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PROPAGATION OF MICROWAVES THROUGH A
CYLINDRICAL METALLIC GUIDE FILLED
COAXIALLY WITH TWO DIFFERENT DIELECTRICS

By S. K. CHATTERIEE, M.Sc.*

ABSTRACT

' The field components for the TE, mode in a cylindrical metallic
guide completely filled with two different dielectrics have been derived
from Maxwell’s equations. The attenuation constant for this mode

has been calculated with the help of the Poynting vector and the field
components.

INTRODUCTION

The theory of microwave propagation through a metallic guide involves
the solution of Maxwell’s equations for certain boundary conditions at the
boundary wall of the guide. The simplest case is that of a guide of uniform
cross-section with infinitely conducting walls and filled inside with a
homogeneous, isotropic dielectric.

The theory of wave propagation in a dielectric guide has been studied
by Hondros and Debye (1910), Zahn (1916), Carson, Mead, and Schelkunoff
(1936). The experimental study in dielectric guides has been made by
Schriever (1920) and KaSpar (1938). The propagation of electromagnetic
waves in a metallic guide with a dielectric inside has been studied by Frank
(1942), Pincherle (1944) and Frankel (1948).

The paper reports on the study of the theory of the propagation of
microwaves (TE, mode) in a cylindrical metallic guide of uniform cross-
section, and completely filled coaxially with two homogeneous, isotropic
layers of dielectrics of dielectric constant e, and e,.

* Mr. S. K. Chatterjee is a Lecturer in the Department of Electrical Communication
Engineering, lIndian Institutc of Science, Bangalore. 1

B1
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MAXWELL’S EQUATIONS

The equations of Maxwell in m.k.s. units are expressed as follows:

oB
VHE=—
oD
vxH=Jd+ a
vV .-B =
v -D =p

The general solutions of these field equations has been obtained by Bromwic;
(1919) and Ledinegg (1942). The scalar components of E and H expressed
in general orthogonal co-ordinates !, u?, u® are given (Stratton, 1941) as

1 [ 2 d 2B,
Sk [W (heEs) — o3 (thg)] + 5 =0

1 P P OB
s | s (HED — 1 (o) | + 52 =0 (2)

----------------------------------------

----------------------------------------

Putting the values of the metrical coeffioients h,, h;, /#, equal to unity and
ul =r, u*= 0, u® = z and assuming that the conductivities of the metallic
wall and the diclectric inside the guide are infinity and zero respectively,
the equations (2) can be expressed in cylindrical co-ordinates (r, 8, 2) as

follows, with the further assumption that E = Ee/**

1 dH, dH _
o0 T oz — Ik

oH, H, .

2 T oo ek
13 12H, .
rdr (rHG) . Y = Jw EEz

(3

13E, 3E, _ . )
r o6 rbz o "ijHr

0E,  JE, _

dz dr = '_jwp’HQ
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FiELD CoMPONENTS OF TE,;; MobE

‘ For this mode the lines of the electric fisld fo
circles about the z-axis in the dielectric. This Is associated with uniform
current flow in the # direction on the surface of the perfect conductor. The

components E,, E; and Hy are each equal to zero. The normal mode field
components for the TE;, mode are then obtained from (3) as follows:

rm a system of concentric

JH, »JH, .
- o = Jeeky
0E, .
| :
From (4) the following partial differential equation in E, is obtained
2E d 1
St oy UEe) | + wheBg =0, (5)

This equation can be solved by the method of separation of variables. We
attempt to find a solution which will consist of the product of a function of
r alone and a function of z alone. Let the solution be expressed as

EB - Re—f'z‘ (6)
where R = f(r) only and y indicates the propagation constant in the z
direction which is the direction of transmission. Substituting (6) in (5) and
putting K2 = 32 4+ w?ue, the following differential equation is obtained:

a2 0R) |+ KR =0 (7)
as ev = (. |
The equation (7) when solved gives R in terms of the Bessel functions of
the first and the second kind.

R = AJ, (Kr) + BY, (Kr), (8)

where A and B are constants to be evaluated from the boundary conditions.
The following field components are obtained from (4), (6) and (8).

