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Abstract 
The matrix method of analysis is applied to the complete analysis of an un- 

symmetrical machine by considering it as a system of coupled circuits whose 
relative positions can be varied. The problem thus reduces itself in evaluating 
at constant speed, the impedance dyadic or matrix Z, which, operating on the 
current vector, gives rise to the voltage vector. The method is general and is 
applicable to any type of machine The final equations obtained by the method 
used in this paper are shown to agree with those obtained by Puchstein and Lloyd, 
by Burian, as also by Lyon and Kingsley. 

The complete analysis of a single phase machine with two 
asymmetric windings on the stator and a balanced rotor was first 
obtained by Puchstein and Lloyd', and later by Lyon and Kingsley 2  , 
and Burian3  . Puchstein and Lloyd employed the double revolving 
field theory, while Lyon and Kingsley, and Burian made use of 
symmetrical components and cross field theory respectively. In the 
first two papers, the method of approach had been mainly to resolve 
the air gap flux into forward and backward rotating fields. An 
entirely different approach to this problem is to consider the 
machine as a system of coupled circuits, whose relative positions 
can be varied. Based on this method, called the matrix or dyadic 
analysis, the problem reduces itself in evaluating for any type of 
machine, at constant speed, the impedance dyadic or matrix Z which, 
operating on the current vector gives rise to voltage vector. Except 
for the slight differences in notation, matrix and dyadic analysis run 
on identical lines. The rotating machine is ultimately reduced, at 
Constant speed, to an equivalent stationary network with an asym- 
metric impedance matrix. This was employed by Sah 4  for analysing 

many types of machines including the single phase machine with 

unsymmetric stator windings. 	 71 
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Symmetrical components can be considered merely as a trans. 
formation from phase quantities to sequence quantities and th e  
relationship between phase impedances and sequence impedan ces  

obtained. 

In this paper, the symmetrical components employed by L yon  
and Kingsley' are considered as a suitable type of transformation, 
to be employed in order to resolve the rotor currents into two 
systems of balanced currents of frequencies (us and w (2-0. By  
properly separating the total inductances into air gap and leakage 
values, the expressions for the air gap e.m.f. are obtained and the 
final equations obtained are shown to check with those of Lyon and 
Kingsley ; and also of Puchstein and Lloyd'. Expression is obtained 
for torque by the matrix method and shown to agree with that Of 
Lyon and Kingsley. 

For the special case, where the windings are in quadrature, the 
relationship between A, B, C, D the phase impedances and Z r:, 

Z;,, (sequence impedances employed by Sub?) are obtained. 

A simple but direct method of application of the matrix method 
to analyse this machine by the use of cross field theory is also deve- 
loped at the end. The final performance equations thus obtained 
are identified with those of Burians. 

Assumptions. —The following assumptions are made throughout 
the treatments in the paper. 

I. Hysterisis and eddy current losses are neglected. 
2. The air gap is uniform. 
3. The windings are so distributed that the mutual inductance 

between any two windings varies as the cosine of the angle between 
them. (This is equivalent to the assumption that the air gap flux is 
sinusoidally distributed). 

4. The resistances and inductances have got constant values. 
5. The saturation effects are neglected. 
6. Friction and windage losses are neglected. 
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Voltages and currents are represented as row matrices and 
column matrices respectively. Thus they can be represented as 
vectors in space. The instantaneous power is represented by the 
matrix product of voltage and current and corresponds to the scalar 
product. The impedance matrix Z in the present case is a 2-matrix 
which operates on the current giving rise to the applied voltage. 
At steady state, when each of the components of a vector is a 
sinusoidal quantity, it is represented by a complex number. 

Thus Ea  denotes the vector (E a , Eb) whereas ta  denotes the 

complex number representing the component Ea  Cos (cut ± 0). Ea 

ERRATA 

Page 73 	Line 19 	V b should read . lb 

21  

Xm =---- (AM =-- mutual inductive reactance of windings a and 

either of rotor windings when they are in line. 

