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SUMMARY

| ‘A modified method of deriving the spectrum of modulated pulses
is given ‘here. According to this method, it is shown that there are
two distinct types among the basic pulse frequency and pulse phase
modulation systems and these types are compared with continuous wave
frequency and phase modulation systems. The distortion that arises
with the different methods of demodulation are examined and curves have
been drawn for harmonic distortion in the case of pulse width modulation.

1. INTRODUCTION

One of the early methods of analysis of the spectrum of modulated pulses
was to set up an equation for a train of pulses and then to modulate any
of the required parameters such as the duration, phase or the repetition
frequency.! The validity of such a procedure has been doubted and
an improved method of analysis bas been developed by Fitch® In this
method an expression is set up for a finite number N of positive steps
located at time intervals of T, and an equal number of negative steps
displaced by a time interval /, corresponding to the width of the pulses.
The expressions for the positive and negative steps when added result in an
expression for a train of N pulses. If N is made to increase indefinitely, the
following expression for an infinite train of pulses will be obtained.

A 1 ] ~inklf, i2xkf,t ]
F(z)=§;j : (einklf, — e~Inklfs) ed2wkf (1)
k=— OO

where A is the amplitude of the pulses and fr the pulse repetition frequency.
This expression clearly shows the individual etifects of tl:ne leading and _;Ee
trailing edges each of which can be modulated 1n any desired manner. lhe
analysis carried out by Fitch has been confined mamly to the determmatli:m
of the harmonic distortion produced by the lower sidebands of the puise

repetition frequency harmonics when the demodulation is carried out by

means of a low pass filter. )
2. MODIFIED METHOD OF ANALYSIS (PULSE FREQUENCY MODULATIC{N
It is intended in the following analysis to take up a detailed considera-
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tion of the spectrum of modulated pulses and to cOMmpa 125
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amplitude and angular c.w. systems. For the purpose of
arstanding of the relationship between the modulating
alse train the following picture of the modulation

spectrum of
obtaining a clear und
wave and the modulated p
process may bz assumed (see Fig. 1).

Fig. 1

Here (@) and (b) are two sinusoidal waves of frequency f, displaced relative to
one another by an amount /, the width of the unmodulated pulse. The positive
and the negative steps which give rise to the pulse train, are assumed to
occur at the peaks of the waveforms (a) and (b) respectively. For pulse
frequency modulation the two waveforms (a) and (b) are regarded as being
frequency modulated. Thus the expressions E cos 2af. (¢t 4+ //2) and
E cos 2nf, (¢t — l/2) for (a) and (b) will change over on modulation by a
single tone of frequency, f, to the following expressions:

f(t) =E cos [ 2nfr (t + 1/2) 4 ffn sin (2af ;mt + @) ] for (a) (2)

f@ =B cos [ 2nfy (t — 112) + I sinQnfmt +9) | for®) @)

In these equations f is the frequency deviation and ¢ is the phase angle
of the modulating waveform. Without any modulation, the time of occur-
rence of the positive and the negative steps will be given by

27 f. (¢ + lj2) = 2nn 4)
2n fr (t — 1)2) = 207 (5)
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With modulation these instants will change over to the values given by

2nfr (0 4+ 112) + 12 Sin Qafont + &) = 20m

fm (6)
daf 1 (t — 1]2) + }fn Sin 2nf mt + ¢) = 2nm U

There are really two distinct types of frequency modulated pulse wave-
forms. In the first type, the displacement of the waveform (b) of Fig. 1
from its unmodulated position at any instant of time 1, is determined by the
value of the modulating voltage at that instant. In the second type, this
displacement is determined by the value of the modulating voltage at time,
t — [. It 1s clear that in the first type there is bound to be a variation in the
width of the pulses along the modulation cycle as well as a positional dis-
placement. In the second type the width of the pulses will remain constant
and there will be only positional displacement. Considering first type for
which the equations (6) and (7) apply, it 1s seen from these equations that
modulation can be taken into account by substituting

I+ Wf{_ ?m sin (27f mt + ¢) and / wf{ ‘}m sin 2nf mt + ¢)

for I in the expressions for the leading and trailing edges in the equation (1).
Then the expression for the modulation pulse train becomes

A = | jlmklf, -- k4 sin Q2x fmt + #)]

k=—00

fm

o —ileklf = kf 4 gin (erﬂﬁ-é)]} ISkt (g)

iz sin 6 oo jn @ :
Using the formula, e’ sinf _ sy (z) e’ °, where Jn (2) is the Bessel

o= D

function of the first kind and of order », and after sub‘sequent simplification,
the following cxpression for the spectrum will be obtained:

- sin 'n'/kf kfg, ¢

k=1

+ iJn (lj{g) { cos 27 (s Ffm) t F b+ (— D"

©)

