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Abstract 
The quantum mechanical concept of zero-point energy has been utilised to 

calculate the minimum energy differences between the desired and all the undesired 
modes appearing in a cylindrical echo-box when the latter is excited at 9 Krnc to 
operate in the 	mode. Expressions for the mutual energy and the coupling 
coefficient between the two companion modes TE o _., 	TM,_, have been derived 
with the help of the field equations. The paper ends with a discussion of the 
significance of the total energy of a microwave cavity resonator. 

Introduction 
In a microwave cavity resonator when excited to operate in a 

particular mode, some interfering and cross-over modes invariably 
appear. Any irregularity in the cavity either in the boundary or the 
dielectric within it provides a coupling between some or all of the 
modes. If the coupling between the modes is loose, the performance 
of the cavity will not be appreciably altered. But the effect of strong 
coupling is to alter the electro-magnetic field configurations from 
that of the desired mode and also to lower the Q of the cavity 

considerably. An idea of the interaction between any two modes 

can be obtained from the energy difference between the two modes. 

The paper presents a report of the calculation of the minimum 59 
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energy differences between the desired and the undesired modes i n  
a 9 Kmc echo-box by considering each mode as analogous to a  
linear harmonic oscillator. It is also the object of the paper to 
calculate the coupling coefficient between the TE0.1 and the TM 1 . 1  

mode with the help of the field equations. 

Resonant Frequencies of Different Modes 

Let us consider the case of a cylindrical cavity resonator having 
infinitely conducting walls and end plates and enclosing a lossless 
dielectric. If this cavity is excited it will sustain electro-magnetic 
oscillations whose E and H components can be written as follows : 

C sin( 	
p 

t + (p) 

1 	/ k 
h cos 	t 	) v 	 E p 

where k and ip are constants. The electric and magnetic field con- 
figurations are given by the mode vectors e and h which are vector 
functions of positions only. The constants of the medium are 
e and p. The electro-magnetic field satisfies Maxwell's equations if 

vxh=ke arid vy.e =kh 

within the cavity and 
h. ds = e x ds = 

at the boundary of the cavity. 

These equations when solved show that any given cavity can 
oscillate in an infinite number of modes having eigenfrequencies 

'7V 	E p, k2/2 it V E p 	 kn  /2 er V E p with eigenvalues 
k »  k2 	 kn  . 

The resonant 
cavity is excited 
equation (Kinzer, 

V nt, n = ( Ian  ) 2  + (for 4 m   (i) 

The cut-off frequencies (fo ),,„, are given by 
c  ./.0 m 	

k 
'am  for TEt m  mode 
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and tio m = 
c kiv in  for TMr,in mode 

- 2 ir  a 

where a and L represent the radius and the length of the cavity 
respectively. The quantities k 'on  and kon  are the roots of the 
following equations : 

J i  (kit, „,) 0 for TEon  mode 

and 1, (kon) 0 for TM,ç m  mode 

Minimum Energy of Modes 

As a cavity resonator can suppc )rt infinite number of modes, 
the electro-magnetic fields inside the cavity resonator can be consi- 
dered to consist of an infinite number of harmonic oscillators. The 
energy of each oscillator expressed in generalised co-ordinates (p, q) 
is given by the following expression : 

 . p" w 	+ 	q' 
21n 

where in and to represent the mass and the angular frequency of the 
oscillator respectively. The uncertainty principle of Heisenberg 

states that ap Aq 12127c where h is the Planck's constant and AP aq 

are the r.m.s. deviations of the momentum and the co-ordinate. 
The minimum value of 

h2 	 nko z 
—

8n 2m 

-

(

-

6q)2

, + 	(Aq)2 	 (2) 

gives the lowest possible energy for an oscillator. The minimum 
value of (2) 

w• hv 
min. 	2 	 (3) 

is obtained when (602 = h/2 ç 	The frequency 

the oscillator is given by v. The energy difference 

of vibration of 

( 
— hv 
2 	)mnrie A 	

hv 
( I  2 	) Mode B — 

can be interpreted as the minimum possible energy responsible 
bringing interaction between the two modes. The frequency 
vibration for the different modes can be calculated from eqn. (I). 

for 
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Different Modes in a 9 Kim 
The figure shows the expanded rri 

a 9 Kmc echo-box designed to operate 

Echo-Box (TE 04-12). 
)de chart (Kinzer, 1946) for  
in the TE0-1-12 mode. 

