STUDIES IN THE DIELECTRIC CONSTANTS OF FATTY ACIDS*

Part III. The Applicability of Jatkar's Equation to Concentrated Solutions of Esters of Fatty Acids

BY R. S. PHADKE

(Department of General Chemistry, Indian Institute of Science, Bangalore)

It is now generally accepted that the Debye-Clausius-Mosotti¹ equation for determining the dipole moment of polar substances is satisfactory, only when applied to vapours at low pressures and to dilute solutions of polar substances in non-polar solvents. The equation is not applicable to pure polar liquids or their concentrated solutions. Jatkar² in 1943 introduced the following equation and claimed that it was applicable to solids, liquids, gases and to concentrated solutions. The equation is

$$\frac{(\epsilon - n^2) M}{d} = \frac{4\pi N \mu^2}{3kT} \left(\frac{j+1}{j}\right),$$

where $j = \infty$ for gases and $\frac{1}{2}$ for solids and liquids.

٠

The experimental errors in the determination of dipole moments, from a study of concentrated solutions and of pure polar liquids, are very much less than those which occur in the case of vapours at low pressures and of dilute solutions. The present author has, therefore, attempted to study the applicability of Jatkar's equation to concentrated solutions of polar liquids. Investigations relating to the dipole moments of ethyl ricinoleate and ethyl ricinelaidiate in solutions of various concentrations in the following solvents: benzene, petrol, carbon tetrachloride and dioxane are presented in this paper.

EXPERIMENTAL

The experimental technique was the same as described in earlier investigations.^{3, 4}

The benzene, dioxane and carbon tetrachloride employed as solvents, were purified by standard methods as described by Weissberger and Prosskauer.⁵ Aviation petrol was fractionated and the fraction distilling over the range 70-80° C. was collected and further purified by the technique employed for benzene. The purity of the solvents was checked by determining density, boiling point and dielectric constant. The physical constants agreed closely with the standard values.

^{*} An abridged form of the thesis by the author, approved for the M.Sc. degree of the Bombay University. 31

To measure densities, a specific gravity bottle fitted with a thermometer was employed.

Refractive indices were determined with an Abbe refractometer, provided with an efficient thermostatic control.

Calculation of Dipole Moment.-The dipole moment was calculated on the basis of Jatkar's² equation[†]

$$\mathbf{P}_0 = \frac{(\epsilon - n^2) \times \mathbf{M}}{d} = \frac{4\pi \mathbf{N}\mu^2}{k\mathbf{T}} = \mathbf{P}_2 - \mathbf{P}_E$$

P₂, the molecular polarisation of the solute was calculated by the weight fraction method.

 P_E , the electronic polarisation of the solute was calculated by Jatkar's² formula:

$$P_{E} = (n^{2} - 1) \times \frac{M}{d}$$

Values at 25° C. of refractive index and of density of the pure substance were employed. It was assumed that P_E remained constant over the temperature range 25°-40° C.

RESULTS

The results obtained are presented in Tables I to IX.

TABLE I. Dipole Moment of Ethyl Ricinoleate in Benzene $P_{\rm m} = 407.9 \, \rm c.c.$

W ₂ (Ethyl rici- noleate)	e ^{1.5}	d1-2	Ps	$\mu \times 10^{-18}$ (Jatkar)
		Solvent: Benz	zene at 25° C.	
0.00000	2.273	0.8740		
0.09807	2.430	0.8750	1066-1	1.00 \
0.1379	2.500	0.8770	1075.1	1.00
0.4076	2.958	0.8870	1075.4	$1.00 \ \mu_{av} = 1.91$
0.6374	3.492	0.8982	1148.8	1.00
1.0000	4.075	0.9090	1102.8	1.93
		Solvent: Ben:	zene at 40° C.	
0.00000	2.243	0.8590		
0.90807	2.400	0.8615	1042 6	
0-1379	2.472	0.8642	1043.3	1.89)
0.4076	2.882	0.8750	1077.4	1.94 (-1.02
0.6374	3-420	0.8835	1122 5	1.87 may 1.95
1.0000	3.950	0.8990	1069.7	2.02 5