X COS 27 (k?;d-— nfm)! — ”E’}]
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This expression may be compared with that for the spectrum of a fre-
quency modulated continuous wave given by

F(r)--AJO( )cosZarf,.t+AZJn ){cos T

+ (— 1) cos 2m (fr — nfm) 1 :“_”%} Oa)

Comparison of (9) and (9 a) leads to the following conclusions: (i) With
this type of pulse frequency modulation there will be no sideband accom-
panying the zero or the “ d.c.” component of the pulse spectrum. Hence
a low pass filter used for the demodulation will not yield any modulating
frequency component. (ii) The kth harmonic of the pulse repetition fre-
quency is frequency modulated, the modulation index being kf g/fm. (iii) As
the order of the pulse repetition frequency increases, the amplitude of the
carrier and sidebands will diminish as shown by the factor sin »lkf,/k. It
is clear that pulses frequency modulated in this manner can be demodulated
by means of a band pass filter which will extract one of the repetition fre-
quency harmonics along with its sidebands and by applying it to a frequency
discriminator circuit. It is worth noting that there will be no harmonic

distortion accompanying this method of demodulation.

The other type of pulse frequency modulation will now be considered.
In this type the displacement of the waveform (b) of Fig. 1 from its un-
modulated position at any instant of time ¢ will depend on the value of the
modulating voltage at time ¢t — /. Hence the equations which will determine
the position of the trailing and leading edges of the pulses are:

)t + ¢n

nfo (t + 12) +§i Sin (2nfm 1 + $) = 2nr (10)

2nf 1 (t — 1]2) +f4 Sin (2nf g { =T+ 4) = 2nm (11)

?Pl
On comparing these with the equations (4) and (5), it is found that modula-

tion can be taken into account by substituting / + }L}— sin (2#f , t+¢) and
TJm

= wf{}ﬁ sin (2afm t — I 4+ ¢) for  in the expressions for the leading and

trailing edges respectively in the equation (1). The spectrum is thus given by
A — 1) ; kf s :
F (1) = Z}j‘ i {ef[wk!fr + —:sm (2w fmt +¢))
k=1

e_f[l'k{fr _;fd sin 2xrmt — 7+ 4’)]} J2zkf 1 (12)
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After simplification this becomes

oo

_ sin wlf
F @) =Alfy + Afa” 775 005 nfm 1 + ¢ — mif ) + 241, )

k=1

‘- kfa\ sin =lkf, e .
- (78) "L cos 2mifur + Y1 (4 [Slllﬂ{(_’;{c}t"fm)

Cos (2'”' [kfr + nfmlt + ng — nwlf m) + (—=1)n smw_l(__;_';. —nf m)

nlkf,

cos (Zw lkfr — nfml t — nd + nrrlfm)ﬂ (13)

n=1

‘ It will be interesting to compare this with the equations (9) and (9a)
which are the expressions for the frequency modulated pulses of the first
type and frequency modulated continuous wave respectively. This com-
parison leads to the following conclusions:

(1) The zero or the *“ d.c.” component of the pulse spectrum has a side-
b‘and of the modulating frequency of amplitude Afg4 (sin #lf m/nfm). Modula-
tion can therefore be recovered by means of a low pass filter and there will
be no harmonic distortion as there are no harmonic terms in the zero order
pulse spectrum. There will however be some distortion due to the lower
~ sidebands of the harmonics of the pulse repetition frequency.

(ii) If the sidebands of the kth pulse repetition frequency harmonic
are considered, it is seen that the upper and lower sidebands of the same
order are not equal in amplitude whereas for pure frequency modulation
they should be equal, as can be seen from equation (9 a). This situation is
shown in Fig. 2 where the amplitudes of the kth pulse repetition frequency
harmonic and its first three upper and lower sidebands are plotted as func-
tions of k. It is seen that as k is increased, the upper and lower sidebands
of a given order tend to assume equal values. It may therefore be copleuded
that each of the pulse repetition frequency harmonics has, in addition to
frequency modulation, a certain degree of amplitude modulation which
diminishes as the order of the harmonic increases. If the signa{ is demo‘du-
lated by selecting any of the pulse repetition frequency harmonics and side-
bands and applying it to a frequency discriminator, there is bound to be a

certain measure of distortion.