It will be observed that the following interfering and crossing 
modes appear in addition to the companion mode TM1-1-12. 
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FIG. I. Expanded Mode Chart covering the Operating Area of a 9 Kmc Echo Box 

Crossing Modes : 
TE 6.1-05 	TM 2-2-1 	 TE 7_1_1 

TE 3-2-4 	 TM 4-1-6 	 TE 1-3-1 

TM 2-2-0 	 TM 2-2-2 	 TE 2-2-8 

Interfering Modes : 
TE 4-1-10 	 TM 0210 	TE o.2.8 
TE1-2-10 	TM 0443 	 TM 0-2-8 
TE 0.2-7 	TE 5_1_9 	 TE 2-1.13 
TM 0-2-7 	 TM 2.1-11 	TE 3-1-12 
TE 1_1_ 13  TM 34-13 

The minimum energy differences which may be responsible for 
the interaction of the different undesired modes with the desired one 
(TE 04.12) have been calculated from (1) and (3) and are given in 
the following table : 

9-6 Jerl\—  
0150 



6.4156 

5.1356 

7.0156 

5.5201 

3.0542 

4.2012 

0.360 

0.589 

0.655 

3.404 

0.982 

0.556 

/.262 
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Mode 	k 	or k 
M  

Minimum 
energy 

difference 
x 1018  ergs. 

Mode k t or k I, in 	1,  
Minimum 

energy 
difference 
x 10" ergs. 

TB 0-1-12 

TM 1-1-12 

TE6-16 

TE3-24 

TM 2-2-0 

TM 2-2-1 

TM4-1.6 

TM 2-2-2 

TE7-14 

TEI-3-1 

TE2-2-8 

TE4-1-10 

TE 1-2-10 

3.8317 

3.8317 i  

7.503 

8.0152 

8.4172 

8.4172 

7.5883 

8.4172 

8.5778 

8.5363 

6.7061 

5.3176 

5.3314  

0 

0 

0.196 

0.164 

0.098 

0.033 

0.098 

0.229 

0.524 

0.393 

0.229 

0.753 

0.687 

TE0_2-7 

TM 
0-2-7 

TM 
0-1-13 

TE5-1-9 

TM2-I-11 

TE 0-2-8 

TM 0-2-8 

TE2-1-13 

TE3-1-I2 

TM 3-1-9 

	

7.0156 
	

3.012 

	

5.5201 
	

4.845 

1.8412 
	

0.229 

5.5201 
	

0.262 

2.4048 
	

0.262 

The second column of the table gives the different roots 

k m  and k on  corresponding to the TIE and the TM modes res- 

pectively in the echo-box. It will be observed from the above table 
that the difference in the minimum energy level between the two 
companion modes is zero. This means that very little energy is 
necessary to bring about the coupling of the two modes, or in other 

words, if the cavity is excited in the TEo_i mode, the TMI-1 mode 
will be invariably associated with this mode or vice versa. It will 
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however be interesting to study the interaction between these two 
modes with the help of the field equations. 

Interaction of Modes 

it has been shown by Wien (1897) that the interaction betwee n  
the free vibrations of two resonators depends on the coupling coeffi. 
cient and the ratio of the resonance frequencies of the two resonators. 
We shall apply the circuit concept of magnetic induction t o  
calculate the mutual energy of interaction between the two Com- 
panion modes TE 0_1 and TM 14 . The total energy of the two modes 
is given (Smythe, 1950) in m.k.s. rationalised units as follows: 

W = 	± B2 ) . (Bi  ± 82) dv 
2p 

± 2 f 11 1  . H 2  dv 	f H 22 dv] 