Xa  = w  La ..--= Total inductive reactance of winding a 

:= c Xm + Xla • 

Xb=--__ w ith = Total inductive reactance of winding b 

= le c Xm + xib. 
Lb = (DM ab= Mutual inductive reactance a and b 

xab 	= mutual leakage reactance of a and b 

Xab -= ?JCL?, cos a + Xab 
(because of assumption 3) 

r, 	= rotor resistance per winding 

23 	Xla, Xlh 	)9 	
XIa Xth 

27 	Xla 	t, 	
xia 

29 	xll,  

31 	Xah 	9/ 	
Xah 

32 	Xah 	99 	Xah 
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co—v 
s= slip 	= 	(A) 

S =v 	= Speed of the rotor expressed as a fraction of 
synchronous speed. 

XxwLx = Total reactance of a rotor phase. 

max 	= instantaneous mutual impedance dyadic between 
the stator and rotor. 

d/dt. 

a 	Zaa • la p (Max • ix ) 	 (1) 

Zaa  is the matrix representing the self-impedance of the stator 
and is given by 

Zaa= [ra ÷ Lap 	p M ab  

p mob 	r b + Lb pi 	
(2) 

=yxx p( MXC1 • ) 	 (3) 
yxx is the admittance of the rotor and is given by 

	 • 

yxx  = 	1 	oi  
1 	

(4) 
Lx  pLO  
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Substituting (3) in (1) 

= z ia  
where Z = Zaa p max Yxx P ntra 

and is called the instantaneous impedance matrix. 

From Fig. I., by inspection, is obtained 

(5) 

(6) 

[COS 0 
Max = 

n cos (g÷ a) 
sin e 

n sin (o+a) (7) 

and mxa is its transpose. 

r L 
P M  

Tv + Lic P 

n cos (9 + a)1 
n sin (a + sa) r a  jilb (RI 

	

„ 74 
	

Line 1 	 If 

	

„ 75 
	

8 
	

Mxa 	 illxa 

	

1), 
75 
	

Last line inside matrix 

e UflUit c 
represents the instantaneous quantity of the current. It is custom- 

ary, however, in alternating current theory, to omit the term I"  , 
since it is common for all the quantities involving the same 
frequency. But it will be retained here because of the different 
frequencies which exist in the 

replacing Ia  and lb in eqn. (8) by 
the usual operations in eqn. (8), 

rotor coils simultaneously. Thus 
iwt 

Ia e and lb e , and performing 

[ix ] 	

-.10 Aol 	-ja] 
pMe  e 

I 	= - - - 	- -- 	1 

vie 

, 

	

2 (rx + Lx  p) 	j jne -ja  La] 

13 • 

io 
pMe e 
2 (rx + p) 

[ 	vie 
ja  

[ia 
(9) 

ib 

ia 
- eine „ -j -jne 
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Employing the shifting theorem : 

F (p) [e
kt 

f (01 = e
kt 

F ( p+k ) f (t) 

and since 8=v t and w., ----= cos one gets, 

[ ta jXme 	 ] 
- la ty 	2(r:  jxx)[ j pie 	lb  

(.Xme
;(2-01[ 

/ —
jne 

tie 	la 
la 

lb • -v  
2 

rx 	

—* 
 

(10) 

From the above equation and by applying the transformation, one 
finds, 

1 

ib ] 	 sia  == — 	e 	

1 

1  
— 	

(12) 

n 

 

The rotor currents are easily resolved into two systems of currents as 
follows : 

--Ja /slot 	• 
a'  

• E 	• 
Ix 	r.  Xni Sin a e 	e 	l 

ilai 
S 

Ja 	j(2-s)(or 
Xm  sin a e _  e [ I.a, ] 

(13) rx 
--24 Xx 	—j Ia2  

The first term represents the balanced system of positive 
sequence currents of frequency sw and the second term that of negaw 
tive sequence currents of frequeney (2-s) to. ia, and la s  are symme- 
trical components of currents employed by Lyon and Kingsley. 
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Ia 
• 	sin a e 	1121  

	

Writing Is 	— 	 
Tx 
—+ Xx  

Ia .  