3. PuLSE PHASE MODULATION

be obtained by phase

The expression for a train of modulated pulses can ;
Here again there are

modulating the two waveforms (a) and (b) of Fig. 1.
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two distinct types of phase modulated pulses. In one of them the phase of
the waveform (b) of Fig. 1 at any instant of time is determined by the value
of the modulating voltage at that instant. Therefore the displacement of
the leading and trailing edges are not equal and hence there will be a variation
in the width of the pulses along the modulation cycle as well as a positional
displacement. Considering this type of modulation first, the expressions for
the modulated waveforms of (@) and (b) of Fig. 1 are

f () = E cos 2af; [(t + 1/2) + g sin Qnfm t + ¢)] (14)
f(#) = E cos 2af, [(t — 1J2) + I'q sin Qaf o t + ¢)] (15)
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where 2nf.lg and 2af.l4" are the phase
(b) respectively. The two deviations
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deviations of the waveforms (4) and

) . arc assumed as being different t
this treatment applicable to the case of pulse width moc%ulation Bc; r;l;l;e

paring }hese equations with (2) and (3) it is seen that modulation can bs
tgken into account by substituting /4 2/ sin (2nfmt + ¢) and 1 — 2/ X
sin (2-,,-{,“: + #) for I in the expressions for the leading and trailing ed :s
respectively in equation (1). The spectrum is therefore given by y

<O

A . _ :
F@() = Vi Z,}: {e’ (wklfy - 2mkf lg Sin (2 f o1 -+ ¢)]

be=— 00

(16)

For pulse phase modulation the two deviations are equal, ie., /g = I
The above equation can be simplified into

_ o JUxklfy —2xkf Iy sin 2x [t + ¢)I} p 2w ki

F () = Alfy +2Alf, Z §lnﬂ21]}f.f r { Jo Qrkfilg) cos 2nkf t+ Z; 1, Crkf,ly)

This expression is quite similar to (9) with the difference that kfg/fm
is replaced by 2nkf.ly. Evidently each of the pulse repetition frequency
harmonics is phase modulated, the maximum deviation being 27kf /4. The
amplitudes of the pulse repetition frequency harmonics and their sidebands
decrease with k& according to the term Sin alkf,/nk. Also there is no side-
band accompanying the zero or the ““ d.c.” component of the pulse spectrum
and hence modulation cannot be recovered by means of a low pass filter.

The other type of pulse phase modulation will now t?e considered.
Here the leading edge of the pulse is modulated so that 1ts displacement at
any instant ¢ is determined by the value of the modu!atlr}g voltage_ at that
same instant, namely £, whereas the displacement of tr_le trailing edge is deter-
mined by the value of the modulating voltage at time (£ — D). Ewdlentl()lr
in this type of modulation, the displacement of the two edges are equz; an
hence the width of the pulses will remain the same along the modu le::tu:un
cycle and there will be only positional displacements of the pulse:.s.t ;og
the considerations previously given, it is clear that spectrum for this typ .
modulation will be obtained by substituting / + 214 sin (2nf m! +. $) an
| — 21y sin Qnfmt — I+ ¢) for Iin the expressions for the leiglsl;inand
trailing edges respectively in the equation (1). This gives the exp
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o0

A 1) jukf, [+ 2gsin Qrfmt + ¢)]

k=—00

" — jokf [ — 2lg" sin Qufmt — 1 + 4’)]} e.f:“kf’f (18)

Setting lq = /¢’ and simplifying, the following expression is obtained

for the spectrum:

F (1) = Alf, + 2Alaf, sin (alf m)-cos Qafmt + ¢ — 7lfm) + Z Alf,

k=1

Ik
{ Jo 2nkfrlg) — s lz 1 Jr 3 cos 2nkfrt + Z 2 2nkfrlg)

X[SIH ml (flf,i’ fj_ nfm) cos (27 [kfr + nf ml t + né — nalf )

+(— 1) sin_ gc{gf_ nf m) cos (271' kfy — nfm] t

— né + nﬂ'lfm)]% (19)

This equation is very similar to (13). The “d.c.” component of the
pulse spectrum is accompanied by the modulating frequency term of ampli-
tude 2Al4f; sin #lf . This can be recovered by means of a low pass filter
and a suitable equaliser to take into account the factor sin #»/f,, which shows
that the amplitude is not constant but is proportional to the modulating
frequency. There will be no harmonic distortion as there are no harmonic
terms in the zero order pulse spectrum. There will however be a certain
measure of distortion due to the lower sidebands of the harmonics of the
pulse spectrum. Another interesting feature of this spectral distribution is
that the upper and lower sidebands of the same order accompanying any of
the pulse repetition harmonics are not equal in amplitude, whereas accord-
ing to true phase modulation they should be equal to one another. There-
fore it may be concluded that there is some accompanying amplitude modu-
lation. Demodulation by means of a band pass filter and discriminator is
accompanied by some distortion. Fig. 2 which was drawn for the case of

pulse frequency modulation can be suitably modified to represent the spectral
distribution in this case also.
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4. PuLsp WIDTH Mo DULATION

: Il be produced. Consideri
of symmetrical double edge modulation, the equation bec; ;‘::g the case

n, k=—00

A ml okl ;
FO)= 5. ) {J" @rkfrla) ™" — 1, ( — 2kl e _M}

j(z'ﬂ'[kfr +"f.] r - nq&)
which simplifies into = (19 a)