usual meaning.3

W ₂ (Ethyl rici- noleate)	€1.8	d1.2	P ₂	$\mu \times 10^{-18}$ (Jatkar)
		Solvent: Pet	rol at 25° €.	
0.0000	1.915	0.7006	1212	
0.1001	2.210	0.7206	1215.4	2.08 1
0.2100	2.320	0.7395	1169.4	2.02
0.3000	2.450	0.7532	1099.4	$1.93 + \mu = 2.03$
0.3811	2.705	0.7760	1187.9	2.05
0.5217	3.030	0.7984	1198.6	2.06
1.0000	4.075	0.9090	1102.8	1.93
5M		Solvent: Pet	rol at 40° C.	
0.0000	1.885	0.6850		
0-1001	2.180	0.7060	1235.9	2.16)
0.2100	2.260	0.7260	1109.7	1.99
0.3000	2.436	0.7404	1124.7	$2.01 \ \mu_{ov} = 2.09$
0.3811	2.685	0.7640	1202.6	2.12
0.5217	2.981	0.7876	1259.0	2·20 J
1.0000	3.950	0.8990	1069.7	1.93

TABLE II. Dipole Moment of Ethyl Ricinoleate in Petrol

W ₂ (Ethyl rici- noleate)	€1·2	<i>d</i> _{1·2}	P ₂	$\mu \times 10^{-18}$ (Jatkar)
	Solver	t: Carbon te	trachloride at	25° C.
0.0000	2.228	1.5850		
0.0995	2.555	1.4800	1156.6	2.00]
0-1595	2.695	1.4160	1151-6	1.95
0.2833	3.040	1.3080	1155.7	$2 \cdot 00 \} \mu_{av.} = 2 \cdot 01$
0.3493	3.252	1.2560	1202 . 8	2.06
0.5605	3.700	1.1180	1206.5	2-07 J
1.0000	4.075	0.9090	1102.8	1.93
	Solver	nt: Carbon ter	rachloride at	40° C.
0.0000	2.198	1.5565		• •
0.0995	2.520	1.4600	1140.2	2.03
0.1595	2.665	1.3980	1112.1	1.99
0-2833	2.980	1.2920	1128.7	$2 \cdot 02 \ \mu_{av.} = 2 \cdot 05$
0.3493	3.222	1.2380	1207.7	2.12
0.5605	3.617	1.1060	1179.5	2.08 3
1.000C	3.950	0.8990	1069.7	1.93
3	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

.

TABLE III. Dipole Moment of Ethyl Ricinoleate in Carbon Tetrachloride

TABLE IV. Dipole Moment of Ethyl Ricinoleate in Dioxane

W ₂ (Ethyl rici- noleate)	€1.3	d1.2	P ₂	μ×10 ⁻¹⁸ (Jatkar)
		Solvent: Dio.	cane at 25° C.	
0.0000 0.1115 0.2069 0.3432 0.5827 0.7347 1.0000	2 · 236 2 · 475 2 · 655 2 · 902 3 · 486 3 · 814 4 · 075	1.0277 1.0145 1.0040 0.9854 0.9581 0.9408 0.9090 Solvent: Die	1123 · 0 1094 · 3 1083 · 1 1170 · 8 1185 · 6 1102 · 8	$ \begin{array}{c} 1 \cdot 96 \\ 1 \cdot 92 \\ 1 \cdot 90 \\ 2 \cdot 02 \\ 2 \cdot 04 \\ 1 \cdot 93 \end{array} \mu_{av.} = 1 \cdot 97 $
0.0000 0.1115 0.2069 0.3432 0.5827 0.7347 1.0000	2.206 2.460 2.600 2.830 3.414 3.702 3.950	1.0127 1.0017 0.9925 0.9744 0.9476 0.9405 0.8990	1167 · 7 1051 · 9 1040 · 9 1147 · 0 1135 · 5 1069 · 7	$ \begin{array}{c} 2 \cdot 07 \\ 1 \cdot 91 \\ 1 \cdot 90 \\ 2 \cdot 04 \\ 2 \cdot 04 \\ 2 \cdot 02 \\ 1 \cdot 93 \end{array} \right\} \mu_{av.} = 1 \cdot 99 $