	

and ' 	sin a e 	 la, i2-s 
TX 
	 + X, 2-S 

(14) 

equation (13) takes the form : 

	

[ is 	1swt 
. 	 e 

ly 	
.

i 	Is 
[

i2-s(2-shot 

12-s 
(15) 

For calculating the voltages induced in the stator due to rotor 
reaction ( corresponding to the second term of eqn. (6) ), let these 

76 
	

2nd part of equation (11) 

2:1( -shot 
(11 	— —XI?? ej(2-3)(41 	 jXm e 

9, 77 
	Lower row of 2nd matrix in (16) 

;via)/ 
Is e 	1, 
	b e 

PM  La' n cos (0+a) 

LPSA.1 	It' 	 E3 te 

n sin (o+a)

i
kw/ 

	

i Is e 	— 

off 
1 (16) 

I2.s ej(2es)wt  

On expressing sines and cosines in terms of exponentials and 
again using the shifting theorem, one gets : 

Mt 
e 	.toM 

[EEabi 
Is Is ja  
L ne Is —1  

Jon . 
e icoM 

12-s (17) 
Le -la  tz-s 

Therefore, the steady state voltages induced in the stator due 

to rotor reaction are : 

[ Ea] Et) 

J Xm  

LjnXtrt 
fa t 

+ i2.0 	 08) 

(eja 	± e-ja12-s).-1 
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The final equations at steady state can now be written as 

r  Va 1 = r  ra +Jxa j Xab 1 r la 1 
Is V b i L j Xab 	rb + j Xb iL ib  i 

+1 
./ x„, 

Linxm 
(is .+ 420s) 

(
fa
e i + e s 	sia  • 12-s)] 

(19) 

On separating Zaa into air gap and leakage values as 

La  . [ z„, 
jXab 

jxab ] + z, 
ripcmc 
L jnc X. cos°. 

jnc X. cosal 

jn2  c X„, j (20) 

where Zm = "a + j xra 

Z, =--- rb -e- j Xlb 

If tog  and Eh:  denote the total air gap voltages induced in a 
and b, these are given by the relations 

tag  =i xm c ia + jnc Xm  cos alb + j Xnz (is ± 12-0 
(21) 

Ebg 4= jnc X. COS a. la + jn2  c Xm ib + jnX. (e ja is  + ;fa 124) 

Substituting for is and ii.s  in terms of ia  and ib as in eqn. 
(12) and then by use of the relations in eqn. (14) the expression 
for tag  becomes 

• 	ta 
(23) = 2—  (Z1 ± Z2) ÷ n-2—ib  (Zi e mia  + Z2 e fa  Eag ) 

where Z1= je Xm  + 
Xn2 

rx 	. Xx  - + I 
s 

, Z2 :--- je XM al- 	  
X,, 

rx ± j Xx  2 — S 
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Eqn. (23) can be further simplified and made to correspond to 

eqn. (31) of Lyon and Kingsley, if it is written as 

Z, 
ag 	(la +n ib eria) + 421- Oa + nibela) 

= Z i  i t  a l  + ZI  IV a 

= Ea ' 	Ea t 	 (24) 

rat, and 	correspond to I'm, and i 'm , used by Lyon and 
Kingsley. Since 4,  Z, are easily seen to be positive-and negative-se- 
quence impedances of a two-phase symmetrical motor with the same 

number of turns in a and b; ra, and to, can be considered as the 

vectorial currents which, when flowing through the rotor of the 

symmetrical two-phase motor, produce the same induced e.m.f. in 

„ 79 	Last line equation (25) 

Ea? 	 Ea? 

n Z, e
arn 

kbg  n 
2  
Zi  

ej  (la + n lab e -ja) +  	± nib eia) 
2 

n Z i  eja  Fa , 	 n Z, 	i ta, 

ia - 	— fa 	 (25) 
n e Ea, 	n e 	Ea!  

Equations (24) and (25) check with eqns. (31) and (32) of Lyon 

and Kingsley if it is remembered that x ci, =-_ c X„,, r, = erx  and 

x r  e x, c x„,; Ea , and Ea, are the symmetrical components of 

the voltages of Lyon and Kingsley. 

