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PROPAGATION OF MICROWAVES THROUGH A 
CYLINDRICAL METALLIC GUIDE FILLED 

COAXIALLY WITH TWO DIFFERENT DIELECTRICS 

BY S. K. CHATTER IEE, M.SC. *  

ABSTRACT 
The field components for the TE ed  mode in a cylindrical metallic 

guide completely filled with two different dielectrics have been derived 
from Maxwell's equations. The attenuation constant for this mode 
has been calculated with the help of the Poynting vector and the field 
components. 

INTRODUCTION 

The theory of microwave propagation through a metallic guide involves 
the solution of Maxwell's equations for certain boundary conditions at the 
boundary wall of the guide. The simplest case is that of a guide of uniform 
cross-section with infinitely conducting walls and filled inside with a 
homogeneous, isotropic dielectric. 

The theory of wave propagation in a dielectric guide has been studied 
by Hondros and Debye (1910), Zahn (1916), Carson, Mead, and Schelkunoff 
(1936). The experimental study in dielectric guides has been made by 
Schriever (1920) and Ka§par (1938). The propagation of electromagnetic 
waves in a metallic guide with a dielectric inside has been studied by Frank 
(1942), Pincherle (1944) and Frankel (1948). 

The paper reports on the study of the theory of the propagation of 
microwaves (TE" mode) in a cylindrical metallic guide of uniform cross- 
section, and completely filled coaxially with two homogeneous, isotropic 

1 avers of dielectrics of dielectric constant E, and E2 . 
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MAXWELL'S EQUATIONS 

The equations of Maxwell in m.k.s. units are expressed as follows : 

hB 
x E ht 

hD 
xHr--J+ bt  

. = 0 

. D == p 

0' 

The general solutions of these field equations has been obtained by Bromwich 
(1919) and Ledinegg (1942). The scalar components of E and H expressed 
in general orthogonal co-ordinates ul, u 2, u3  are given (Stratton, 1941) as 

. (h 2E )1 ± 	= 0 
h2h, bU 2 Vi31-131 	bU 3 	2  

I 	 — 	 bB2 
h3hi [ 
	 

E 1 	 (113E3)] 	—
zt 

= 0 	(2) 

Putting the values of the metrical coeffioients h 1, h2, h3  equal to unity and 
r, u 2  = 0, u3  = z and assuming that the conductivities of the metallic 

wall and the dielectric inside the guide are infinity and zero respectively, 
the equations (2) can be expressed in cylindrical co-ordinates (r, 0, z) as 
follows, with the further assumption that E = 

Miz  ?Ho  
r be 	= janEr  

Mir 	. 
jco Eno  

1 
r 	

04-10) 	?Fir 
r 	
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1 Ez 	hEe  

rt0bz = jo.)pEr  

(3) 

hEt. 	hEz  
br = j"11-1°  

ibE -r  b—r  krc o) 	s_or 	icojan,  

where B p,H and D = EE. 
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FIELD COMPONENTS OF TEK  MODE 
For this mode the lines of the electric field form a system of concentric 

circles about the z-axis in the dielectric. This is associated with uniform 
current flow in the 0 direction on the surface of the perfect conductor. The 
components Er, Ez  and Ho are each equal to zero. The normal mode field 
components for the TE E, mode are then obtained from (3) as follows: 

bit 
ZZ ' 	sr—  = ico€E0 

oE0  

I b (rE0) r 

juittH,. 

= jcoitH, 

(4) 

From (4) the following partial differential equation in E 0  is obtained 

Z2EfkP (rE )]-F w 2p,€E0  = 0. ?r Lr 	9  (5) 

This equation can be solved by the method of separation of variables. We 
attempt to find a solution which will consist of the product of a function of 
r alone and a function of z alone. Let the solution be expressed as 

Ee  = Re-", 	 (6) 

where R = f(r) only and y indicates the propagation constant in the z 
direction which is the direction of transmission. Substituting (6) in (5) and 
putting K 2  = y 2  ± (.0 2i.te, the following differential equation is obtained: 

d 11 d (7) dr L r dr 
as e-Yz 	0. 

