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Abstract

The quantum mechanical concept of zero-point energy has been utilised to
calculate the minimum energy differences between the desired and all the undesired
modes appearing in a cylindrical echo-box when the latter is excited at 9 Kme to
operate in the TE,_,_,, mode. Expressions for the mutual energy and the coupling
coefficient between the two companion modes TE,., — TM,_; have been derived
with the help of the field equations. The paper ends with a discussion of the
significance of the total energy of a microwave cavity resonator.

Introduction

In a microwave cavity resonator when excited to Operate' in a
particular mode, some interfering and cross-over modes invariably
appear. Any irregularity in the cavity either in the boundary or the
dielectric within it provides a coupling between Some Of all of the
modes. If the coupling between the modes is 1005, the performance

of the cavity will not be appreciably altered. But the effecii of strong
field configurations from

coupling is to alter the electro-magnetic f the cavit
that of the desired mode and also to lower the O e 1 d‘e)'s,
considerably. An idea of the interaction between any iy

: : the two modes.
can be obta energy difference between .
ined from the gy ation of the minimum

The paper presents a report of the calcul 59
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energy differences between the desired and the undesired modeg in

2 9 Kmc echo-box by considering each mode as analogous to ,
linear harmonic oscillator. Tt is also the object of the paper t,
calculate the coupling coefficient between the TEo.1 and the TM,,

mode with the help of the field equations.

Resonant Frequencies of Different Modes

Let us consider the case of a cylindrical cavity resonator having
infinitely conducting walls and end plates and enclosing a lossless
dielectric. If this cavity is excited i1t will sustain electro-magnetic
oscillations whose E and H components can be written as follows -

l : k
Ee==; e sin ( = t+ :p)

€ € p
| k
= ;;L"- h cos (‘/E’; t + "f’)

where k and 4 are constants. The electric and magnetic field cop-

figurations are given by the mode vectors e and h which are vector

functions of positions only. The constants of the medium are

« and p. The electro-magnetic field satisfies Maxwell’s equations if
VUxh=%ke and V> e = k h

within the cavity and
h. ds = exds = 0

at the boundary of the cavity.

These equations when solved show that any given cavity can
oscillate in an infinite number of modes having eigenfrequencies

k1/2‘7\"\/€ p. ky/2 €U iiveviennne Knf2% »\/—e; with eigenvalues
Kis ks cicioimonnne k, .

’Th.e resonant frequencies of a cavity depend on whether the
cavity 1s excited in TE or TM mode as given by the following
equation (Kinzer, 1943).

- - — e w - = —-——

V,'m,,l =,\/( %2 )2+(fo"),"',"—;+—— (1)
The cut-off frequencies (f,) ., are given by

(fn )I, m == '—?2 l:r;”am for TEL m ande
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and (fo)im = ; 1: :_ tor TM;.,, mode

where a and L represent the radius and the length of the cavity

respectively.  The quantities k', and k;m are the roots of the
following equations :

J; (k; ) = O for TE; » mode
and J, (k; ,,) = 0 for TM), » mode

Minimum Energy of Modes

As a cavity resonator can support infinite number of modes,
the electro-magnetic fields inside the cavity resonator can be consi-
dered to consist of an infinite number of harmonic oscillators. The
energy of each oscillator expressed in generalised co-ordinates (p, g)
is given by the following expression :

w=-°_ _ . ¢

where m and « represent the mass and the angular frequency of the

oscillator respectively. The uncertainty principle of Heisenberg
states that ap ag = h/2= where 4 is the Planck’s constant and 47, &4

are the r.m.s. deviations of the momentum and the co-ordinate.
The minimum value of
f1? Mw* )
WY e — Mol oo )2 ( )
8x2m (AQ)* > 2 (g
gives the lowest possible energy for an oscillator.
value of (2)

The minimum

1
W = 3 hy (3)

man.

is obtained when (ag)? = 4/2 = m «. The frequency of vibration of

~ the oscillator is given by v. The energy difference
|

1 - 27 )
(3 hv)Mnch ( Z ! Mode B

possible energy responsible for
o modes. The frequency of

be calculated from eqn. (I).

can be interpreted as the minimum
bringing interaction between the tw
vibration for the different modes can
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Different Modes in a 9 Xme Echo-Box (T!':I 0-1-12 ).
The figure shows the expanded mode chart (Kinzer, 194¢) for
a 9 Kmc echo-box designed to operate in the TEo.1.12 mode.

It will be observed that the following interfering and Crossing
modes appear in addition to the companion mode TM 1.3,

10-6 s g 3 | E,E.y_; ﬁ._-,.121

& >

TE 720
r

10 4

38

: ' +
ﬂﬁ-‘;&’lﬁ.ﬁf’r‘ = l i !

Qi50 0"352 0154 Q156 058 Q-0 Q162 0-164 0166 0168 0170

(?)

