JOURNAL OF

THE
INDIAN INSTITUTE OF SCIENCE

SECTION B

PROPAGATION OF MICROWAVES THROUGH A CYLINDRICAL METALLIC GUIDE FILLED COAXIALLY WITH TWO DIFFERENT DIELECTRICS—PART III

By S. K. Chatterjee

Received July 11, 1953

Summary

The propagation characteristics for the $\mathrm{TE}_{m n}, \mathrm{TM}_{m n}$ and hence TE_{01} and TM_{11} modes in a cylindrical metallic guide having a coaxial structure with two different dielectrics have been derived. The result indicates that the phase velocity for a given modecan be adjusted to a preassigned value by a suitable choice of the dielectric constants and radii of the two media. The calculation of the power flowing through the guide in the case of the TE_{01} mode shows that most of the power is located in the medium having higher dielectric constant. The energy distribution in the radial direction in the case of the TE_{01} mode has been obtained by plotting the real part of the complex Poynting vector $v s$. radius.

INTRODUCTION

The present paper is a continuation of the previous one (Chatterjee, 1953) and deals with the theoretical investigations on the propagation characteristics of the TE mode. The object is also to make a comparative study of the propagation characteristics of the two TE_{01} and TM_{11} modes. It is also shown that the phase velocity can be adjusted to a preassigned value by a suitable choice of the dielectric constants and radii of the two dielectrics as pointed out by Frankel (1947). Bruck and Wicher (1947), Bānos, etc. (1951).

Field Components of the TE Mode

It follows from Maxwell's equations that the field components E's and H 's for the TE mode are related by the following equations

$$
\begin{align*}
& \mathrm{E}_{z}=0 \\
& 1 \frac{\partial \mathrm{H}_{z}}{\partial \theta}-\frac{\partial \mathrm{H}_{\theta}}{\partial z}=j \omega \epsilon \mathrm{E}_{r} \\
& \underset{\partial z}{\partial \mathrm{H}_{r}}-\frac{\partial \mathrm{H}_{z}}{\partial r}=j \omega \epsilon \mathrm{E}_{\theta} \\
& \frac{1}{r} \frac{\partial}{\partial r}\left(r \mathrm{H}_{\theta}\right)-\frac{1}{r} \frac{\partial \mathrm{H}_{r}}{\partial \theta}=0 \tag{1}\\
& -\frac{\partial \mathrm{E}_{\theta}}{\partial z}=-j \omega \mu \mathrm{H}_{r} \\
& \quad \frac{\partial \mathrm{E}_{r}}{\partial z}=-j \omega \mu \mathrm{H}_{\theta} \\
& \frac{1}{r} \frac{\partial}{\partial r}\left(r \mathrm{E}_{\theta}\right)-\frac{1}{r} \frac{\partial \mathrm{E}_{r}}{\partial \theta}=-j \omega \mu \mathrm{H}_{z}
\end{align*}
$$

From equation (1) the following differential equation in E_{θ} and E_{τ} is obtained:

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{E}_{\theta}}{\partial z^{2}}+\omega^{2} \mu \epsilon \mathrm{E}_{\theta}+\frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \mathrm{E}_{\theta}\right)\right]-\frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial \mathrm{E}_{r}}{\partial \theta}\right]=0 \tag{2}
\end{equation*}
$$

The electric \mathbf{E} and the magnetic \mathbf{H} field intensities are expressed in terms of the Hertz vector Π^{*} as follows (Stratton, 1941):

$$
\begin{aligned}
& \mathbf{E}=-\mu \frac{\partial}{\partial t} \nabla \times \Pi^{*} \\
& \mathbf{H}=\nabla \times \nabla \times I^{*}
\end{aligned}
$$

Let us consider propagation in the z direction only. Then $I_{1}=0, \Pi_{2}=0$, $\Pi_{z} \neq 0$ (i.e.,) if Π^{*} is directed along the z-axis, the components of \mathbf{E} are

$$
\begin{align*}
& \mathrm{E}_{r}=-\frac{\mu}{r} \frac{\partial}{\partial t}\left[\frac{\partial \Pi^{*} z}{\partial \theta}\right] \\
& \mathrm{E}_{\theta}=\mu \quad \frac{\partial}{\partial t}\left[\frac{\partial \Pi^{*} z}{\partial r}\right] \tag{3}\\
& \mathrm{E}_{z}=0
\end{align*}
$$