The equation (7) when solved gives R in terms of the Bessel futictions of 
the first and the second kind. 

R = A.I 1  (Kr) ± BY 1  (Kr), 	 (8) 

where A and B are constants to be evaluated from the boundary conditions. 
The following field components are obtained from (4), (6) and (8). 

E9  = [Ast i  (Kr) BY'  (KO] 6'12  

H, =-- 	[A3 1  (Kr) ± BY1  (Kr)] E.  Yz  

Hs  = 	[Aio  (Kr) + BY0  (Kr)] rYz 	(9) 

The functions .1 p 's are finite and continuous everywhere in the two mediums 

but the function Yft's have infinite discontinuities in the axial region of the 
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guide. In other words, near the axis of the guide as r —0.0 the functions 
Y1  (r) 	00 and Yo  (r) 	- 00. So, the function Yp's cannot be used to 
express physically any finite field in the neighbourhood of the origin. There- 
fore, the terms involving Yp's can be omitted from the expressions for the 
field components in the inner dielectric (e 2). The field components for both 
the mediums can then be written from (9) as 

Eel = [AtJi ( Kir) + %Xi  (1( 101 
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FIG. I 

The following boundary conditions are satisfied 

H22  at r = r2  

PiHri a.= 11/211r2 at r =--- r2  as VP B=-- 0 
Eel  = 0 at r rt. 

• 
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Applying the boundary conditions, the following equations are obtained 
from (10 a) and (10 b). 

-.— [A iJo  (Kir) + B1Y0 (Kir)] re*" • eltot 

= .K2  [Ado  (K 2r)] e-12z 	 (11 a) 

7:1  istkiJi (Kir) -4-13 iYi  (Kir)] e-liz icy 

= 	[Ad (K 2r)] 0-73z 	 (11 b) .10) 

A13 1  (Kir) ± BiY i  (K ir) = 0. 	 (11 c) 

In order that propagation may take place through the guide, the propaga- 
tion constant y should be imaginary. This requires that the dielectrics 
should be perfect in that the attenuation constants of the two mediums are 
zero. So, Vi = 01  and 72  = 02 , where (3 1  and /32  are the phase constants for 
the mediums 1 and 2 respectively. 

Let plith = pl /902 = 5', P2 — 131 = P. 
The equations (11 a) to (11 c) reduce to the following : 

KiAlp Jo  (K ir 2) e' 	K iliBlY 0  (Kir 2) 	- K2A2 J o  (K2r2) = 0 

AiJi (Kiri) ± BiYi (Kiri) = 0 	 (12) 

(K1r2) 	 (K1r2) et3z — A2.1 1  (K2r2) = 0 

In order that A i, B 1  and A2 are not zero, the determinant of their coefficients 
must vanish or in other words, the following conditions must hold good : 

1 Kiptio (Kira eigz 	KittYo  (K1r2) ell?" 	— K 2J0  (K2r2) 

3 1  (K1r1 ) • 
 Y

i  (Kiri) 

P11 (Kira eiP 	f3'Y 1  (K/2) Az 	- J1 (K2r2) 

From (12) A i  and Bi  can be expressed in terms of A2 as follows : 

A1  Po (K1r2) Y1 (K1r2) Yo (K1r2) J 1  (K1r2)1 

1 (Kira — K1ttY0 (K1r2) J I. (K2r-.:)] (13 a) 

Vi  (K1r2) Jo  (K1r2)] K 1mf3 1  egg 

= A2 EK2n0 (1C2r2) J 1  (K1r2) 	(K2r2) J0  (10121 	b) 

• The equations (13 a) and (13 b) can be written (McLachlan, 1948) as 

A — — A 	K 	(K r ) Y (K r ) K ILY (K r )J (K r )1 e-111: 

1 	2 	[ 2431  -2 	0 	22 	1 	12 	I 	0 	121 	22 

(13 c) 

Bi  = A2 2131 M21310 (K-12) J 1(K1r2) 	KttiJo (K1r2) J 1  (K2r2)) e-1413:  (13 d) 

= A2 [K2g1•10 (K2r2) 