Fic. I. Expanded Mode Chart covering the Operating Area of a 9 Kmc Echo Box

Crossing Modes :
TE 6.1 T™ 2.2 TE 7.11
TE 3.2.4 T™M 4.1.6 TE 1.3.4
IM 3.20 ™ 2.5 TE 2.2.8
Interfering Modes :
TE 4.1-10 TM 02,10 TE o023
TE 1.2.10 T™ o.1.13 TM ¢.2.8
TE ¢.2.7 TE 5,19 TE 2.1.13
T™ o.5.7 TM 2.4 TE 3.1.12
TE 11213 TM 3043

-The minimum energy differences which may be responsible for
the interaction of the different undesired modes with the desired on¢

(TE 0.1.12) have been calculated from (1) and (3) and are given in
the following table :
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; , Minimum | Minimum
Mode | k §.m O k i dief;']eeri:gt,*:}::e Mode k’ LmOTK; di%%:rgy

x 10'8 ergs. o1 0”62:;5_
TE 0-1-12 ‘ 3.8317 0 '['130_2_7 7.0156 3012
LLERY : il 0 ™, , ; ssol | ams
TE, l 7.503 0.196 | TE,, . 18412 | 0229
TE, ,, 80152 | 0164 | TM,, . 55201 | 0.262
T™,,o | 84172 0.098 ™, ., 2.4048 0.262
3 L sam 0.033 TBeis 6.4156 0.360
™, l 7.5883 0.098 ™, . 5.1356 0.589
™, ,, 84172 0.229 TE, , ¢ 7.0156 0.655
TE, 85778 0.524 ™, , | 55201 | 3.404
TE, , ! 8.5363 0.393 TE,.; 5 3.0542 0.982
TE, , ¢ i 6.7061 0.229 TE, .., | 42012 0.556
TE, . i 53176 0.753 ™, , 6.3802 0.262

TE, , ., { 5.3314 0.687
- * roots

The second colu
k,nand k, , corresponding to the TE a
pectively in the echo-box. f
that the difference in the min
companion modes 1S Zzero.

necessary to bring about the
words, if the cavity is excit€

will be invariably associated with

It will be observe

This means that very
coupling of the two mo

d in the TEo-1 mode,-t
this mode ror VICe versa.

mn of the table gives the different
nd the TM modes res-

d from the above table

imum energy level between the th
little energy 1S
des, or in other

he TM1.; mode

It will
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however be interesting to study the interaction between these twq
modes with the help of the field equations.

Interaction of Modes

It has been shown by Wien (1897) that the interaction betweep

the free vibrations of two resonators depends on the coupling coeff.-
cient and the ratio of the resonance frequencies of the two resonators

We shall apply the circuit concept of magnetic induction tq
calculate the mutual energy of interaction between the two com-

panion modes TEo.1 and TM1.;. The total energy of the two modes
is given (Smythe, 1950) in m.k.s. rationalised units as follows:

[.l
A 4

=%‘[f H12dv+2.[H1.H2 dv + / H;dv]
v Y v

The first and the last term gives the energy stored in the desired
and the companion modes respectively. The second term then
gives the energy used in bringing the two modes into interaction.

Or, in other words, the mutual energy between the two coupled
modes 1s given by

Wi o= }l,/ H, .H, dv
v

or, for the cylindrical cavity having radius @ and length L. the
expression for the mutual energy is

a 27

L
W1:3=p/f/H1.Hardr dg dz (4)
v 0 O

The expressions for H, and H, for the two modes TEo and

TMi.1 respectively can be obtained from the field equations as
follows (Chatterjee, 1952)

_ k2. I ' “y : ]
e ’\/-E}[ Jo (klr)] cos® kyz + k13 3.2 (k,r) sin? k,z (5)

— T —
o —— = = e
— - E———

Hy = \/-~—-3-~---’-— - sin?g cos? kyz + [Jl’ (klr)] cos?g cos? kjz (6)

2
k,%r2
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Substituting (5) anfi (6? in (4), using binomial e€xpansions, making
first order approximations and rearranging terms the following

energy expression responsible for the interaction is obtained :
a L 2=

k,? r[Jt’ (k f)l'Jo'(k r) 2
NI T R
12 3 4 kk3 04 J! (k r) stn k,Z sin'a r dﬁ dr dz

2epkt | L osin2kl | £, B GOT IS (k)

As the values of the arguments for the different Bessel functions in

(7) are greater than umity, the following approximations (Dwight,
1949) can be made

: 1
J, (k) = (_%E;r) [cos (klr — :ﬁ)+—8k;r sin (kjr — %—)]

1
as Pﬂ (klr) = | and Qu (k]r) o= 81(_1!'

2 T ™ 3 . T _ T

3
as P, (kyr) = 1 and Q; (ky) = g

2 ; x 7 . . ]
(L) i (=3 5) o (o 5T

as P,V (k;5) = }

65

3, (k)

7
and Q" (ki) = gy,

Introducing the above approximations and after some simplifications,
eqn. (7) reduces to the following:

- k
dmpkd L %W?}%i}_.d],{ 128 o
Wie™ — ~7yk, 27 4k "
@t [ P Gn2krd
T +f . sin 2 Kyrar
8 2
0
" 128 k a’ L 5 7 k.a
P 3 L Sin 2k3L 1 [__..._—.,_.-—-ﬂ COS 1
o2 [L_n2ek] B [
4 k kj A 3
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3 : 3 - -
gives the mutual energy responsible for interactlon between the tw,

companion modes. The interaction can also be studied in termq

of the coupling coefficient between the two modes.