Substituting (3) in (2) the following equation is obtained:

$$
\begin{align*}
& \mu \stackrel{\partial}{\partial t}\left[\frac{\partial^{2}}{\partial z^{2}}\left(\frac{\partial \Pi^{*} z}{\partial r}\right)+\omega^{2} \mu \epsilon\left(\frac{\partial \Pi^{*} z}{\partial r}\right)+\frac{\partial}{\partial r}\left\{\begin{array}{l}
1 \\
r
\end{array} \frac{\partial}{\partial r}\left(r \frac{\partial \Pi^{*} z}{\partial r}\right)\right\}\right. \\
& \left.\quad+\frac{\partial}{\partial r}\left\{\frac{1}{r^{2}} \frac{\partial^{2} \Pi^{*} z}{\partial \theta^{2}}\right\}\right]=0 \tag{4}
\end{align*}
$$

As the time variation is expressed by $\exp .(j \omega t)$, the equation (4) reduces to

$$
\begin{equation*}
\frac{\partial^{2} \Pi^{*} z}{\partial z^{2}}+\omega^{2} \mu \epsilon \Pi^{*} z+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Pi^{*} z}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \Pi^{*} z}{\partial \theta}=\text { Constant } \tag{5}
\end{equation*}
$$

as $j \omega \mu \neq 0$.
Let

$$
\begin{equation*}
\Pi_{z}^{*}=\mathrm{R} \Theta \mathrm{Z} \tag{5a}
\end{equation*}
$$

where $\mathrm{R}=f(r), \Theta=f(\theta)$ and $\mathrm{Z}=f(z)$ only.
Substituting ($5 a$) in (5), making the constants of integration equal to zero and dividing both sides by $\mathrm{R} \Theta \mathrm{Z}$, the following differential equation is obtained:

$$
\begin{equation*}
\frac{1}{\mathrm{Z}} \frac{d^{2} \mathrm{Z}}{d z^{2}}+\frac{1}{\mathrm{R}} \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \mathrm{R}}{\partial r}\right)+1 \frac{1}{r^{2}} \frac{\partial^{2} \Theta}{\partial \theta^{2}}+\omega^{2} \mu \epsilon=0 \tag{6}
\end{equation*}
$$

Let

$$
\begin{equation*}
\frac{1}{\mathbf{Z}} \frac{d^{2} \mathbf{Z}}{d z^{2}}=\gamma^{2} \tag{6a}
\end{equation*}
$$

and

$$
\frac{1}{\Theta} \frac{d^{2} \Theta}{d \theta^{2}}=-m^{2}
$$

where γ and m are constants independent of r, θ, z. The equations (6a) when solved for Z and Θ respectively give

$$
\begin{equation*}
\mathrm{Z}=\operatorname{arinh}_{\operatorname{ainh}} \gamma z \text { and } \Theta=\operatorname{cosin}_{\sin }^{\cos } m \theta \tag{7}
\end{equation*}
$$

From (6) and ($6 a$) the following equation in R is obtained.

$$
\begin{equation*}
\frac{d^{2} \mathrm{R}}{d r^{2}}+\frac{1}{r} \frac{d \mathrm{R}}{d r}+\mathrm{R}\left[\left(\omega^{2} \mu \epsilon+\gamma^{2}\right)-\frac{m^{2}}{r^{2}}\right]=0 \tag{8}
\end{equation*}
$$

which when solved gives

$$
\begin{equation*}
\mathrm{R}=\mathrm{AJ}_{m}\left(r \sqrt{\omega^{2} \mu \epsilon}+\gamma^{2}\right)+\mathrm{BY} \mathrm{Y}_{m}\left(r \sqrt{ } \omega^{2} \mu \epsilon+\gamma^{2}\right) \tag{8a}
\end{equation*}
$$

