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Abstract

The matrix method of analysis is applied to the complete analysis of an un-
symmetrical machine by considering it as a system of coupled circuits whose
relative positions can be varied. The problem thus reduces itself in evaluating
at constant speed, the impedance dyadic or matrix Z, which, operating on the
current vector, gives rise to the voltage vector. The method is general and is
applicable to any type of machine The final equations obtained by the method
used in this paper are shown to agree with those obtained by Puchstein and Lloyd,
by Burian, as also by Lyon and Kingsley.

The complete analysis of a single phase machine with two
asymmetric windings on the stator and a balanced rotor was first
obtained by Puchstein and Lloyd*, and later by Lyon and Kingsley®,
and Burian®. Puchstein and Lloyd employed the double revolving
field theory, while Lyon and Kingsley, and Burian made use of
symmetrical components and cross field theory respectively. In the
first two papers, the method of approach had been mainly to resolve
the air gap flux into forward and backward rotating ﬁgllds. An
entirely different approach to this problem 1s to c::onsy,der. .the
machine as a system of coupled circuits, whose relatv_v*e positions
can be varied. Based on this method, called the matrix or dyadic
analysis, the problem reduces itself in evaluating for any type of
machine, at constant speed, the impedance dyadic or matrix Z which,
operating on the current vector gives rise to voltage v§ctor. E_xcept
. for the slight differences in notation, matrix and _dyadlc analysis run
on identical lines. The rotating machine is ultlmately_ reduced, at
constant speed, to an equivalent stationary network :v;th an slis:il;l-
metric impedance matrix. This was emPI_O}’ed by Sah® for ]?aeywitl%
many types of machines including the single phase machin

unsymmetric stator windings. 71
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Symmetrical components can be considered merely as a trapg.
formation from phase quantities to sequence quantities and the
relationship between phase impedances and sequence impedances
obtained.

In this paper, the symmetrical components employed by Lyon
and Kingsley' are considered as a suitable type of transformation,
to be employed in order to resolve the rotor currents into twg
systems of balanced currents of frequencies s and o (2s). By
properly separating the total inductances into air gap and leakage

values, the expressions for the air gap e.m.f. are obtained and the
final equations obtained are shown to check with those of Lyon and

Kingsley ; and also of Puchstein and Lloyd'. Expression is obtained
for torque by the matrix method and shown to agree with that of

Lyon and Kingsley.

For the special case, where the windings are in quadrature, the
relationship between A, B, C, D the phase impedances and Z
Zt, Z7, (sequence impedances employed by Suhr’) are obtained.

A simple but direct method of application of the matrix method
to analyse this machine by the use of cross field theory is also deve-
loped at the end. The final performance equations thus obtained

are 1dentified with those of Burian®.

Assumptions.—The following assumptions are made throughout
the treatments in the paper.

1. Hysterisis and eddy current losses are neglected.
2. The air gap is uniform.

3. The windings are so distributed that the mutual inductance
between any two windings varies as the cosine of the angle between
them. (This is equivalent to the assumption that the air gap flux is
sinusoidally distributed).

4. The resistances and inductances have got constant values.
5. The saturation effects are neglected.
6. Friction and windage losses are neglected.
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Voltages'and currents are represented as -
column _matnces respectively. Thus they can II;OW matrices and
vectqrs in space. The instantaneous power is ree represented as
matrix product‘of voltage and current and corres Er ec]Sented by the
product. The impedance matrix Z in the pr esentpc;l. s to the scalar
which operates on the current giving rise to the a - lls a 2-matrix
%t ste‘ady state, when each of the components oth ied vo]ts{ge.
sinusoidal quantity, it 1s represented by a complex num?)e:ector 1S a