[-Ji (Kira yo (Kira — 
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Or, (13 c) and (13 d) can be written as 

A, =-- A 2.A' and B 1  = A2.B' 
	

(14) 
where 

nr2 	(K2r2) 
A ' = 

(K2r2) 

KoLY (K1r2)1 
e- 

Y 1  (Kir2) 
(14 a) 

and 
K2/3 1 .10 77r2  BI =-- 	, 2tif3 I J1 ( 

K2r2) 	K104 (K 1r2) I 
e–ifix 

K2r2) 	J1  (K 1 r2) 
( 1 4 h 

EVALUATION OF A2 

The constant A2 can be evaluated by integrating the Poynting vector 
over any cross-section normal to the axis of the guide. The average power 
flowing through the guide is given by the sum of 

£121  

P1 =-- f f Eo/Hri * rd0 dr 
nt 0 

and 
ra 217 

P2 = 
 0 

 f E1921-1,2* rd0 dr 
0 

where the subscripts 1 and 2 refer to the two mediums. The peak power 
flowing through the guide is therefore given by the following expression: 

r: 27 	 r i  27 

f Es2 Hr2 *  ref° dr ± j.  E01 1-1,1 * rd0 dr 
0 	0 	 r3 

2„A22 4[ 0f  r2rJi2  (1(26 dr —frir [AWICir)+13'irair)] 2  dr n   

(15) 
• 

In the above expression for the peak power flow K 2  y2  ± co 2tte. For 
both the mediums K 1  and K2 can be expressed in terms of the phase velo- 
cities vp  00 of the two mediums as 

v 2  K1 2 ==. ge2 v 	
— 1 ) and K 2 2  = 132 2 	9, 

C2-  

where c1  = (1/p1 €1); c2  = (14t2 e2)1 ; vn 	01131 ; vp2  = coh32. The argu- 

ment of the Besse' functions in the integrals for I; may be real or imaginary. 
Different cases will arise depending on the relative values of v p's with respect 
to cp's. However, the method of analysis remains unaltered irrespective 
of the valueof (vp/cp). Let us considerthat the constants of the two mediums 
are such that K2 is imaginary and K 1  is real. Let K2 = jIC. The field 
components in the second medium, therefore, involve Bessel functions of 
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complex argument and hence it is convenient to replace J o  and J i  for the second 
medium by the modified Besse] functions 1 0  and I as follows: 

ii (K2r) j1 1  (K'r) 
Jo  (1C2r) =--- I ()  (K'r) 

The integrals in equation (15) can be evaluated as follows: 

irJ 1 2  (Ke) dr 
110 

= r2 2  [IO2  (K i ra — 11 2  (Cr2) — 
210  (K'r 2) h  (K 'r 3 ] 

- v 1,--  - 1...r 2  

J r [A'Ji  (Kir)P dr 
r2 

(16 a) 

77 2r 2 2 ficiptio 	r2) 
	

K3pY0  (Kira 2 

jIi  (K ir2) 
	

Y 1 (K  ir2) 

X [r2  P1 2  (1( 34 — J0  (K ir) J es (KM}Y:s  r 
	

(16 b) 

r„ f r [B 1Y1  (K1r)j 2  dr 

2r2 2 rp, I0  (10.2) 

= 814' 	jI1  (K'r0 

K100  (K 1r2) 1 2  

Ji  (K ir2) I 

x [r 2 {1712  (Kir) — Y o  (Kir) Y2 (Kir)}}:' es2i 8t 
	

(16 c) 

.2  
2 f A'B'r.J 1  
f: 

2r22 

= 21AT 2  

X [4r2 {2J 1( 

(Kir) Yi  (Kir) dr 

j10310  (1< tr2) Kaca1r21 

j11  (..!Cra 	Y1 0C901 

Kir) Yi OCM—J00(16 Y2(K 

j/3 1K10  (K'r2) Kip.% (Kire)1 

j11  (1Cr2) 	Ji  (Kira! 