From ($5 a$), (7) and ($8 a$) $\Pi^{*} z$ is given as follows:

$$
\Pi_{z}^{*}=\left[\mathrm{AJ}_{m}\left(r \sqrt{ } \omega^{2} \mu \epsilon+\gamma^{2}\right)+\mathrm{BY} \mathrm{Y}_{m}\left(r \sqrt{\left.\omega^{2} \mu \epsilon+\gamma^{2}\right)}\right]_{\operatorname{lin}}^{\cos } m \theta \mathrm{Z}(z)(8 b)\right.
$$

which can be written as

$$
\begin{equation*}
I I_{z}^{*}=\left[\mathrm{AJ}_{m}(k r)+\mathrm{BY} \mathrm{Y}_{m}(k r)\right]_{\sin }^{\cos } m \theta e^{-\gamma z} \tag{9}
\end{equation*}
$$

where

$$
\mathrm{Z}(z)=e^{-\gamma z}
$$

and

$$
k=\sqrt{\omega^{2} \mu \epsilon}+\gamma^{2}
$$

Considering the time variation as given by exp. ($j \omega t$), substituting (9) in (3) and omitting $e^{j \omega t}$ for çonvenience, the different components of E's are

$$
\begin{align*}
& \mathrm{E}_{r}=-j \omega \mu_{r}^{m}\left[\mathrm{AJ}_{m}(k r)+\mathrm{BY}_{m}(k r)\right]_{\text {cos }}^{\sin } m \theta e^{-\gamma z} \\
& \mathrm{E}_{\theta}=j \omega \mu\left[k \mathrm{~A}_{m}^{\prime}(k r)+k \mathrm{BY}_{m}^{\prime}(k r)\right]_{\text {sin }}^{\cos } m \theta e^{-\gamma z} \tag{10}\\
& \mathrm{E}_{z}=0
\end{align*}
$$

From (1) and (10) the components H_{r} and H_{θ} are

$$
\begin{align*}
& \mathrm{H}_{r}=-\gamma\left[k \mathrm{AJ}_{m}^{\prime}(k r)+k \mathrm{BY}_{m}^{\prime}(k r)\right]_{\sin }^{\cos } m \theta e^{-\gamma \bar{z}} \\
& \mathrm{H}_{\theta}=-\gamma{\underset{r}{r}}_{m}\left[\mathrm{AJ}_{m}(k r)+\mathrm{BY}_{m}(k r)\right]_{\cos }^{\sin } m \theta e^{-\gamma z} \tag{10a}
\end{align*}
$$

From (1) and (3), the expression for H_{z} in terms of $\Pi^{*}{ }_{z}$ is obtained as follows:

$$
\begin{equation*}
-\mathrm{H}_{\mathrm{Z}}=\frac{\partial^{2} \Pi^{*} z}{\partial r^{2}}+\underset{r}{1} \frac{\partial \Pi^{*} z}{\partial r}+\underset{r^{2}}{1} \partial^{2} \Pi^{*} z A^{2} z \tag{10b}
\end{equation*}
$$

From ($10 b$) and (9), the following expression for H_{z} is obtained:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{z}}=\left(k^{2}-\frac{2 m^{2}}{r^{2}}\right)\left[\mathrm{AJ}_{m}(k r)+\mathrm{BY}_{m}(k r)\right] \underset{\substack{\text { oos } \\ \text { oin }}}{ } \boldsymbol{e} \theta e^{-\gamma z} \tag{10c}
\end{equation*}
$$

as (Gray and Mathews, 1922; Dwight, 1949)

$$
\begin{equation*}
k^{2} r^{2} \mathrm{~J}_{m}^{\prime \prime}(k r)=\left(m^{2}-m-k^{2} r^{2}\right) \mathrm{J}_{m}(k r)+k r \mathrm{~J}_{m+1}(k r) \tag{10d}
\end{equation*}
$$

and

$$
k r \mathrm{~J}_{m}^{\prime}(k r)=m \mathrm{~J}_{m}(k r)-k r \mathrm{~J}_{m+1}(k r)
$$