The final equations for the line currents ia and lb can be 

written down as : 

a = Zm 	ib Xab 4-  tag 
	 (26) 

b = lb Zs ± JXab fa + Ebg 
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Substituting for tag and Ebg from (23) and (24) one gets : 

=A L  + C 

la 	-in 
b — 	2 

(n Zi e + n Z2 e + 2f xab )+ 

=13 la  + D tb  

1 
± 2 j xth) 

E(27) 
+ n2  Z2 + 2 Zs ) 

fa 
V a 	Ar-4 1 

-in 	fa 
+ Z2 + 2 Zni) - —(n Z, e + n Z, e 

2 

It may be noted that A, B, C, D correspond to the phase imped- 
ances obtained by Sah. 

On remembering that the rotor constants used by Puchstein 
and Lloyd in their paper are half the test values, one can easily 
see on simplification that the above equations for line currents 
check also with those of Puchstein and Lloyd. 

Torque :— 

Instantaneous power input = fa • Va 

ia • Zaa • fa 	a Max ( P ) 	a (p Max) ix 

= fa  Raa • fa + Laa p 	ia Max p + fa (P Max ) 1x (28) 

The first term in the above equation represents the stator 
copper loss, the second and the third terms represent the power 
stored as magnetic energy. It is only the fourth term which re- 

presents the instantaneous gross output. The term (pm ar ) . i x  re- 
presents the induced e.m.1 in the stator due to rotor magnetic field 
and corresponds to the back e.m.f. This can be expressed in 
terms of i s  and 12-s on substitution for in ax and i from equa- 
tions (7) and (15). After simplification, this becomes the vector 
Id XI. 	

at steady state. w 	Is i2-3 	Is e ja  - 	, ne 	— ne 12.s ] 
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The steady state complex expression for power, therefore, is 
given by the Dot product of (I., I b) and complex conjugate of the 
above vector. 

4•. Complex power output 

= [ ja 1 vixm  [ — 
i 	cd 	"fa. 	- • b 	• 	 • 	(29) 

ne I; +ne)924 

Expressing i a  and i b in terms of Li and to2 with the help of eqns. 
(12) and (14), and simplifying and taking the real part, the torque 
in synchronous watts is given by the expression 

Torque 

= 	
,,,,,rx 	, 

s -1( rx )2  +X 2  I 
2X*. sin'a 

r 
- S x 

, 81 	First equation 

j la?  rX  

(2es) •rX  )

2 .

X47 2  
is AI  2-S 

in (32) 

(30) 

(A — 	 ( A  jC\ i  
n 	 n 	2 

motor discussed by Suhr, eqn. (12) reduces to : 

ia = 	jas 

lb = 	Och la,) I 

(31) 

Substituting (31) in eqn. (27) we get : 

-1Iq)Li3 + 	) 

and since in this case B =-- 	C, 
	 (32) 

b == (j—P 	
+ iQ) i01  ' 
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Comparing the above equations with (13a) and (14a) of Suhr, th e  
following relations can be written : 

Zrt4+  = A+ 	 = A —  C  

=-.D 4-inC; 	zs = D jnC 

When n = 1, this reduces to the case of 2-phase motor where : 

+ 
=_- Zs  =-- Z, 	A ± j C 

-= Zs-   

The above relations can be verified on substituting the values 
for the various impedances. 

Crossfield Theory. -The above method of approach to the 
problem can also be utilised to analyse the same machine from 
crossfield theory. The fundamental assumption in the crossfield 
theory is to consider the rotor to be equivalent to two short 
circuited coils in quadrature as shown in Fig. 2, stationary in space 
with its conductors having an instantaneous velocity. 

The physical equivalent of this is a balanced rotor with 2 sets of 
brushes as shown in Fig. 3. 

FIG. 2 
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,a 
83 

Fir. 3 

Va z---- Zaa • fa 4- p ( Mad Id ) 	I 
0 == Zdq  . fd ± p (mda fa ) 

(33) 

where, as usual, fa and V ia represents the 
(Vs, V b). 	Id represents the vector (Id, 
impedance of the coils (d, q). 

vectors (I a , b) 

q). Zdq is the 

and 

self- 

The above equations can be written as 

zaa . fa ± (p mad ) 	+ mad ( P ) 
	

(34) 

Zdq  • id (p Mda ) • fa + 	(p fa ) 
14 
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The second term in both equations represents the voltage 
induced due to the instantaneouts variation of mutual inductance 
and is called the speed e.m.f. The third term represents the voltage 
induced due to instantaneous variation of currents and is the transe 
former e.m.f. 