16—J2(K ir) Yo  (Kir)}1eryPt  

(16 d) 

The above expression show that the peak power is proportional to some 

function of K', K 1, ri  and r2. So, the expression for the peak power flow 

through the guide can be written from (15) and (16) as 

P • 	27r A 22  -fl F (Kc Ki, ri, r2) 	
(17) 

SC°  

The constant A2 is therefore given by 

A 	fig) 
=--- aF 	

(18) 

tj  . 



8 	
S. K. CHATTERJEE 

So, the field components for the two mediums can be written from (10), (14 
and (18) as follows : 

Eei 	1  [Ali (Kir) ± WY, (KA] e - /fl 

=-- 	4( 150 )1  [A'Ji  (K ir) + B'Y i  (K ir)] e-igg 

K7  ( Pmf ) 1  [Au°  (K ir) -I- n 0  (K ir)] Cag e  icat,  

E92  =)1 Ii (Ktr) e—Jaz 

Fin 	f-)Pf  )* I (IC r) e - 
flF 

K' esiti) 1̀  I()  (K'r) es-ms Hz2 	 f3F 

Or, expressed in real parts the field components can be written as 

41  =-- ( 130)1  [AU'  (K ir) ± 13 1171  (1CA cos f3z 

Hr1 == 	21; (1. -1F)1  [A 1.11  (Kir) + Tinii  (Kir)] cos flz 

i4 — K1  271.  (pip 	%? 
) 1(  [AI (Kir) + no (Kir)] sin /3z -  

tell  ) 1  (K'r) sin 13z = 

1
1r 
P 2477 	fir,) 1  (K'r) sin flz 1.  

Ha 	 ( P 
)
1 	(K'r) cos fiz =-- -45; wei3F (19) 

ATTENUATION CONSTANT 

In the ideal case when the conductivity of the boundary wall of the 
guide is infinity and that of the dielectric is zero, the boundary condition 
is simply n x E = 0 at the surface where n is the outward normal to the sur- 
face. But if the dissipation due to the finite conductivity of the wall and the 
dielectric is considered, the boundary conditions are simply the continuity 
of both E. and Ht.,. The transmission takes place in the direction of 
the guide axis (z) and the amplitude varies as e-Ys  where the propagation 
constant y involves the attenuation constant a per unit length. The 
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attenuation constant a is given in terms of the mean energy W transmitted 
through the guide by the following equation 

or in terms of E and H 

1 1 zW 
2W bTL  (20 a) 

[— f ds (E.H*) ] a -= Re 	- 	- 	P-# (20 b) 

The subscripts r and z in (20 b) indicate the direction of the power flow, i.e., 
power dissipated and transmitted respectively. The attenuation is due to 
imperfect conductivity of the boundary wall of the guide and also due to finite 
conductivities of the two dielectric mediums. For the metal boundary a> >0) E 

except at extremely high frequencies and the following relation holds good : 

Etan = 77Htati) 

where the intrinsic impedance 77 of the metal is given by Re (n) = (IT !N)k 

and the direction of E is such that the Poynting vector is directed into the 
metal. The equation (20 b) can be written as 

a =-- Re 	 (20 c) 
2ff (E,f1-19 1 	E6/1-1,1), dsi 

[ _ 	f f (E •H*) ds  

which in the present case can be reduced to 

a— i Re 
ri  v 	 2. 

si 2 W 	 -1 
f f (Fij i ) ?  dedr + 	Ein'Hzi ' rda dr ± f r2f f f 	 E92 '  H'..2 rd0 dr 

r2 0  	 n 0 	 0 0 

n 27r 	 n ;iv 	 2 r 

Eel '  1-1,1 ' rde dr ± 1 1 E 91' 14,.,' rd0 dr +1 
0 	

2
1 

2 H' rdOdr r 	i 
r2 0 	 r2  0 	 0 7  

(20 d) 

The prime on E's and H's indicate amplitude values of the field components. 