Propagation of Microwaves through a Cylindrical Metallic Guide-III 153 (10), (10a) and (10c) are

$$
\begin{align*}
& \mathrm{E}_{r}=-j \omega \mu \frac{m}{r}\left[\mathrm{AJ}_{m}(k r)+\mathrm{BY}_{m}(k r)\right]_{\text {ain }}^{\cos } m \theta e^{-\gamma z} \\
& \mathrm{E}_{\theta}=j \omega \mu\left[k \mathrm{~A}_{m}^{\prime}(k r)+k \mathrm{BY}_{m}^{\prime}(k r)_{\text {sin }}^{\cos m \theta e^{-\gamma z}}\right. \\
& \mathrm{E}_{z}=0 \\
& \mathrm{H}_{r}=-\gamma\left[k \mathrm{~A} \mathrm{~J}_{m}^{\prime}(k r)+k \mathrm{BY}_{m}^{\prime}(k r)\right]_{\text {sin }}^{\cos } m \theta e^{-\gamma z} \tag{11}\\
& \mathrm{H}_{\theta}=-\gamma \stackrel{1}{r}_{m}^{m}\left[\mathrm{AJ}_{m}(k r)+\mathrm{BY}_{m}(k r)\right]_{\text {sin }}^{\cos } m \theta e^{-\gamma z} \\
& \mathrm{H}_{z}=\left(k^{2}-\frac{2 m^{2}}{r^{2}}\right)\left[\mathrm{AJ}_{m}(k r)+\mathrm{BY}_{m}(k r)_{\sin }^{\cos m} m \theta e^{-\gamma z}\right.
\end{align*}
$$

From (11) the field components in the two media can be written as follows. First medium :

$$
\begin{align*}
& r_{2} \leqslant r \leqslant r_{1} \\
& \mathrm{E}_{r 1}=-j \omega \mu_{1} \frac{m}{r}\left[\mathrm{~A}_{1} \mathrm{~J}_{m}\left(k_{1} r\right)+\mathrm{B}_{1} \mathrm{Y}_{m}\left(k_{1} r\right)\right]_{\cos }^{\sin m \theta e^{-\gamma_{1} z}} \\
& \mathrm{E}_{\theta 1}=j \omega \mu_{1}\left[k_{1} \mathrm{~A}_{1} \mathrm{~J}_{m}^{\prime}\left(k_{1} r\right)+k_{1} \mathrm{~B}_{1} \mathrm{Y}_{m}^{\prime}\left(k_{1} r\right)\right]_{\sin }^{\cos } m \theta e^{-\gamma_{1} z} \\
& \mathrm{E}_{z 1}=0 \\
& \mathrm{H}_{r 1}=-\gamma_{1}\left[k_{1} \mathrm{~A}_{1} \mathrm{~J}_{m}^{\prime}\left(k_{1} r\right)+k_{1} \mathrm{~B}_{1} \mathrm{Y}_{m}^{\prime}\left(k_{1} r\right)\right]_{\sin }^{\cos } m \theta e^{-\gamma_{1} z} \tag{12}\\
& \mathrm{H}_{\theta 1}=-\gamma_{1} \frac{m}{r}\left[\mathrm{~A}_{1} \mathrm{~J}_{m}\left(k_{1} r\right)+\mathrm{B}_{1} \mathrm{Y}_{m}\left(k_{1} r\right)\right]_{\text {oos }}^{\sin m \theta e^{-\gamma_{1} z}} \\
& \left.\mathrm{H}_{z 1}=\left(k_{1}{ }^{2}-\frac{2 m^{2}}{r^{2}}\right)\left[\mathrm{A}_{1} \mathrm{~J}_{m}\left(k_{1} r\right)+\mathrm{B}_{1} \mathrm{Y}_{m}\left(k_{1} r\right)\right]\right]_{\sin }^{\cos } m \theta e^{-\gamma_{1} z}
\end{align*}
$$

In the second medium Y_{m} 's have infinite discontinuities in the axial region which is physically inadmissible. Hence Y_{m} 's are omitted from the expressions for the field components in the second medium.