Since the field produced by the coils d and q is stationary as 
far as the stator is concerned, mad is constant and is equal to 

r- 

M [1 
mad  

n cos a n sin0a 	 (35) 

mda is the transpose of the above matrix. pmd a  , however, is 
given by differentiation of mxa given by (7) and setting or- O. This 
is because of the relative velocity of conductors of d and q with 
reference to the stator. 

[ 0 	—n v sin a 1 
P mda M 

	

fl v Cosa al 	 (36) 

The term Zdq  . id in (34) can be expanded as follows : 

Zdq •id 
 

P IVIdg 

PI•44 lr Id 1 
rx  p Lx JLIq 

le id 

+ p lax 

0 

[PMdci 
P Mcki 

0 (37) 

The second term in the above equation can be written as 

where 
	 Mdq P id) + P nidq) • Id 

Mdq =-----( 0  
Mdq (38) 
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But ividg  = 

ever, is differet 
conductors in 
setting 0 = 90 

:0 since d and q are in 
It from zero because of 
either of the windings 
deg. in (pMxy) where 

quadrature. (p Md q), how-- 
the relative velocity of the 

d and q. It is obtained by 

	

= Lx 	
cos 0 	0 .1 
0 	cos 0 1 

(39) 

represents the mutual inductance between two coils, similar to 
d and q, placed at an angle 0. 

	

(P mdq) = 	[ ° 	
- v 
0 d 	(40) 

d efdt in the above deduction is taken as — v in the lower row 
of the above matrix since the velocity of q as shown in Fig. 2 
corresponds to a decrease in the angle between d and q. Thus the 
instantaneous velocity of conductors tends to decrease the mutual 
inductance between d and q, whereas it tends to increase the same 
between q and d. Lx is the mutual inductance between d and q, 
placed in line with each other, and is taken as equivalent to the self- 
inductance of either of them. 

Substituting for mad, Pnad , and pmdg  in eqn. (34) and re- 

membering that v = ws and p = to at steady state ; the final equa- 

tions are of the form : 

(rx  + Xx ) Id = J  XM 	n b cos«) S Xx l q  

S X„, n ib sin a 	 (41a) 

— (rx  + j Xx ) iq 	XM n ib sin a + S Xx: id 

S X. (i a  -Fe cos a) 

where S= v/o) speed of the rotor expressed as a fraction 
of the 

Synchronous speed. 

= ra 	Xa 	4- Xm id 

Vb =  (rb 	Xb) lb 	Xm ( id COS a + 

(41b) 
ig  sin a) 
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These equations can easily be recognised to be of the sa me  

form as those obtained by Burian. It is to be noted, however, that 

signs of currents id and Iq  in this paper are opposite to those taken 
by Burian. On solving the above equations for id and iq  and 
substituting for ia and lb in terms of Is and 12., from eqns. (12) and 

(14) one finds on simplification 

idL + f2-s 

=j (Is ± 124 	/ 	 (42) 

If id and iq  are expressed in terms of i s  and izes in the last two 
equations of (41), the final equation of performance obtained by 
crossfield theory agrees with eqn. (19) obtained from circuit con- 
siderations alone. 

It will be seen from the treatment developed in the paper that 
the performance equations of an unsymmetrical machine are 
obtainable in a more direct and simple manner with the help of 
matrix algebra as compared with the crossfield theory or the 
method of symmetrical components. The method is indicated how 
the equations developed by the matrix method can be ultimately 
reduced to the form obtained by the other methods. The relative 
advantages of a particular method depends upon the actual quanti- 
ties, such as phase quantities, sequence quantities or the direct and 
quadrature values, in which one is interested. The advantage of 
the matrix or dyadic method is that all the different aspects of a 
problem fall under one general treatment, namely, the transforma- 
tion of co-ordinates. The solutions by the other methods are only 
particular aspects of the general method of solution. 
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