The integrals in (20 d) can be evaluated with the help of (19) as follows: 

r 	27r 

f f 	rde dr 
0 

r, 

r [A' 2  J 1 2  (K1r) 	B' 2Y 1 2  (KIT) 	2A` B'Ji  (Kin Yi (Kit')] dr 

,2 - 	(21) 

• 	 E92 Hr2 1  SOdr 
0 0 

Fa-  j2  
0 

r1 1 2  (K' r) dr 
(22) 

which have been evaluated in (16). 
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f rif 27rE le H r de dr 
12 0  fr, 

—f flF r [A% t (Kir) Jo  (Kir) + B' 2Y1  (K ir) yo  (Kir) 

12 

Alni (Kir) Yo  (Kir) + A'B'Yi  (Kir) Jo  (K 1r)1 dr 	(23) 

The products of two Bessel functions have been expressed in terms of infinite 
series by Or (1900), Nielsen (1904), Watson (1922), Whittaker and Watson 
(1927). The integrals in (23) have been evaluated term by term and the 
results are as follows : 

fi 

f ril l  (Kir) Jo  (Kir) dr 
12 

r 34.2s 	ri 
=-- [ 	 9 

3=0 	 ZSJ r, 

where 	vs, 	-214-28 (0) 2  RI 	n 2  
I ill  (Kir) Yo  (K ir) dr 

r2 

(23 a) 

T1 

77 

1 	C°  
Ws, 2 f 	r2+ 2s dr 	- 	E vs, 3 rzi- v {2 log (Kir) + 'so  4} dr 7T 
  0 	 0 

1 fa 	 3  

1 [ —1 
2 

r3+' 12 	r 	I  r 3+2s 	 raent  = 	E 	— - - 	 {27T s, 3 k 3 ± 2s log -2. 
iv \ 

X3+2) 77 	
0 s, 

Zn)  ri 	7T 	0 

r3+' 11" 
174 , 3 7rsi 4 3 ± fa 

where 
(—s-1)! 1(1144j  (2+ A rst  2 'r-7. 

 

(23 h) 

(— 1) (s 	K114.2' 
vs, 	214- v (s 	r -I- 2) 

Vs, = 2 (2s 4- 2) — 	± — 	1)], 
where tk represents the logarithmic derivate of the Gamma function and 

represents the Gamma function (Nielsen, 1906). 
ft 
rYi  (Kir) Jo  (K 1r) dr 

f2 
r, 

00 
= -I S ir s.  5 {2rv+ 2  log (K ir) 4- ir sp  4 r2s+2} dr 7T it cc 0 

12 

1 el° 	[
2  — 	 - 	g 1.(Kir) — 

Trete 
Ev st 5 	2s + 3 lo  

r zs+ 3 	
r 2.74-3 in 

(23 c) ors  3)2) + 751 4  2s 
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where 
(— 1)' K1v÷1  (s  + 2), 

7'1 5 	2'j ! + s)! I' (1 + s) 
(Kir) yo  (Kir) dr 

= 1[72, yrJ 0  (Kir) + 772.  r log 4 (K1r))J0  (Kir) 
r2 

Essri+2S x [12T 7.1 1 (Kir. . 27.  ) ± log 4  (Kir) J1  (Kir) 

Surl+v idr 	 (23 d) 
't o 

where y --= Euler's constant = 0 • 5772 

= 2(— 1)1  Ki 2er 
Ss 	 •. 

1 (— 	K.,1-Far 
sit = 21+ 2t s! 	± es)!  11 + 	.... 	+1+++....-F i+ .,, 	 s} 

The expression in (23d) have been integrated term by term as follows: 

f rirJo  (Kir) J2  (Kir) log (Kir) dr Ti 

Co 	T34-2: 	°°1-7 	r an;   r 
= [ D., 	2--s  —;-; 111.cp log (Kir) E  a=0 

fi 
a

f 
rJ 0 (K1r)E Sk r 2 dr 

8=0 
72 

f 
rs oo 

dr.-. 	E vs, 6 rti-zr rsi, , r
inr dr  

sio 	2=0 
r2 

The above integral can be written as (Bromwich, 1926; 

= r i c ' 
r' 11  

L, $ 27+-2-S-  r: 

where 
inciv 

errs, 	12fr (i!) 2  
COI 	VO, 6 Sl, 0 

O,6 	+ nit 8  51, (n) + • • • • ± Vs, 6 S11 0 

(23 di) 