Second medium : $0 \leqslant r \leqslant r_{2}$

$$
\begin{aligned}
& \mathrm{E}_{\tau 2}=-j \omega \mu_{2} \frac{m}{r}\left[\mathrm{~A}_{2} \mathrm{~J}_{m}\left(k_{2} r^{r}\right)\right]_{\cos }^{\sin } m \theta e^{-\gamma_{2} z} \\
& \mathrm{E}_{\theta 2}=j \omega \mu_{2}\left[k_{2} \mathrm{~A}_{2} \mathrm{~J}_{m}^{\prime}\left(k_{2} r\right)\right]_{\text {sin }}^{\operatorname{son} m} m \theta e^{-\gamma_{2} z}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}_{z 2}=0 \\
& \mathrm{H}_{r 2}=-\gamma_{2}\left[k_{2} \mathrm{~A}_{2} \mathrm{~J}^{\prime}{ }_{m}\left(k_{2} r\right)\right]_{\text {iin }}^{\text {os }} m \bar{\theta} e^{-\gamma_{2} z} \\
& \mathrm{H}_{\theta 2}=-\gamma_{2} \frac{m}{r}\left[\mathrm{~A}_{\mathbf{2}} \mathrm{J}_{m}\left(k_{2} r\right)\right]_{\cos }^{\sin } m \theta e^{-\gamma_{2} z} \\
& \mathrm{H}_{z 2}=\left(k_{z}{ }^{2}-\frac{2 m^{2}}{r^{2}}\right)\left[\mathrm{A}_{2} \mathrm{~J}_{m}\left(k_{2} r\right)\right]_{\text {sin }}^{\text {cos }} m \theta e^{-\gamma_{2} z} \\
& \text { Evaluation of } \mathrm{A}_{1} \text { and } \mathrm{B}_{1} \text { in Terms of } \mathrm{A}_{2}
\end{aligned}
$$

The boundary conditions are

$$
\begin{array}{ll}
\mathrm{H}_{z 1}=\mathrm{H}_{z 2} & \text { at } r=r_{2} \\
\mathrm{E}_{\theta 1}=0 & \text { at } r=r_{1} \tag{13}\\
\mu_{1} \mathrm{H}_{r 1}=\mu_{2} \mathrm{H}_{r 2} & \text { at } r=r_{2} \text { as } \nabla \cdot \mathbf{B}=0
\end{array}
$$

Applying the boundary conditions, and assuming the dielectric to be lossless, i.e., $\gamma_{1}=a_{1}+j \beta_{1} \doteqdot j \beta_{1}$ and $\gamma_{2}=a_{2}+j \beta_{2} \doteqdot j \beta_{2}$ the following equations are obtained from (12) and (12a):

$$
\begin{align*}
& \beta^{\prime} \mathrm{A}_{1} \mathrm{~J}_{m}^{\prime}\left(k_{1} r_{2}\right) e^{j \beta z}+\beta^{\prime} \mathrm{B}_{1} \mathrm{Y}_{m}^{\prime}\left(k_{1} r_{2}\right) e^{j_{\beta} z}-\mu^{\prime} k^{\prime} \mathrm{A}_{2} \mathrm{~J}_{m}^{\prime}\left(k_{2} r_{2}\right)=0 \\
& \mathrm{~A}_{1} \mathrm{~J}_{m}^{\prime}\left(k_{1} r_{1}\right)+\mathrm{B}_{1} \mathrm{Y}_{m}^{\prime}\left(k_{1} r_{1}\right)=0 \tag{13a}\\
& \left(k_{1}^{2}-\frac{2 m^{2}}{r_{2}^{2}}\right) \mathrm{A}_{1} \mathrm{~J}_{m}\left(k_{1} r_{2}\right) e^{j \beta z}+\left(k_{1}{ }^{2}-\frac{2 m^{2}}{r_{2}^{2}}\right) \mathrm{B}_{1} \mathrm{Y}_{m}\left(k_{1} r_{2}\right) e^{j} z z- \\
& \quad-\left(k_{2}{ }^{2}-\frac{2 m^{2}}{r_{2}^{2}}\right) \mathrm{A}_{2} \mathrm{~J}_{m}\left(k_{2} r_{2}\right)=0
\end{align*}
$$

where

$$
\beta_{2}-\beta_{1}=\beta, k^{\prime}=k_{2} / k_{1}, \beta^{\prime}=\beta_{1} / \beta_{2}, \mu^{\prime}=\mu_{2} / \mu_{1} .
$$