Thus E, denotes the vector (E;, E») whereas E, denotes the

complex number representing the component E,; cos (wt + ¢) E
- . ) o

Page 73
Xla, XIb T em
X =M =
Xﬂ = w La ——
Xab = fﬂMab:
'xﬂb o
Xﬂb ——

ERRATA

Line19 Vs, should read Vs
21 I, N
23 Xla, XIb s Xia XIb
27 Xla .8 Xia
29 Xib " X1b
31 Xab - Xah
32 Xab - Xab

" leakage reactances oI a4 ana o.

mutual inductive reactance of windings a and
either of rotor windings when they are in line.
Total inductive reactance of winding a

C Xm + Xla - ‘ |
Total inductive reactance of winding b

nt cXm+ Xib.
Mutual inductive reactance a and b

mutual leakage reactance of a and b |
2 X,y COS a + Xab (DECAUSE of assumption 3)

rotor resistance per winding
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S == Slip — w_f_
)
€. —= Speed of the rotor expressed as a fraction of
synchronous speed.
=wl, = Total reactance of a rotor phase.
Max — instantaneous mutual impedance dyadic betweep
the stator and rotor.
p = d/dt.
Fig. 1
va=zaatia+P(max--ix) | (l)
Zaa 1s the matrix representing the self-impedance of the stator
and is given by
Zoo [r a + La P P L\ 9 (2)
P Mab ry + Ly p
ix=—- ’xxp(mxa-fa) (3)

°

Yxx 18 the admittance of the rotor and is given by

L rt o
rx + pr[O 1] (4)

VYxx ==
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Substituting (3) in (1)
Vo=2Z1, )
where Z = Zsa — P Max Yxx D My, (6)
and is called the instantaneous impedance matrix
From Fig. 1, by inspection, is obtained
Cos 6 I
e — M [ sm.ﬂ 7
n cos (9+a) nsin (g+a)

and my, 1S its transpose.

- I"Ix'l - » M COS 9 n COS (9+u)-| l-la
T ~ rv+Leplsing nosin 9+ q) Ip (8)
. 714 .

Line 1 § .
R g5 O Mxa - Mxa
v 15 Last line inside matrix
ja _ _Jd
Ig€ dNu Ipc . . - —jne ~j =—jne
represents the instantaneous quantity of the current. It is custom-

. Jw!
ary, however, in alternating current theory, to omit the terme

since it is common for all the quantities involving the- same
frequency. But it will be retained here because of the diflerent
frequencies which exist in the rotor coils 51m1}ltaneously. Thus

. 814 . Jwi i
replacing I, and I in eqn. (8) by la ¢ and Ire” ,and performing
the usual operations in eqn. (8),

. . -jcl j
Ix - pMe-}e ef‘"‘: [ 1 HE“;a] [ ?a]
I}’ B _—2 (!‘x ~+- Lx p) J Jnée Ib
16 Jw! ja ig
pMé e : '”eja] [ . ] 9)
_4& —jne I»

2 (rx -:Lx P)

13



76 S. GANAPATHY AND C. S. GHOSH

Employing the shifting theorem :
k kt
F(p) [ 7)) =" F(p+k) 100 0

and since §=vt and w—, = ws One gets,
jswt _ .
el el ]
2(‘—“‘+ij J jngﬂju ib
(2-5) .

+(-—_Xme J smt)[ | ne'm] [ Ia ]
r . : . (11
2 (=4 jx)L; _me® Il 1 )

From the above equation and by applying the transformation, one

finds,
' 1 1 |
I B I,
[ . ]— [ ] -Ja 1 Ja ' (12)
LA L=%e  ~5we ALl

The rotor currents are easily resolved into two systems of currents as

follows :
[ ] X, S_i_l'_l_fl e"Ja e}sorr[ I.al ]
_g-—-l_ .]xx J Ial

i
sequenli:ee f::; term represents the balanced system of positive
ents of frequency sw and the second term that of nega-

::’:a?e;]:ence currents of frequeney (2s) w. I, and I,, are symme-
mponents of currents employed by Lyon and I:(mgsley
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. )( . ~ja . h
Writing Iy =t Snae I
Ix _
s T JXx
L
l (14)