Ep = [AJ; (Kr) + BY; (Kn]e™

R BY, (Kr) | e ¥
H, = — L [AhKn) +BY:( )]
K ¥ %)
_ _ K Jo(Kr) 4+ BY, (Kr) | e
= Jwp [A o ") ’ ]

The functions J,'s are finite and continuous e}f?ryv?here in the two mEdtl‘u::S
but the function Y,'s have infinite discontinuities in the axial region ol the
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guide. In other words, near the axis of the guif:le as r — 0 the functiong
Y, (r) —>— oo and Y, (r) = — oo. So, the function Y,’s cannot be used tq
express physically any finite field in the neighbourhood of the origin. There-
fore, the terms involving Y,'s can be omitted from the expressions for the
field components in the inner dielectric (e,). The field components for both

the mediums can then be written from (9) as
Ey, = [AJ, (Kyr) + ByY, (Kyr)] e 732

r1 = ""jj&l [A1J1 (Kyr) + B, Y, (Klf)-
K
Hu= — 2 [ Addo(Kur) + B,Y, (Ky)
where
nz=rzrs
Ege = [Agd; (Kyr)] €772
H,, = ﬂrﬁ; [Ag]; (Kar)] ez
Ho= — o2 [Ady (Ku)] e 72
ot ij2 0 2
where

Fig. 1
The following boundary conditions are satisfied

H31=H32 at rF =r,

F'1H,.1=F,2Hr2 atr-._-.—_rz as VB=0
Eel_—_oatr=r1.

e~ <

e 11l

(10 a)

(10 »
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Applying the boundary conditions, the followi

from (10 @) and (10 b). 18 €quations are obtained

JEK_;I [AJo (Kir) + B, Y, (K] eriz .
- jzzz [Ady (Kor)] evsz -
;:.- [AJ, (Kyr) +B,Y, (Ky)] ez
=J?:j [Agdy (Kgr)] o722 LB
AJ; (K + BY, (Kyr) = 0. -

In order that propagation may take place through the guide, the propaga-
tion constant ¥ should be imaginary. This requires that the dielectrics
should be perfect in that the attenuation constants of the two mediums are
zero. So, y, = jB, and y, = jB,, where B, and B, are the phase constants for
the mediums 1 and 2 respectively.

Let poftty =, By/Be = B, Bo — 1= 8.
The equations (11 a) to (11 ¢) reduce to the following:
KA Jo (Kyrs) e'F + KB Y, (Kyr,) '8 — KeApJy (Korp) = 0
Al (Kyry) + BiY (Kyry) =0 (12)
B'A.J, (Kyry) €8 + BiB'Y, (Kyry) €8 — Ay (Kyrp) =0

In order that A,, B; and A, are not zero, the determinant of their coefficients
must vanish or in other words, the following conditions must hold good:

Kinlo (Kyrp) eF* K Yq (Kirs) &'’ — KaJg (Korg)
J; (Ky7y) . Y, (K,ry) =0
B3, (Kyry) €F° BY, (K.rs) €F° — J; (Kyre)

From (12) A, and B, can be expressed in terms of A, as follows:
Ay [(Jo (Kyre) Y1 (Kyr2) — Yo (Kyra) 4y (Kyr2)] K pBelf*
— A, [KoBT, (Kor) Y (Kyro) — KipYo (Kyra) 31 (Kol (130)
B, [J, (Kyrs) Yo (Kirg) — Y1 (Kyrz) Jo (Kyr2)] K upB'e'fr

= A, [KoB'Yo (Kors) J, (Kyrg) — Kiunl, (Kgre) Jo (K] (13 b)
"The equations (13 a) and (13 b) can be written (McLachlan, 1948) as
A= — A, T2 [K,B'Jy (Kare) Y1 (Kyr) — KoY (Kire) J1 (Korg)] 7P
2P (13 ¢)