In order that A_{1}, B_{1} and A_{2} be non-vanishing, the determinant of their coefficients must vanish. From (13a) A_{1} and B_{1} can be expressed in terms of A_{2} as follows

$$
\begin{equation*}
\mathrm{A}_{1}=\mathrm{A}_{2} \cdot \mathrm{~A}^{\prime} \text { and } \mathrm{B}_{1}=\mathrm{A}_{2} \cdot \mathrm{~B}^{\prime} \tag{13b}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{A}^{\prime}=\frac{\mu^{\prime} k^{\prime}}{\beta^{\prime}} \frac{\mathrm{J}_{m}^{\prime}\left(k_{2} r_{2}\right) \mathrm{Y}_{m}^{\prime}\left(k_{1} r_{1}\right)}{\mathrm{J}_{m}^{\prime}\left(k_{1} r_{2}\right) \mathrm{Y}_{m}^{\prime}\left(k_{1} r_{1}\right)-\mathrm{J}_{m}^{\prime}\left(k_{1} r_{1}\right) \mathrm{Y}_{m}^{\prime}\left(k_{1} r_{2}\right)} e^{-j j_{\beta} z} \tag{13c}\\
& \mathrm{~B}^{\prime}=\frac{\mu^{\prime} k^{\prime}}{\beta^{\prime}} \frac{\mathrm{J}_{m}^{\prime}\left(k_{2} r_{2}\right) \mathrm{J}_{m}\left(k_{1} r_{1}\right)}{\mathrm{Y}_{m}^{\prime}\left(k_{1} r_{2}\right) \mathrm{J}_{m}^{\prime}\left(k_{1} r_{1}\right)-\mathrm{Y}_{m}^{\prime}\left(k_{1} r_{1}\right) \mathrm{J}_{m}^{\prime}\left(k_{1} r_{2}\right)} e^{-j \beta^{2} z}
\end{align*}
$$

Evaluation of A_{2}

$\mathbf{A}_{\mathbf{2}}$ can be evaluated from the expression for the peak power flowing through
the guide which is

$$
\begin{aligned}
\hat{\mathrm{P}}_{z}=\int_{r=r_{2}}^{r_{1}} f_{\theta=0}^{2 \pi}\left[\mathrm{E}_{r 1} \mathrm{H}_{\theta 1}^{*}\right. & \left.-\mathrm{E}_{\theta 1} \mathrm{H}^{*} r_{1}\right] r d \theta d r \\
& +\int_{r=1}^{z_{2}} \int_{\theta=0}^{2 \pi}\left[\mathrm{E}_{r 2} \mathrm{H}_{\theta 2}^{*}-\mathrm{E}_{\theta 2} \mathrm{H}_{r 2}^{*}\right] r d \theta d r
\end{aligned}
$$

The equation (14) when evaluated with the help of (12), (12a) shows that $\hat{\mathbf{P}}_{z}$ is some function of $\mu_{1}, \mu_{2}, \beta_{1}, \beta_{2}, k_{1}, k_{2}$ and r_{2}, r_{1}. So, $\hat{\mathrm{P}}_{z}$ can be written as

$$
\begin{equation*}
\hat{\mathbf{P}}=2 \pi \omega \mathrm{~A}_{2}^{2}\left[\mathrm{~F}\left(\mu_{1}, \beta_{1}, k_{1}, r_{1}, r_{2}\right)+\mathrm{F}^{\prime}\left(\mu_{2}, \beta_{2}, k_{2}, r_{2}\right)\right] \tag{14a}
\end{equation*}
$$

which gives the value of A_{2} as

$$
\begin{equation*}
A_{2}=\left(P^{\prime}\right)^{\frac{1}{2}} \tag{14b}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{P}^{\prime}=\left[\frac{\hat{\mathbf{P}}}{2 \pi \omega\left(\mathrm{~F}+\mathrm{F}^{\prime}\right)}\right] \tag{14c}
\end{equation*}
$$