‘ ja -
Xmsinae I,

25 T J Xx

and iz—s =

equation (13) takes the form:

[ ] [ ] Jswt [ i2-s ] ej(z-s)mr (l 5)
J IS —J iz-s

For calculating the voltages induced in the stator due to rotor
reaction ( corresponding to the second term of eqn. (6) ), let these

. 10 2nd part of equation (11)

J(2=5)0) J(2-8)0)!
( —Xme ) ”? ~] Xm

77 Lower row of 2nd matrix in (16)

Jso)
IS e 4y IS P

b
JAA T

ZpM| - - (16)
n COS (6+a) n sin (§+a) jswt il eJ(Z-S)th
-3

JIse

On expressing sines and cosines in terms of exponentials and

again using the shifting theorem, one gets:

; 12-5
I: ] = e wM [ ] + EMIj“’M —ja ] (17)
ne Is ne Iz-s

Therefore, the steady state voltages :nduced in the stator due

to rotor reaction are:

[Ea] I'-' (Is + iZS) ] (18)
ja. - jl
Es jnXm (¢ 1s + € T2s)
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The final equations at steady state can now be written as
[ra+jxa jxab ][Ia]
[ ] J Xab re + j Xo ib

X (Is + 1
+ [} ( y e ~ja . ] (19)
_]nx,m (e I_g 4 € IZ-S)

On separating Zaa into air gap and leakage values as

Z X ab JjXmC jnc Xm COsa
zaa=[.”' g ]+ [ " o (20)
JXab Zs jnc Xm COSa jnz ¢ X,
where Zm =rz + ) Xia
Zs =T} o' j XIb

If B, and Es, denote the total air gap voltages induced in g
and b, these are given by the relations

Eog =7 Xmc 1o+ jnc Xmcosa Ip +j Xm (Is + Ias)
Ebg = jnc Xmcosa Lo + jn2c Xm Ip + jnXm (e7® 1, +

-Ja -

21
o]

Substituting for Is and I in terms of I, and I, asin eqn.
(12) and then by use of the relations in eqn. (14) the expression

for Eg; becomes

| i, : .
B =2 (21 + Z2) + "2 (21 e 4 2,0 7% 23)

where Z,= jc Xpy 4+ —2Xm’

Ix

Z 4 g
s T X

x2

m

s =jeXm +
+J Xx

2-S
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Egn. (23) can be further simplified and made to correspond to
eqn. (31) of Lyon and Kingsley, if it is written as

-ja

Eﬂ8=-2 (Ia-]-nlbe ) +—Z‘21(Ia+nlbe}a)
= Zl i’al + Z, j:'gl
= Eal + Eﬂ, (24)

I's,and T's, correspond to I'm, and I'm, used by Lyon and
Kingsley. Since Z,, Z, are easily seen to be positive-and negative-se-
quence impedances of a two-phase symmetrical motor with the same
number of turns in g and b; I"a, and I's, can be considered as the
vectorial currents which, when flowing through the rotor of the
symmetrical two-phase motor, preduce the same induced e.m.f. in

. 19 Last line equation (25)

Ea, o E,.
Epg = nz‘ e%(Is +nlpe’®) A " ’ (Ia +nlp €9
e Ja .
=nZ, e I'a, +nZ,e . I'a,
-~ n ejﬂ Eal 4+ N B-Ja Eg’ (25)

Equations (24) and (25) check with eqns. (31) and (32) of Lyon

and Kingsley if it is remembered that xg = ¢ X ;r =cr, and
Xr=¢' Xy — ¢ Xm; Ea, and Eg, are the symmetrical components of

the voltages of Lyon and Kingsley.