; ;;E (K BT, (Karg) Ji(Kqrs) — Kapdo (Kara) s (K.ry)} €76° (13 d)
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6
Or, (13 ¢) and (13 d) can be written as
A]_ = Az.Ar al‘ld Bl —_— 1“2..13iF (14)
where KoB' Jo (Kor 2) K,nY, (Ky7s)
A= = gufr e Bt (l4a)
2uB J, (Kors) Y, (Kura)
and
Ko8'J, (Kara) K;udy (Kyrg) ‘
B’ = 77!"2_' e—ifs (14 by
¥ J; (Kors) J1 (Kqr2)

EVALUATION OF A,

The constant A, can be evaluated by integrating the Poynting vector
over any cross-section normal to the axis of the guide. The average power

flowing through the guide is given by the sum of
i 27
P, = Ey,H,,* rd6 dr
1 ‘L;’ f . f g1t 1r1

and

ry 2

/

0

P,=14 /[ EgH,.*rdodr

0
where the subscripts 1 and 2 refer to the two mediums. The peak power
flowing through the guide is therefore given by the following expression:

P~/ "' [ Ego H,y* rdd dr +/ [ gy H,\* rdo dr

r

f r [A’JI(KIr)'I_BrYI(KIr)]zdr
(15)

. &
In the above expression for the peak power flow K2 = y2 + wZue. For
both the mediums K, and K, can be expressed in terms of the phase velo-
cities v, = w/B of the two mediums as

Vi 2
2= B2 (_PIZ _ l) and K,z = B,2 (L8 — 1),
Cy Co

where ¢; = (1/ue)}; ¢ = (1/ppex)t; Vpr = w[By; Tp = w[B,. The argu-

ment of the Bessel functions in the integrals for P may be real or imaginary.
Different cases will arise depending on the relative values of v,’s with respect
to c,'s. However, the method of analysis remains unaltered irrespective
of the,value of (v slcs). Let us consider that the constants of the two mediums
are such that K, is imaginary and K, is real. Let K, = jK’. The field
components in the second medium, therefore, involve Bessel functions of

_ s B "1 _
= 2nAp £ [ /7P (Kap) dr —
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com_plex argument m.‘d hence it is convenient to replace J, and J, for the second
medium by the modified Bessel functions I, and I, as follows:

J1 (Ker) = j1, (K'7)
Jo (Kor) = 1, (K'r)

The integrals in equation (15) can be evaluated as follows:

f;',le (Kar) dr
0
o e v s e : 21, (K'ry) I (K
brt 12 (K'r) — 12 (') — 2o BIREWT 64
[ rIAT (K12 dr
_atrg | KB L KD KaYo (K
= 8up” N
kP I (K'rp) Y, (Ky7g) |
X [r? {3, (Kyr) — Jo (Kyr) 3o (Kin)}]? e 2 (16 b)

J " [B'Y, (K,P))2 dr
st [ KB (K7 Kalo (K P
S L (K'ry) ], (Klrz)l
X [P Yy2 (Ker) — Yo (Ky) Yo (K e (16.)
2 f "A'B'r], (K,r) Yy (Kyr) dr
g [IKET (KT K,pYn(Klrz)l
BRZ A B N SARR AN

X [3r% {2],(Kyr) Y, (Ky)—Jo(Kyr) Y (Kr)—Jo(Ky) Yo (Kyr)} :e‘a"ﬂ‘
(16 d)

jﬁlKrlo (Kfrg) K].F-Jn (Klra)l
il (K'ry) J; (Kyre

The above expression show that the peak power IS proportional to some
function of K’, K,, r, and rs. S0, the expression for the peak power flow

through the guide can be written from (15) and (16) as

b—2mA2 P FK, Ky rro (17)
pw

The constant A, is therefore given by

a = (B a
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So, the field components for the two mediums can be written from (10), (14
and (18) as follows:

o= (B A% (i) + BY, (Kir)] e
Ho=— L (B0) (47 Ko + BY. (Ki)] P

H, = P*‘f ) (AT, (Kyr) + B'Yo (Kyr)] e-6e

.pr(
Eps = j(];fg I (K'r) e/t

He = — (‘g;{ L (K'r) e -

Hyy, = — - Pf‘f ) I, (K'r) eiés

22 —

Or, expressed in real parts the field components can be written as

B = (B ) (AT, (Kyr) + B'Y; (K.r)] cos Bz
H,, = 2-.7 PfF) [A'], (Ky) + BY, (Ky7)] cos Bz
H,, = 5.2 Ef'B"F) [A’, (Kyr) + B'Y, (K,r)] sin Bz