The field components of the TE mode in both the media can be expressed in real parts from (12), (12a), (13b) and (14b) as follows:

First medium :

$$
\begin{align*}
& \mathrm{E}_{r 1}=-\mu_{1} \omega\left(\mathrm{P}^{\prime}\right)^{\frac{1}{2}} \underset{r}{m}\left[\mathrm{~A}^{\prime} \mathrm{J}_{m}\left(k_{1} r\right)+\mathrm{B}^{\prime} \mathrm{Y}_{m}\left(k_{1} r\right)\right] \cos m \theta \sin \beta_{1} z \\
& \mathrm{E}_{\theta 1}=\mu_{1} \omega\left(\mathrm{P}^{\prime}\right)^{\frac{1}{2}} k_{1}\left[\mathrm{~A}^{\prime} \mathrm{J}^{\prime}{ }_{m}\left(k_{1} r\right)+\mathrm{B}^{\prime} \mathrm{Y}_{m}^{\prime}\left(k_{1} r\right)\right] \cos m \theta \sin \beta_{1} z \\
& \mathrm{E}_{z 1}=0 \tag{15}\\
& \mathrm{H}_{r 1}=-\beta_{1} k_{1}\left(\mathrm{P}^{\prime}\right)^{\frac{1}{4}}\left[\mathrm{~A}^{\prime} \mathrm{J}_{m}^{\prime}\left(k_{1} r\right)+\mathrm{B}^{\prime} \mathrm{Y}_{m}^{\prime}\left(k_{1} r\right)\right] \cos m \theta \sin \beta_{1} z \\
& \mathrm{H}_{\theta 1}=-\beta_{1}{ }_{r}^{m}\left(\mathrm{P}^{\prime}\right)^{\frac{1}{2}}\left[\mathrm{~A}^{\prime} \mathrm{J}_{m}\left(k_{1} r\right)+\mathrm{B}^{\prime} \mathrm{Y}_{m}\left(k_{1} r\right)\right] \cos m \theta \sin \beta_{1} z \\
& \mathrm{H}_{z 1}= \pm\left(k_{1}{ }^{2}-\frac{2 m^{2}}{r^{2}}\right)\left(\mathrm{P}^{\prime}\right)^{\frac{1}{2}}\left[\mathrm{~A}^{\prime} \mathrm{J}_{m}\left(k_{1} r\right)+\mathrm{B}^{\prime} \mathrm{Y}_{m}\left(k_{1} r\right)\right] \cos m \theta \cos \beta_{1} z
\end{align*}
$$

Second medium:

$$
\begin{align*}
& \mathrm{E}_{r 2}=-\mu_{2} \omega \frac{m}{r}\left(\mathrm{P}^{\prime}\right)^{\prime}\left[\mathrm{J}_{m}\left(k_{2} r\right)\right] \cos m \theta \sin \beta_{2} z \\
& \mathrm{E}_{\theta 2}= \mu_{2} \omega k_{2}\left(\mathrm{P}^{\prime}\right)^{\frac{1}{2}}\left[\mathrm{~J}^{\prime}{ }_{m}\left(k_{2} r\right)\right] \cos m \theta \sin \beta_{2} z \\
& \mathrm{E}_{22}=0 \\
& \mathrm{H}_{r 2}=-\beta_{2} k_{2}\left(\mathrm{P}^{\prime}\right)^{\frac{1}{2}}\left[\mathrm{~J}_{m}^{\prime}\left(k_{2} r\right)\right] \cos m \theta \sin \beta_{2} z \\
& \mathrm{H}_{\theta 2}=-\beta_{2}{ }_{r}^{m}\left(\mathrm{P}^{\prime}\right)^{\frac{1}{2}}\left[\mathrm{~J}_{m}\left(k_{2} r\right)\right] \cos m \theta \sin \beta_{2} z \tag{15a}\\
& \mathrm{H}_{z 2}= \pm\left(k_{2}^{2}-\frac{2 m^{2}}{r^{2}}\right)\left(\mathrm{P}^{\prime}\right)^{\frac{1}{2}}\left[\mathrm{~J}_{m}\left(k_{2} r\right) \cos m \theta \cos \beta_{2} z\right. \\
& \quad \text { PROPAGATION CHARACTERISTICS (TE } m n \text { MODE) }
\end{align*}
$$