TABLE V. Dipole Moment of Ethyl Ricinelaidiate in Benzene

 $P_{\rm E} = 406 \cdot 1 \, \rm c.c.$

W,

(Ethyl ricine- laidiate)	€1·2	<i>d</i> _{1·2}	\mathbf{P}_2	$\mu \times 10^{-18}$ (Jatkar)	
		Solvent: Ben:	zene at 25° C.		
0.0000 0.1512 0.3007 0.4707 0.5841 0.7203 1.0000	2 · 273 2 · 542 2 · 820 3 · 195 3 · 500 3 · 845 4 · 560	0.8740 0.8800 0.8824 0.8890 0.8936 0.8988 0.9110 Solvent: Benz	1112.6 1131.9 1176.2 1223.5 1248.2 1273.9 tene at 40° C.	$ \begin{bmatrix} 1 \cdot 95 \\ 1 \cdot 97 \\ 2 \cdot 03 \\ 2 \cdot 09 \\ 2 \cdot 12 \\ 2 \cdot 15 \end{bmatrix} \mu_{av.} = 2 \cdot 03 $	·
0.0000 0.1512 0.3007 0.4707 0.5841 0.7203 1.0000	2 · 243 2 · 496 2 · 770 3 · 150 3 · 380 3 · 770 4 · 400	0-8590 0-8650 0-8704 0-8760 0-8812 0-8848 0-9020	1080-7 1107-4 1169-4 1121-8 1233-9 1228-8	$ \begin{bmatrix} 1 \cdot 95 \\ 1 \cdot 99 \\ 2 \cdot 07 \\ 2 \cdot 07 \\ 2 \cdot 01 \\ 2 \cdot 15 \end{bmatrix} \mu_{av.} = 2 \cdot 03 $	

W ₂ (Ethyl ricine- laidiate)	€1·2	d1.2	P ₂	$\mu \times 10^{-18}$ (Jatkar)
	•	Solvent: Pet	rol at 25° C.	
0.0000	1.915	0.7006	2.2	
0.1602	2.190	0.7294	1088.2	1.91)
0-3962	2.625	0.7720	1083.0	1.90
0.5298	2.930	0.8000	1106.8	1.94 / -1.96
0.5907	3.150	0.8140	1162.8	2.01
0.7305	3.530	0.8460	1177.5	2.03
1.0000	4.560	0.9110	1273-9	2.15
		Solvent: Pet	rol at 40° C.	
0.0000	1.885	0.6850		
0.1602	2-155	0.7144	1082.0	1.95)
0.3962	2.595	0.7600	1107.6	1.99
0-5298	2.880	0.7880	1094.4	$1.97 \ \mu_{ny} = 1.99$
0.5907	3.080	0.8020	1139.4	2.03
0.7305	3.460	0.8360	1158.0	2.00
1.0000	4.400	0.9020	1228-8	2.15

TABLE VI. Dipole Moment of Ethyl Ricinelaidiate in Petrol

W ₂ (Ethyl ricine- laidiate)	€1.3	<i>d</i> _{1·2}	P₂	µ×10 ⁻¹⁸ (Jatkar)
	Solver	at: Carbon Te	etrachloride at	25° C.
0.0000	2-228	1.5850	• •	
0.1012	2.550	1.4849	1119-2	1.95]
0.2200	2.800	1.3400	1095.0	1.92
0.4297	3.295	1.2130	1100.3	$1.93 \ \mu_{av} = 1.94$
0.6384	3.695	1.0885	1121.1	1.96
0.7833	3.925	1.0150	1129.6	1.97]
1.0000	4.560	0.9110	1273-9	2.15
, AN 1980133342.8	Solven	at: Carbon Te	trachloride at	40° C.
0.0000	2.198	1.5565	••	
0.1012	2.505	1.4700	1070.0	1.93
0.2200	2.710	1.3240	1024.0	1.87
0.4297	3.210	1.1950	1070.0	$1.93 \mid \mu_{av.} = 1.92$
0.6384	3.585	1.0750	1086.0	1.91
0.7833	3.800	1.0015	1094 • 1	1·97 J
1.0000	4.400	0.9020	1228.8	2.15