The first and the last term gives the energy stored in the desired 
and the companion modes respectively. The second term then 
gives the energy used in bringing the two modes into interaction. 
Or, in other words, the mutual energy between the two coupled 
modes is given by 

Ai l, 2 =-- pf H i  .H2  dv  

or, for the cylindrical cavity having radius a and length L. the 
expression for the mutual energy is 

27c L 

0 o 
f f H I  • H 2  r dr 

two modes TE0-1 and and H.. for the 

from the field equations as 

Hi
k2 	

o t  (k ir) 	c0s 2  k3z ± 	 J02  (kir) sin 2  k3 z 
k23 [

J 	
2 	 ki2  

k 2 
	 ( 5) 

H2 =... V 42 
(k—r-1 

' ki2r1- 	sin 29 
• 	 - 

cos2 kz + [ .ht (k1,) 2  COS 20 COS 2  k 3Z (6) 

TM's1 respectively can be 
follows (Chatterjee, 1952) 

a 
w19 2 = 

0 
The expressions for H i  

A 

obtained 

do dz 
	 (4) 
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Substituting (5) and (6) in (4), using binomial expansions, making 
first order approximations and rearranging terms the following 
energy expression responsible for the interaction is obtained : 

a L 21t 

W  " = tikkk23 	f 
0 0 

r fJ,' (ki2i 2  Jo2((3r) 	cosi° sin' kiz 	r do dr dz 
_ 

J, 2  (k r) 	 s1n 2 9 

[ 27cp k," 	L 	sin 2 kJ, 	a  
= - 4 kk s 	2  — 4k; 	f 0 

, 	(ktrA 2  Jo' (k,r) 
dr 	(7) r -  - 	J 3 2 (k i r) 

As the values of the arguments for the different Bessel functions in 
(7) are greater than unity, the following approximations (Dwight, 
1949) can be made 

2 	 7V 
1 	in (k r 

s  J o  (k i r) 	 ) [cos (k i r 	+ 4 ) 8k i r 	 4 

1 

	

as P, (k i r) 	1 and Q, (k i r) 	— 
8k i r 

J 1  (k ir) =7-- ( ir2kir  ) i 	cos ( k ir — 	 8k31r 
sin (k i r — 7,2" 	7

4
)] 

 2 	4j 

3 
as Pi  (kir) 	1 and Q i  (k i r) 8ki r 

j1' (k i r) = 	( 	2 	in 	kr - --1v - -17 	 cos k r - 
?a ir) [ s 	2 	4 ) 	81c i r 	( 	2 	4 )] 

as 13 1 (1)  (k ir) = 1 

and Q 	
7

1 113  (k ir) = 8k i r 

Introducing the above approximations and after some simplifications, 

eqn. (7) reduces to the following : 

2 1V p k is  IL 
WI, 2 	— 	4 k 1( 3 	L2 

k i  sin 2 k 	_ x 128 Air 	j9-r 

a 
gr 3  sin / 	r d r 

8
+ 
	2 

0 

or, 

wit 2 	2  er 	
k

1
3 rL 	sin 2 kJ- 1 

4 k 1( 3 	L 2 	- -4 k 3   

	

128 k 	[ 4 

X 	en. 	 — 	a 3  cos 2 k i a 

• 
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3 	 3 	 3  

± 	
r; a 2  sin 2 k y  + 	a cos 2 k y  — 16 k sin 2 kla] 

8 	2 	
r/ 	8 k i s 	 i t' 	 (8) 

gives the mutual energy responsible for interaction between the two 

companion modes. The interaction can also be studied in terms 
of the coupling coefficient between the two modes. 

Coupling Coefficient 

The coupling coefficient between the two modes can be defined as 

where W1 and W2 represent 

W   1 • 2 k' = 	- W i  w2  

the energies stored in 
(9) 

the Mod and 
TM1-1 modes respectively and WI, 2 = W2, 1 represents the mutual 

energy or energy interchanged between the two modes. 