Phillips, 1939) 

(23 da 
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r, 

frJo  (Kin J 1  (Kir) [log (KA] 2  dr 

2 00 
 = [flog (K ir)} Livs,1  ± 2s 

	
2 {log (K 1  r) E 7T _3 	 si (3 ± 2s) 2 } s=0 	 s=0 

r 3+ 2s i n 
± 2E n 1 3 	 -- 

..0 	(3 ± 2s) r2 
F1  

Jr 
log (Kir) Jo  (K ir) ES1 ,,r1-1-25  di 

•=0 
12 

oo .2+ 2s 
= [log (Kir) 	c ' r 2+  — 	c' 1  

s=0 s 2 ± 2s 1=0 	(2
--- 
 2s) 2  

1, 

I 00 
 (Kir) 113  Ssia+ 2s  dr 

P=1„ 
r2 

(23 d3) 

(23 da 

00 ff  1.2-f-zs 	 r5+25 = [ 
	5 + 2 s=0 s 2 	2s  

a=0 

where 

/4+ 2s  Fa 
— 	S Si 7 0 3 ± 2s  

8=0 	 J r: 
(23 do 

(— 1 )'se 1( 1+2s ' 1 7T =- - 
SI -I 	

21+2S S

- 
(1 -F s) 

co° n- 7T9, 7  So  

'I  Cs  	7To, 7 Ss  + 	+ 	S s, 7 	0 

I log (Kir) J1  (K /r) S s5r1-f-2s di 
8 1 

	

CO 	r 2+ 23 	co  
= [log (Kir) csn 	Sc;,s=0 	s 

	

— log (K,r)Y S i  7 	1.5+ 2rr  
8=0 	S'  51- 2s 

r 2+ 2: 

(2 ± 2s) 2 

cc 

+ S S1 r• s, 7 	- 
8= 0 	(5 ± 2,5) 2  

00
00 

 

E So  77 7   
s  =0 	r.  3 ± 2s + 

1=0 ors, 7 	- 
r  3+2s it' :  — log i 

(3  ± 2.;)-2  

r  

Ti 

 oz, 

) 	 0 
si, s ri+ 2s dr 

s   f2 

c 
1=0 s 2 + 2s 

raw 
s S0 3  + - 8=0 	 zs 

1.5+2,s 	r: 
— the  St S 	_ 

8 =0 
S 	5  + 2s  

T: 

(23 d7) 
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where 

es"' 	• • • • + SsS1, 0 

kno w  = SO Sl, 0 
:nr Ti 

ff (1-1.;1 1 ) 2  dr dO 

T I  K 2 P 	 2 
— 	1  A   

21-3F -1/4/(7 of [A 1 .1 0  (K ir) ± B'Yo  (Kea)] dr 	 (24) 7.  
T. 

ft 

r 2s-i 	ri  
f J0 2  (Kir) dr = [ E 	- 	 (24a) 

1=0 St 8  2s ± 1 

where 

'Jo 

(— iy (2s) ! K 1 25  
st  8= 	221 (s  04 

(Kr) Yo  (K ir) dr 

Kr =__ 2_ fici o2 (Kir) log-2- 
7r r2 g=0 

cirCrs 	
r2341 

r  

s=0 	
4 

2s 	1 
— 1 

± 
(i  

2s-14 2s±i 
E— 

-ft 8  (2s + 1)- = 2 [ log (Kir) 	
00 

r: Tin 8  2s 	
8=0 7T 	 8=0 

where 

Os 2s 
s) 

7Ts. 9 = Esb + 	(s +Di (i) 

51'0 2  (Kir) dr 

ft 

4 [y 2j02 (Kir) ± J0 2  (Kir) {log 4 (K1r)} 2  

± 1E S 	2yJ 0 2  (Kir) log (Kir) 
c).°

sr2er  1 2  8=1 
° 

lyJo  (Kir) cil Ssr 2s — 2 log (Kir) Jo (Kr) cif Si-2s ] dr 
•=1 

(24 c) 