The final equations for the line currents I, and I can be

written down as :
Va = I.a Zm+ ] ib Xab + Eag } | (26)
Vy = Ip Zs + jXab la + Ebe
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Substituting for Eq and Ese from (23) and (24) one gets::
)

-ja ja

Vo =22(Z1 + Z2 4 2Za)+ 3 (nZie +nZi +2)xa)

. I ja -ja 1 : (27)
Vb.:{(nzle+nZze+2]xab)+—2—(ﬂ221+n Zy +27Z)
.-.-.BL-[-DD )

It may be noted that A, B, C, D correspond to the phase imped.
ances obtained by Sah.

On remembering that the rotor constants used by Puchstein
and Lloyd in their paper are half the test values, one can easily
see on simplification that the above equations for line currents

check also with those of Puchstein and Lloyd.

Torque :—
Instantaneous power input = I, . V.

a- Raa - ia + ia meia+iamaxpix+i-a(}7max)ix (28)

|
el

-

by
—

The first term in the above equation represents the stator
copper loss, the second and the third terms represent the power
stored as magnetic energy. Itis only the fourth term which re-

presents the instantaneous gross output. The term (pmay) .1« re-
presents the induced e.m.f. in the stator due to rotor magnetic field
and corresponds to the back e.m.f. This can be expressed in

terms of I, and I on substitution for mar and I, from equa-

tions (7) and (15). After simplification, this becomes the vector
vji Xm[" . ) . i
w [I;-— Iz_s : ne]ﬂ I - ne 7 12-3] at Steady state.




Matrix Analysis of Unsymmetrical Machines 81

The steady state complex expression for power, therefore, is

given by the Dot product of (I, 1) and complex conjugate of the
above Vector.

- Complex power output

v I — I3
] e
b ne”’ I, +ne’“2s

Expressing 1, and I in terms of 5 and Ia; with the help of egns.
(12) and (14), and simplifying and taking the real part, the torque
in synchronous watts is given by the expression

Torque

sl \Iailf'x - Jlﬂlllrx o
=2X*m SIN‘a ‘— . N (30)
s | \ 28

. 8l First equation in (32)

&) . _ JC\.
(A n )I"ﬂ . (A T n )I‘e

motor discussed by Suhr, eqn. (12) reduces to:

ia = iﬂl T ia, 1

| h. (31)
ib = —"’;'-'(Ial —1a,)

/

Substituting (31) in eqn. (27) we get:
C .
Va — (A + JC) Iﬂl ( - _n) Ia,

, r
and since in this case B = — C, (32)

1,12_) i,
Vb — (-J’? — C) Iﬂ: 2 (C + n

S
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Comparing the above equations with (13a) and (14a) of Suhr, the

following relations can be written :

+ JjC. = JjC
ZM ——— A + ——h——, ZM i A n

Ze =D + jnC; Zs =D — jnC

When n = 1, this reduces to the case of 2-phase motor where :

+

Lig e By e B = K g JO
T = Zn = Zy e A — JC;

The above relations can be verified on substituting the values
for the various impedances.

Crossfield Theory.—The above method of approach to the
problem can also be utilised to analyse the same machine from
crossfield theory. The fundamental assumption in the crossfield
theory is to consider the rotor to be equivalent to two short
circuited coils in quadrature as shown in Fig. 2, stationary in space
with its conductors having an instantaneous velocity.

The physical equivalent of this is a balanced rotor with 2 sets of

brushes as shown in Fig. 3.
a

Fig. 2



Fic. 3

I

v:: Zaa . fa -+ _p (mad Td) } (33)
0 qu-fd +p(mdaiﬂ)

ll

Where, as usual, I,and V., represents the vectors (la, I) and

_(V“= V). 1 represents the vector (I, Ig). Z4, is the self-
* Impedance of the coils (d, ).