The maximum energies stored in the electric field of the 
resonator operating in the TE and TM modes are given by the follow- 

ing expressions (Chatterjee, loc. cit.). 

w, = 
a 

f 
L 27v 

f f o 0 
r 	kird 

2 

sin 2  IQ: dr dg dz 

, en 0 2 L 

	

jo 2 	) 
2 	4 

7r 
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a L 2
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000  
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000  
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The coupling coefficient can then be written from (8), (9), (10), 
(11) as follows. 

L 	sin 2k al, ][ a' 	I 	s 	 3 k' = — 256)42 k1 4  [y - 	 -47  a cos 2k,a 	a' sin 2k 1 a 4k3 	8 

---
3 

a cos 2k a --- 	i 8k,5 	 16k34 sn Ac t a 
3   

÷ 9a EL kks OW (k1I) V it UPC-9-3— 	1432  + 11±-(23  2 	k 2k, 2 	k,kri 	(12) 

Illustrations 

The dimensions of the 9 Kmc echo-box as found from the 
centre of the expanded mode chart are L 21.6 ems. and a 4.45 
cms. For this echo-box the coupling coefficient between the two 
companion modes, calculated from (12) is 0.11. This shows that 
any two modes which have identical frequencies need very little 
coupling for interaction. The two companion modes as they are 
loosely coupled will have their coupled frequencies equal to the 
uncoupled frequencies and the energy flow will be equally divided 
between the two modes. It can however be shown that the other 
undesired modes whose resonant frequencies are further apart from 
that of the desired mode require a much stronger coupling for 
interaction. 	When any two modes are strongly coupled, their 
coupled frequencies will be different from uncoupled frequencies and 
in this case the energy flow will not be equally divided between the 
two modes. 

Total Energy of a Resonator 

The total minimum energy of the above echo-box is Shy 
n (definite) 

where the summation is taken over all the twenty-five modes indi- 
cated within the operating area of the mode chart. In this case the 
highest frequency is limited to 1PM and the sum has a definite value 
and can be replaced by the following integral : 

Is Vm 

h f  v p dv 
2 v=0 

12 
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where p (V) d v represents the distribution of frequencies between v 
and v d v. It is only under such circumstances that we can  
attach physical significance to the total energy of the resonator. But, 
in general when a lossless cavity is excited it can support an infinit e  
number of modes. In this case the total energy of the resonator is 

h v where the summation is extended over an infinite number Of 

modes. The series becomes divergent and the total energy of the 
resonator loses its physical significance. 

Though the sum is divergent and devoid of physical significance 
the difference in the minimum energy in the two states of the 
resonator can have some physical significance as discussed below. 
Under practical operating condition, the distance between the two 
end plates of a cavity resonator has to be adjusted for securing 
resonance to a particular frequency. If we consider any two posi- 
tions of resonance as the two states of the resonator, then the 
change, if there is any, in the zero-point energy of the resonator in 
the two states 

1 	1 a wo  = 	hv 	--2— 	hv 

n, I 	n, 2 

of the resonator can be written as 

1 
8 Wo =  2 

tim 	n, I 	n, 2 

where I is the distance between the two infinitely conducting plates. 
Then the change sw o  in the zero-point energy can have some physical 
significance as the divergent series has been converted into a 
convergent one by the introduction of the convergence factor rb. 
The above expression for the change in the zero-point energy can 
be interpreted as giving rise to a zero-point electro-magnetic pressure 
(Casimir, 1948) 

P 0.013. - 4 dynes/cm 2 
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exerted by the electro-magnetic wave under the 
skin depth <l •  This means that the change 
energy, if there is any, in the two states of the res 
the concept of a force of attraction between the 
to the presence of the electro-magnetic waves 
cavity. 

restriction that the 
in the zero-point 
onator gives rise to 
two end plates due 
present inside the 

The above discussion is based on the assumption that the cavity 
is lossless and as such there is no damping of the modes. For finite 
conductivity of-  the boundary walls of the cavity the different modes 
will suffer damping to a different degree. For instance, it can be 
shown with the help of the field equations that the TM mode will 
have higher attenuation than the TE mode. Consequently, under 
such circumstances the dicussions made above as regards the 
difference in the zero-point energy of any two modes will not hold 
good. 
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