1 
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[log 4  (K 1r)] 2  J0 2  (Kir) dr 

E 	
CO 	rv+1 „ 2  v.,°° 	r2s+1_ — 2 log (Kir) 	nil,  8  (25 ± 1 ) 2  

{ log (N 1rn z, vs. 8 2s ± 	 a=0 8=0 

 

 

r 2s+1 	j r1  + 2 E 
1=0 PA

-
±
—  -

1) 
3  J2 

cla 
 2 

2s 	
co 

E Ss/. 	dr =-- 	c iv 
r25 El 

r  
t=1 	 1 $ 2s + 1 

(24 ci) 

(24 co 

where 
Csiv = cow chr 	 cs INT coIV 

Ti 

fJo  2  (K ir) log (K ir) dr 

00 r2s+1 	oo 	r 2s-44 ], 
[log 4  (Kir) err 	 E 7r 

sl 8  2s + 1 	1=0  si (2s + 1) 2  'J=0 	 r2 
ri 

T oo  Jo (Kg-) Sjr 2s dr 

f2 

r 234100 r 2s+ 2 	 r 2s± 3  l ri [°2 C V 	 — 	s i  2.3 + 
312 

S 2s  4_ 1 — 	Irs, 6 S O 2s 	± 2 	s, 6 _ 
s=0 	 8=0 	 8=0 

where 

(24 cis) 

(24 c4) 

V C 	no,  6  Ss  

C OV 

 

O, 6 So 
ri  

flog 4  (Kir) Jo  (Kir) 77 ssrv dr 
s=1 

T3 

" + 7rsi G SO 

r 2s+1 00 r af+1 
[ log (Kir) E csv 	 — I c 	 

	

s=0 	2s ± 1 	
S
( + 1) 2  8=0 

	

oo 	r 21+  2 	 r 2S+ 2 
— log (Kir) E0 IT:03 2s 	± 2 So -FacEo ns, (2s 	 2)2  So  

	

r2r-r-F3 	00 
r2S+3  — log I (Kir) LSI 8 2s ± 3 Si  + E SIG (2s ± 3)2 Sii

f  
8=0 1=0 	 ft 

E02 1 1-1z2 ' rd0 dr 

r3 
= 	KfiFIP-frIo  (K'r) Ii (K`r) dr 

0 

(24 c5) 

K I Vi 
PF I es (25) 

"Igai 
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where 

( 

	

vi 	Kip 
co = - 

	

czo 	(1c)1+2s
IC\ 2 	(Kl ar-1  

	

c
S
y' 	

K,8=0 21+2S 	S ! (1 + 	I 
( 

2) 	2 2s-' (s •=0 

K' 01V ,) (K' 
I 	weelp

2 g=0 2 2s (S 

So, the attenuation constant a can be calculated with the help of the equa- 
tions (20 d) to (25). In the calculation of CL by equation (20 d), the loss due 
only to the process of conduction has been taken into account. But when a 
radio frequency field is applied to a dielectric, the molecular process involve 
additional losses due to the turning of molecules with permanent dipole 
moments against viscous dragging forces. All these dissipative forces give 
rise to a current density in the medium which is in time phase with E. The 
losses due to the molecular processes can be taken into account by expressing 
E in the expression for a as consisting of the effective dielectric constant E' 
and the loss factor el  i.e., expressing E as E = — _R I% where E involves 
three terms (Manning and Bell, 1940) as given by the following relation 

E= Q , + Ea + Ecl 

where Eoz, represents the geometric dielectric constant due to electronic 
polarisation which does not contribute to E "  but only to E'. E, is that part 
which arises due to ohmic conduction and hence contributes to E" as the 
conduction current corresponding to Et_ is in phase with the applied voltage, 

Ea  is that part which arises due to dielectric absorption. As the current 
corresponding to ea  is out of phase with the voltage by an angle less than 

900  so Ea  contributes to both E l  and E". The factor Ea  is frequency dependent 
and it depends on the characteristic of the dielectric material. So, the true 
attenuation will be greater than that calculated by the eq. (20 d). 

(To be •continued.) 
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