The above equations can be written as

Va=zaa-ra+(pmad)'id+m"d(pid) } (34)
0

=qu-Td+(pmda)-fa+mda(Pfa)
14

83
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The second term in both equations represents the voltage
‘wduced due to the instantaneous variation of mutual inductance
and is called the speed e.m.f. The third term represents the voltage
induced due to instantaneous variation of currents and is the trap.

former e.m.f.

Since the field produced by the coils d and ¢ is stationary g
far as the stator is concerned, mqq 1s constant and is equal to

] 0
=M
- [ nCcos a nsin a] (35)

mda is the transpose of the above matrix. pmua., however, is
given by differentiation of mxe given by (7) and setting 4= 0. This
is because of the relative velocity of conductors of d and g with
reference to the stator.

c(pmaa)=M [0 -—nvsma]

nv COSda (36)

The term Zy, . 14 in (34) can be expanded as follows :

qu-_fd= ["x+pLx p My ][Id]
PMay  rx+pls I,

B [f‘x+PLx 0 ][Id]
0 Fx +PLx Iq

+[ : p My, ][h
L »Mq 0 L, (37)

The second term in the above equation can be written as

Mdg (P -id) i (pmdq)- -id
where

mdq :( 0 hﬂ[dq
My, 0 (38)
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(P qu), how-
elocity of the
It 1s obtained by

But M4, = 0 since d and g are in quadrature.
ever, is different from zero because of the relative v
conductors in either of the windings d and g.
setting 8 = 90 deg. in (pM,,) where

= 0 cosg
Mo = Ls | 4 (39)

represents the mutual inductance between two coils, similar to
d and ¢, placed at an angle ¢.

(P mdg) = La [? O;I (40)

d ¢/dt in the above deduction is taken as - » in the lower row
of the above matrix since the velocity of ¢ as shown in Fig. 2
corresponds to a decrease in the angle between d and gq. Thus the
instantaneous velocity of conductors tends to decrease the mutual
inductance between d and g, whereas it tends to increase the same
between g and d. L, is the mutual inductance between dand g
placed in line with each other, and is taken as equivalent to the self-
inductance of either of them. |

Substituting for maq, pmad, and pMdg in eqn. (34) and re-
membering that v = ws, and p= « at steady state ; the final equa-

tions are of the form :

~ (rx + j Xx) Ia = j Xm (la + n1pcosa) =S Xxlg
— S Xmnlpsine - (4la)

—(re+ jXy) Iy = j Xmn Ipsina + 8 Xxla |
+ § X, (iy + n 1 cos @)

as a fraction of the

where S=v/w = speed of the rotor expressed
Synchronous speed.

Vo= (ra+jXa)la +jxm'].d o (41b)
Vo = (rs +j X ) Ip + j Xm(lacoSa + 1, sin a)
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These equations can easily be recognised to be of the same
form as those obtained by Burian. It is to be note.d, however, that
signs of currents 14 and I, in this paper are opposite to those taken
by Burian. On solving the above equations for Is and I, and

substituting for I, and I in terms of I; and I.s from eqns. (12) and
(14) one finds on simplification

L]

id = I + iz-s }
I, =75 (Is + I2s) (42)

If I; and iq are expressed in terms of I. and I, in the last two
equations of (41), the final equation of performance obtained by

crossfield theory agrees with eqn. (19) obtained from circuit con-
siderations alone.

It will be seen from the treatment developed in the paper that
the performance equations of an unsymmetrical machine are
obtainable in a more direct and simple manner with the help of
matrix algebra as compared with the crossfield theory or the
method of symmetrical components. The method is indicated how
the equations developed by the matrix method can be ultimately
reduced to the form obtained by the other methods. The relative
advantages of a particular method depends upon the actual quanti-
ties, such as phase quantities, sequence quantities or the direct and
quadrature values, in which one is interested. The advantage of
the matrix or dyadic method is that all the different aspects of a
problem fall under one general treatment, namely, the transforma-
tion of co-ordinates. The solutions by the other methods are only
particular aspects of the general method of solution.
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