Fly = (P“f I, (K'r) sin Bz

Ho=—, “fj’i . (K'r) sin Bz
By o = prF) I, (K'r) cos Bz

ATTENUATION CONSTANT

(19)

In the ideal case when the conductivity of the boundary wall of the

guide is infinity and that of the dielectric is zero, the boundary condition
is simply nX E = 0 at the surface where n is the outward normal to the sur-
face. But if the dissipation due to the finite conductivity of the wall and the
dielectric is considered, the boundary conditions are snnply the continuity

of both E,, and H,,_

The transmission takes place in the direction of

the guide axis (2) and the amplitude varies as e where the propagation
constant v 1nvolves the attenuation constant a per unit length. The
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attenuation constant a is given in terms of the mean energy W transmitted
through the guide by the following equation

1 13W
C2W Tz (20 q)

or in terms of E and H

_ / ds (E.H¥),
“"‘Re[zfds(EH*) ] h )
The subscripts r and z in (20 b) indicate the direction of the power flow, i.e.,
power dissipated and transmitted respectively. The attenuation is due to
imperfect conductivity of the boundary wall of the guide and also due to finite
conductivities of the two dielectric mediums. For the metal boundary ¢>>we
except at extremely high frequencies and the following relation holds good:

Et.an - 77 thn!

where the intrinsic impedance n of the metal is given by Re (n) = (7 fi/o)t
and the direction of E,,_ is such that the Poynting vector is directed into the
metal. The equation (20 b) can be written as

a.=R€[ —‘/f(E H*)dS ]
fo(E 'Hg" — Eg'H)?). ds
which in the present case can be reduced to

a =} Re

f [ () dodr + f / Eel’H_l rdf dr -l—/ / Eoe’ Hiprdd dr |

(20 ¢)

f [ "Egy’ H,y' rdo dr + / '/ "Eox’ H, ’ rdf dr + / f Egg'H’,zrdBdr
r 0
’ (20 d)

The prime on E’s and H’s indicate amplitude values of the field components.
The integrals in (20 d) can be evaluated with the help of (19) as follows:

[" [ B oMy rdo dr

g f F A 3,2 (Kyr) + B2Y 2 (Kyr) + 24" By (o) Yo (Ko)] dr
F
b ; (21)

" ["Egs H,s' rdod
nfongg o T r

_— — I;,f rllz (K’r) dr

which have been evaluated in (16).

(22)
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ry 2%
“["E’yH'.  rdbdr
/o/ g1fi a1’

F2

= légs f r[A"2, (Kyr) Jo (Kyr) + B2Y; (Kyr) Yo (Kyr)

ra

+ A'B'J, (Kyr) Yo (Kyr) + A'BY, (Kyr) Jg (Kyr)] ar (23)

The products of two Bessel functions have been expressedﬁ in terms of infinite
series by Orr (1900), Nielsen (1904), Watson (1922), Whittaker and Watson
(1927). The integrals in (23) have been evaluated term by term and the
results are as follows:

[7ry (Kar) Jo (Kyr) dr

= [ Fmr s (23 q)

b
=0 ra

_ (=171 +2s5) ! Ky**

whete 1= Tqus (e (1 F 9 11
frlf'Jl (KIT) Yo (Klr) dr
r:
= — :rf ‘2'177':, 2r2+25dr —|— i fﬂﬁ 3 P {2 log % (Klr) + m, 4} dr
° 0
1r¥ pHE e AT R aiaid e
= —1[ . y¥ml *a [f‘{zm F 2 1081 (Kar) — £y
3+ 25 i
+ 7,37, '3'%—_'“2}}] (23 b)

where

_ (—s—= 1! K (2+),
2T e () I(s+ 2)

W— (— 1) (s + 2), K, 1+¥
83T 2N (s+2)
Toa=2[p Qs +2)—d(s+2)—¢(s+ 1),

where ¢ represents the logarithmic derivate of the Gamma function and
I’ represents the Gamma function (Nielsen, 1906).