Coupling Coefficient

The coupling coefficient between the two modes can be defined g4

wl'l
k' = 57 9)

where W; and W2 represent the energles stored in the TEgy, and
TMi.; modes respectively and Wi,2 = W2, 1 represents the mutyg]
energy or energy interchanged between the two modes.

The maximum energies stored in the electric field of the
resonator operating in the TE and TM modes are given by the follow-

ing expressions (Chatterjee, loc. cit.).

a L 2%
Offf | (klr)] sin? k.= dr dp dz
xa*L
; -"_4"’__' EJO (kﬂl) (10)
27%

L
r Iy 2 :
[11 (klr)] cos® g sin® ke z drdp d:
0O O

k?i

L 27
f f r1,* (k,r) cos®p cos® k,z dr dg d-
O 00

—~ L} =@ xk k2
“3 [‘-2“--—-1;;;-*.,— * ok, ]J"’ (ki) , =

J&hker) .. .
r 2 sin“g sin® kyz dr dp d:
0
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The coupling coefficient can then be Wrij

(11) as follows : tten from (8), (9), (10),

_s_iq 2L

at |
z o 3
4k, ][ 8 4k, a* cos 2ka + —; o* sip 2k,a

L
kl S e 256“ kl‘ [__2_____.
8k,*

3
+ ~-8—k:-i—acos 2ka — ; 6:111' sinZkla]

+ 9a €L kky Jo (ka) J, (ki) AV “(ma - ﬂkas)

2 Tkt ke (12)

Illustrations

The dimensions of the 9 Kmc echo-box as found from the
centre of the expanded mode chart are L = 21.6 cms. and a = 4.45
cms. For this echo-box the coupling coefficient between the two
companion modes, calculated from (12) is 0.11. This shows that
any two modes which have identical frequencies need very little
coupling for interaction. The two companion modes as they are
loosely coupled will have their coupled frequencies equal to the
uncoupled frequencies and the energy flow will be equally divided
between the two modes. It can however be shown that the other
undesired modes whose resonant frequencies are further apart from
that of the desired mode require a much stronger coupling fqr
interaction.  When any two modes are strongly coupled_, their
coupled frequencies will be different from uncoupled frequencies and
In this case the energy flow will not be equally divided between the

two modes.

Total Energy of a Resonator
The total minimum energy of the above echo-boxis Zh»_ |

where the summation is taken over all the twenty-five ques mtclill-
. cated within the operating area of the mode chart. In ttfljls':as\?a]u:
highest frequency is limited to ¥m and the sum has a definite

and can be replaced by the following integral :

V"vm

L / v p (v) dv
2

v=0
12
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where , (v) dv represents the distribution of frequencies betweey ,,
and v + dv. It is only under such circumstances that we cgy
attach physical significance to the total energy of the resonator. But,
in general when a lossless cavity 1s excited 1t can support an infipijte
number of modes. In this case the total energy of the resonator jg
1 Shv where the summation is extended over an infinite number of

modes. The series becomes divergent and the total energy of the
resonator loses its physical significance.

Though the sum is divergent and devoid of physical significance
the difference in the minimum energy in the two states of the
resonator can have some physical significance as discussed below.
Under practical operating condition, the distance between the two
end plates of a cavity resonator has to be adjusted for securing
resonance to a particular frequency. If we consider any two posi-
tions of resonance as the two states of the resonator, then the
change, if there is any, in the zero-point energy of the resonator in

the two states | |
1 1
8 wﬂ = 3 2 hy ~ —2—' z hy
n, | n,2

of the resonator can be written as

1 -y -k
8W0=—2—[ hve ~ hve]

lim 150 n, | n, 2

where [ is the distance between the two infinitely conducting plates.
Then the change 5w, in the zero-point energy can have some physical
significance as the divergent series has been converted into a
convergent one by the introduction of the convergence factor €.
The above expression for the change in the zero-point energy can

be iqterpreted as giving rise to a zero-point electro-magnetic pressure
(Casimir, 1948) '

1
P=0.013 ¥ dyne¢s/cm?
J7;
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exerted by the electro-magnetic wave under the restriction that th
skin depth </. This means that the change in the zero- oin(:
energy, if there is any, in the two states of the resonator gives nze to
the concept of a force of attraction between the two end plates due
to the presence of the electro-magnetic waves present inside the
cavity-

The above discussion is based on the assumption that the cavity
is lossless and as such there is no damping of the modes. For finite
conductivity of the boundary walls of the cavity the different modes
will suffer damping to a different degree. For instance, it can be
shown with the help of the field equations that the TM mode will
have higher attenuation than the TE mode. Consequently, under
such circumstances the dicussions made above as regards the
difference in the zero-point energy of any two modes will not hold
good.
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