 a 	g ---- yet 

in equations (1), (2) and (3), 

= L:1 

 we eel (ctergetmr. aski 

(4) 

g v 2  V s  (5) 
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d 	
= 

an 	Dx 	&3) 	 (6) 

where ci 2  denote the non-dimensional form of V:. 

We  assume 

Z0 4/ u 

	

3x 	y 	 (7) 

DO Zvi 
v =--- 

	

ay 	 (8) 

Pressure p is determined from the Bernouli's equation 

	

P 	gY. 	 (9) 

Substituting equations (7), (8) and (9) in equations (4), (5) and (6) we get the 
following expressions for # and tp as 

v20=0 

RI= v 2y, 
zr 

The boundary conditions are 

(10) 

(i) yi 	0 as y 	— co 	 (12) 

(ii) neglecting the surface tension, the stress conditions on the surface y = 0 
are 

(a) normal stress p i, = 0 	 (13) 

(b) tangential stress over an area is given by 

= f (x, t), lxj (1 

	

= 0 , lx1 > 1 	j 	
(14) 

where 	f (x, t) is any function of time t and even function of the space co-ordinate x. 

Equations (10) and (11) are to be solved in accordance with (12), (13) and (14). 

3. Method of solution 

As a general solution of Laplace's equations (10) and 01), we consider 

0 = 
	00 

[A emr Be -M] sin Mx dM, 
	 (15) 

a 

ao 
= et's' f [C eN  D rill cos Mx dM, 

• 

(16) 

Where A, B, C and D are functions independent of y and N is to be determined. 
Substituting (16) in (11), we get 

N 2  M 2  n, 	 (17) 

-1 
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where N is the positke root Of ets:ualiou (17). 
The boundary condition (Es -sal be satisfied if 

B = D = 0. 

Hence equations (1 5) and (111 freattue 

= e-ng 	el?' SM 	ar 
• (18) 

co 
y/ 	C 	Gas its alf 

• (19) 

Substituting çb and w in &pante& Cr Jai (Si we ga 
to 

u= 	At  f [MA 	— C31 frn cos Mx di,. 	 (20) • 
oc 

v = eas f [MA 	 sui Mx dile 	 (21) • 
Denoting the free surface zienum ru Pk we kale the kinematical relation as 

= v on y = 
In (22) 

Integrating (21), we get 
a) 

e--  = 	f M (A C 	Ph silit 	 (23) 

The values of A and C wifi rancrimer au 	n. tlit botreary conditions (13) and (14) 
and equation (9). 

Expressions for surftee va-es 

?V 
Pill = 	+ 2:Ty 

/st 
(24) 

- NE 
ct 

PIM y = = eas-: 	— 	 — ltral A —(g..11 —2MNn)C1 sin Mx dM. 
• 

Using boundary condition (14 we at 

n 2  + gM 2AFF C- 
- 2nMA7  — 

(25) 

s  ?v Again, Pg• = 	T- ?sr 

and 	-Pit y = 0 = _IOC] cos Mx dM (26) 
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Substitution of (25) into (26), result s as 

Pn ly = 

00 
= — ne-nf 

a 

A[4M3N (2M 2  - 10 2  gM 
cos Mx dM. (27) M 

Determination of A : 

The a pplied shearing stress can be written in the form 

f (x,t) cos Mx f f(11, t) cos Mfl di? dM = 7F-2  f 
0 	 • (28) 

us i ng  the condition in (14), we can find out the value of A from equations (27) and (28) 
as 

2e, 	(2n N g) M 	
1 

A= 4m3N + (2 Ap n)2 gm  f 1(. 0, 0 cos mp a 	(29) 
0 

Knowing A. the expression for surface elevation can be found out from equation (23). 

Special case 

We consider 

f(x, t) = S ea r  cos kx. 

2S 	I 	 (2n N g)  M  
So 	A = 

nit k 2  — M 2  gM + (2M 2  — n)2  4M3N 

x [lc sin k cos M M cos k sin Al 

(30) 

(31) 

• 

FIG 1. Variation of the surface elevation with 

at g = 3, I . X tsfas 
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Substituting the value of A in equation (23), we get the surface elevation n as 

25 e-st  = 
as 

If
K2—  M2  gM Al 

n 2M2  + 2MN  
+ 	n)2  — 4 Tv" 

x[k sin k cos M M cos k sin M] sin Mx dM. 	 (32) 
It is clear from equation (32) that the surface elevation decays with time. Considering 
the case when t = 3, the above integral is computed by Hon's method and the different 
values of the surface elevation n are plotted against x in fig. 1. 
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