Y (R T, (K7 dr

1

1 oo
= _| 27, s{2r¥**2log } (K ) + m. o PP dr

=0
ra

p2+3

] o p2543 - .
= = J) ik _ I‘. J
o [2 (2‘* 2 Rl (25 ++:3)2) T a5 F 3],, e
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where
L= l)‘ Kﬁ’“ (s + 2),

71 . . A i e W

e e o

[ Y1 (Kar) yo (Kyr) dr

ra

i

= [[Z730 K + 2 r 108 3 KA, (K

Fz

o 2
— X syt ] X [-rr 3y (Kyr) + i log 3 (Kyr) J; (Kyr)

§=1

— T § Jar (23 d)
=0

where y = Euler's constant = 0-5772

2(— 1Y K% 1
!SI1== ;}—';Fmrcg‘!;é— {].‘+“'& 'P'if'+‘ e -'*“ ET}

_1 (= Iy KM 1 1
S = sty ] FEH I ]

The expression in (23d) have been integrated term by term as follows:

/3o (Kyr) 3, (Kor) log 3 (Kyr) dr

Lf |

p3+2s o0 pHZ  qn
[108 3 (Kyr ) b} “ s 135 25 .i s _(3-+23)2] (23 )

r3

f 1T, (K Sy, i+ dr

=0
fa

ri

= (Za, ¥ Es,, ¥ dr

=0 $=0
ra

The above integral ca

[ 2 ¢ Zriz;s]h e

n be written as (Bromwich, 1926: Phillips, 1939)

=0 a

where
= 1)’K,*
e 22 (s )2
Cu — ﬂ'o_ 6 Sl, 0

T L Sl,tl
¢;' = o, ¢ O1,5 T 1,8 S1-0 T - Ll
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ra

f o (Kr) Jy (Kyr) [log 3 (K] dr

ra

r3+2-f

— [{log 4 (Klr)}zz’:frh 13T o5 2 {log 4 (K, !‘)E:T.r. 1 (3?255)2}

+ 2% T 1 r3+2"'__3]ﬂ (23 4
— 13+ 25)3], 3 ds)

Fi

f r log 3 (Kyr) Jo (Ky) 58, 4% g

=
rI

O 2+ 38 >0 . 3 rs
=[10g:}(K1r)Z' & T F e 2]

242 T L% @29, ad
f J, (Ky) 2 S+ g
L re ., pny oo o428 oo pIES oy
- ['ic_‘. 2 4 25 a:ow‘ﬂ" Sl 5 + 2 i SO 3 ‘_,_ 2‘9]”‘ (23 ds)
where
_ (__ 1)3 K 1422

7577 Difas st(l Jl}-"_ls;)'_.!

Co = To, 7 Sg

Cj.” =7T{],'?S;+ S +7T.r,? So
f log 4 (KA J, (Kyr) T8 10 g

ore) 2425 D4 of
e iy K . Ec” __,[._______ _ o rt2
[log 1 ( N2 e =E o ) e
— log KIrQZ‘aS, ,.5:2: 5 g et
( ).=0 1 'T_;, 7 5 + ZS ‘I‘EOSI ﬂ-.i‘. = (S + 2.[.5.)_2
~log } (K1) 2 S re ol r3 9

' ):=o 0 75,7 3+ 2s +.=Zu' Snwj’ ‘ (3 + 2.5')_2] ’ (23 ds}
f 2’.::'."5‘,..»'1'!-2Jr E’QSI LYY g
: 1 0 !