F () = Alfs + Alfyn sin Qnf mi + ) + Al ) {uo (rfymi)
k=1
sin wkf,/ cos wkf,l
x STgrg cos 2ukfyt + 41, (rkfm) %5 7 Il cos (2nkfr)
sin wkf,l

X sin (2uf mt + ¢) + 415 (wkfrml) A ] cos (2nkfrt)

X ¢0s (2n2f mt + 2¢) + etc. } (20)

In the above equation the term /4 has been replaced by % ml, where m is
the modulation index. Thus if m = 1, then the maximum and minimum values
of the pulse width will be 2/ and 0, which corresponds to the case of 1009,
modulation. From the above equation it is seen that the zero order of the
pulse spectrum has a modulating frequency term of amplitude Alf;m and
no harmonics. Therefore modulation can be recovered by means of a low
pass filter and distortion will be only due to the lower sidebands of the pulse
repetition frequency harmonics. The exact amount of this distortion for

varying conditions has been worked out by Fitch.®

ure of the equation (20) is that it shows that each

of the pulse repetition frequency harmonics IS amplitu_de modulated. It
will be shown later that the distortion components of the sidebands are smgll.
It is therefore possible to select any of the pulse repetition frequency harmonics

along with the sidebands and apply the resulting waveform to 2 linear detectel;
which would give the demodulated signal. The author has shown™

A very interesting feat
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that this method has a 3 db. improver{wnt in signal to noise ratio
over the usual system of demodulation _\afhlch uses a low pass ﬁ]ter. It has
Jlso been shown that if N pulse repetition frequency harmonics are sepa-
rately extracted and the output addefi af:ter detectxop by rflean'.s of a linear
detector, the resulting improvement 1n sng_nal to noise .ratlo will be %0 log
IN decibels. Thus if N is equal to 4 .the.uppmvemen_t is 9 dbs. ' In'wew o‘f
this improvement in signal to noise ratio, it 18 worthwhile to examine in deta}l
the distortion that would arise in such a system of demodulation. Consi-

derine the kth harmonic of the pulse repetition frequency, the expression
o
for this term is

| ] 2J, (=kf,ml
2 Alfd, (akfrml) Sl%;ﬁff'i cos 2nkfyt {1 + J:_(Si-?}}*f;:h 1y cot (k)

X sin Qaf mt+$) + ?i%&;l}{i’;;) cos (272f mt + 2¢) + Joﬁkfrgn

x cot (wkf,]) sin 2n3fm! + 34) + etc.} 21)

It is therefore seen from an examination of this expression that the
harmonic distortion accompanying this method of demodulation is given by

Yo (mkfrml)

Second harmonic distortion = Y, (akfoonl) tan (wkf,.[) (22)
_ : . . _ J 3 (karf?ll)
Third harmonic distortion = I, (mkFoml) _ (23)

It should be noted that these expressions for distortion refer to the case
of a single pulse repetition frequency harmonic being extracted for detection.
The results are shown graphically in Fig, 3 where the harmonic distortion

values are plotted as a function of k=lf,, which is k= times the duty factor
If;, for different values of the modulation index m.

If the first ko terms of the pulse spectrum are filtered out and detected

separately and their outputs added in phase, the accompanying distortion
will be given by

ky
2 Jo (mkfrml) sin (mkf l)[nklf;
Second harmonic distortion = 2 —— (24)

‘E Jq (wk_ﬁ-mfj Cos (wkf;l)/wk{f;

ko
. 2 Jo (mkfrml) cos (wkf, D)kl
Third harmonic distortion = - . [ (25)

3T, (wkfyml) cos (mkfd)/nkIf,
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(b) Single edge width modulation—If only the leading efige is beh?g
modulated, the spectrum for this case can be obtained by setting /¢g'= 0 in

equation (16). The resulting expression on simplification Pecomes

o Vsin 2nkfy (¢ — 12)
F () = Alf, + Alfymsin 2af mt + ¢) + Alfr Z {Sln 2m 7_5{’}(? ¢«

k=1

ki . y o 21y Qklfrni) kf. (t + 112
+ JO,(_E':LU{T’") sin 2nkfr (t 4 1{2) 1 klf; cos 2nkfr (¢ + /2)

. (2mkl :
sin Qnfmt + ¢) + 2), (-.r:kr!f;-ﬂﬂ;) sin 27kf, (¢t + 1/2)

cos (2n2f mt + 2¢) + etc.} (26)

e extracted by means of 2

: , ignal can b
In this case also the modulated signa 'o the lower sidebands

low pass filter and there will be distortion duc only

b3
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of the pulse repetititon frequency harmonics. Improved signal to noise
ratio can be obtained by extracting the harmonics of the pulse spectrum

along with their sidebands and adding in phase the detected outputs. The
distortion arising in such a case can easily be determiped from equation (26).
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