TABLE VII. Dipole Moment of Ethyl Ricinelaidiate in Carbon Tetrachloride

R. S. PHADKE

W ₂ (Ethyl ricine- laidiate)	€1.2	<i>d</i> ₁ .	P ₂	$\mu \times 10^{-18}$ (Jatkar)
		Solvent: Diox	cane at 25° C.	
0.0000 0.1003 0.2363 0.3600 0.6246 0.7070 1.0000	2 · 236 2 · 460 2 · 720 2 · 980 3 · 640 3 · 820 4 · 560	1.0277 1.0105 0.9979 0.9817 0.9529 0.9439 0.9439 0.9110	$ \begin{array}{c} 1178.9\\ 1110.7\\ 1129.2\\ 1210.4\\ 1215.0\\ 1273.9\\ \end{array} $	$ \begin{array}{c} 2 \cdot 04 \\ 1 \cdot 94 \\ 1 \cdot 97 \\ 2 \cdot 08 \\ 2 \cdot 09 \\ 2 \cdot 15 \end{array} + \mu_{av.} = 2 \cdot 02 $
0.0000 0.1003 0.2363 0.3600 0.6246 0.7070	$2 \cdot 206$ $2 \cdot 420$ $2 \cdot 674$ $2 \cdot 920$ $3 \cdot 525$ $3 \cdot 680$ $4 \cdot 400$	1.0127 0.9960 0.9856 0.9679 0.9409 0.9322 0.9020	1151 · 1 1088 · 5 1106 · 1 1167 · 4 1164 · 8 1228 · 8	$ \begin{bmatrix} 2 \cdot 05 \\ 1 \cdot 96 \\ 1 \cdot 99 \\ 2 \cdot 07 \\ 2 \cdot 07 \\ 2 \cdot 07 \\ 2 \cdot 15 \end{bmatrix} $

TABLE VIII. Dipole Moment of Ethyl Ricinelaidiate in Dioxane

TABLE IX. Dipole Moments of Ethyl Ricinoleate and Ethyl Ricinelaidiate in Various Solvents

Ethyl

Ethyl

•

t° C.	Solvent			Ricinoleate μ_{av}	Ricinelaidiate μ_{av} .
25	(Pure Liquid)	3		1.93	2.15
40	(Pure Liquid)	14.54		1.93	2.15
25	Benzene	6599 1917		1.91	2.03
40	Benzene			1.93	2.03
25	Petrol		200320	2.03	1.06
40	Petrol	25.23	9493) 941, 5	2.09	1.00
25	Carbon tetrachlo	oride	83835	2.01	1-22
40	Carbon tetrachlo	oride		2.05	1.94
25	Dioxane		• •	1.07	1.92
40	Dioxane	•		1.99	2.02 2.04

DISCUSSION

Tables I to VIII give the dipole moments of the two esters in different solvents. In Table IX, the values recorded for (μ_{av}) are averages of those obtained for various concentrations in the same solvent. It will be noticed

Studies in the Dielectric Constants of Fatty Acids-III 37

that the moments are unaffected by temperature. With different concentrations, maximum deviation from the average value of the dipole moment is not more than 6 per cent. This shows that Jatkar's equation gives consistent values of dipole moments when applied to pure liquids and their concentrated solutions.

The author desires to thank Dr. S. K. K. Jatkar for suggesting the problem and for the kind loan of his apparatus.

The author is indebted to Dr. B. Sanjiva Rao for his keen interest in the progress of this work and for valuable guidance in the preparation of this paper for publication.

Thanks are also due to Mr. P. Ramaswamy Ayyar and Dr. M. R. A. Rao for helpful suggestions.

References

1.	Debye	(Book) Polar Molecules, 1929.
2.	Jatkar	Nature, 1944, 153, 222.
	, Iyengar and Sathe .	J. Indian Inst. Sci., 1946, 28 A, Part II, 1-15.
	Jatkar and Iyengar .	Ibid., Part IV, pp. 27-37.
3.	R. S. Phadke	Ibid, 1952, 34, No. 3, 189.
4.		Ibid., 1952, 34, No. 4, 293.
5	Weissberger and Prosskauer	(Book) Organic Solvents, 1935.