oo 2425 oo
=0 2 + 25 $=0 L.s 0 3 + 28 _ ,fosl' ) Sl __5__-,_ 25.]". (23 d?)
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where
C rr — SUSL.F + Y % + SJSI;Q
cu rr - SD Sll 0
ffn (.Hzl’)z dr do
O r3
_ Ky A | | : r
2641 ry
Jo (K r) d 4
fﬁ ( jf) == ['_o ;823__]_1] (24 a)
where -
(— 1) (29)! K,*
Tn 8T T B (s
fjo (Klr) Yo (Klr) dar
- 12:- f[Jo (Kyr) 108 Bt +f:f.r gfﬁ]dr
2 > ,.zf+1 o0 p25+1 2’ XI5
= log*(l(l’)z .5'8 1 Ai:ﬂ' 8 2,5'—'—1) .__:T-Fszs_'_
[ SR (24 b)
where
(— 1y y
M=~ ¢ ng)M@+9 b (s +DI @
Yo iy dr

- :ﬁf [y2Je2 (K1) + Jo% (Kyr) {log 3 (Ky)}?

n { g :,23}2 L 25,2 (Kyr) log 3 (Ku)

g TS 24 ¢
2, (Kor) TS0 — 2 log § (Ki) Jo (Ka) 2, S ] dr (24 ¢)

s=1
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f [log 3 (K,r)]12 Jo2 (Kyr) dr

&6 !‘25'“ oo r2-f+l
= [tlog § (K}t Ty y — 2108 (K Zime i,
oo rﬁ-f-}-l ry
+22 et ), (24 )
2511 rs
f[fiSr'*”] dr——[Z'c,Wz-;_I_l i (24 ¢,)
where
C:lv . COIV c:lV _I_ L + C_,W COIV
f 1,2 (K,7) log 3 (K,7) dr
: r25'+1 r25+1 ry
= [tog # i) T )l ) ~ F e (24 c)
Jo (Kyr) F Sr¥ dr
’ . reH 2542 F24+3 ry
[fo % 2s + 1 il .8 S0 2s + 2 ’Z'Dﬂ:, Sy 2S I 3] (24 Co
where
vazﬂo‘ﬁss'{" —— +1T.f'lﬁ S
fi COV = ﬂﬁ,ﬁ So
flog 3 (Kyr) Jo (Kyr) iZ'n Sr¥ dr
lo 'S P A +1__ 3 re
[ g 4( 1)._06 T EC"(ZS—I-_l)z
2-f+2 ; 25+ 2
— log } (Ky) Zm, S+ Za, . T
1'=0 BZS_I_Z 0+’-038(2S_|_2)2
~log 3 (K, Zm 0 S, + X re "
. D 338t Zme oy S (24
j j Ep,'H.,’ rdf dr
= — o f o (K'7) T, (K'r) dr
— K'p [ vi rH¥ an
= — O e L
BF L% 2% 2.9]; (25)
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where
K")?
e = K
cJVI e K nf | (K’)l+2~r l K’ 2 co (Kr)z_r_l
= 29 S (T sy (2) ,f; 271 (g 151 T

K'ee (K)?
Fo ks Tl
S.o, the attenuation constant a can be calculated with the help of the equa-
tions (20 d) to (25). 1In the calculation of « by equation (20 d), the loss due
only to the process of conduction has been taken into account. But when a
radio frequency field is applied to a dielectric, the molecular process involve
additional losses due to the turning of molecules with permanent dipole
moments against viscous dragging forces. All these dissipative forces give
rise to a current density in the medium which is in time phase with E. The
losses due to the molecular processes can be taken into account by expressing
e In the expression for e as consisting of the effective dielectric constant ¢’
and the loss factor €", i.e., expressing ¢ as ¢ = ¢ — je”, where ¢ involves
three terms (Manning and Bell, 1940) as given by the following relation

E=eo¢+€¢+€{$

where ¢ represents the geometric dielectric constant due to electronic
polarisation which does not contribute to ¢ but only to €. ¢, is that part
which arises due to ohmic conduction and hence contributes to € as the
conduction current corresponding to e, is in phase with the applied voltage,
e is that part which arises due to dielectric absorption. As the current
corresponding to ¢, is out of phase with the voltage by an angle less than
90° so €, contributes to both ¢ and €”. The factor e, 1S frec_luency dependent
and it depends on the characteristic of the dielectric material. So, the true
attenuation will be greater than that calculated by the eq. (20 d).

(To be-continued.)
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