Applying the boundary condition $\mu_{1} \mathrm{H}_{r_{1}}=\mu_{2} \mathrm{H}_{r 2}$ at $r=r_{2}$ the following equation is obtained from (15) and (15a):-

$$
\begin{align*}
& -\mu_{1} \beta_{1} k_{1}\left(\mathrm{P}^{\prime}\right)^{\prime}\left[\mathrm{A}^{\prime} \mathbf{J}_{m}^{\prime}\left(k_{1} r_{2}\right)+\mathrm{B}^{\prime} \mathrm{Y}_{m}^{\prime}{ }_{m}\left(k_{1} r_{2}\right)\right] \cos m \theta \sin \beta_{1} z \\
& =-\mu_{2} \beta_{2} k_{2}\left(\mathrm{P}^{\prime}\right)^{\frac{1}{2}}\left[\mathrm{~J}^{\prime}{ }_{m}\left(k_{2} r_{2}\right)\right] \cos m \theta \sin \beta_{2} z \tag{16}
\end{align*}
$$

Substituting the values of A^{\prime} and B^{\prime} from (13c), the equation (16) reduces to

$$
\begin{gather*}
\frac{\mathrm{J}_{m}^{\prime}\left(k_{2} r_{2}\right) \mathrm{Y}_{m}^{\prime}\left(k_{1} r_{1}\right) \mathrm{J}_{m}^{\prime}\left(k_{1} r_{2}\right)-\mathrm{J}_{m}^{\prime}\left(k_{2} r_{2}\right) \mathrm{J}_{m}^{\prime}\left(k_{1} r_{1}\right) \mathrm{Y}_{m}^{\prime}\left(k_{1} r_{\mathbf{2}}\right)}{\mathrm{J}_{m}^{\prime}\left(k_{1} r_{2}\right) \mathrm{Y}_{m}^{\prime}\left(k_{1} r_{1}\right)-\mathrm{J}^{\prime}{ }_{m}\left(k_{1} r_{1}\right) \mathrm{Y}_{m}^{\prime}{ }_{m}\left(k_{1} r_{2}\right)} \\
=\mathrm{J}_{m}^{\prime}\left(k_{2} r_{2}\right) \frac{\sin \beta_{2} z}{\sin \beta_{1} z} e^{j_{\beta} z} \tag{16a}
\end{gather*}
$$

which can be reduced to

$$
\begin{equation*}
\cos \left(\beta_{2}-\beta_{1}\right) z+j \sin \left(\beta_{2}-\beta_{1}\right) z=\frac{\sin \beta_{1} z}{\sin \beta_{2} z} \tag{16b}
\end{equation*}
$$

Separating the real and imaginary parts the following expressions are obtained from ($16 b$). :
or

$$
\begin{aligned}
& \cos \left(\beta_{2}-\beta_{1}\right) z=\frac{\sin \beta_{1} z}{\sin \beta_{2} z} \\
& \sin \left(\beta_{2}-\beta_{1}\right) z=0
\end{aligned}
$$

$$
\begin{equation*}
\beta_{2}=\beta_{1}+\frac{n \pi}{z} \tag{16c}
\end{equation*}
$$

Propagation of Microwaves through a Cylindrical Mctallic Guide-III 15-
The equation ($16 c$) gives a relation between the phase constants of the two media. Applying the boundary condition $H_{z 1}=H_{z i}$ at $r=r_{z}$ utilising the relation

$$
-\frac{\mathrm{A}^{\prime}}{\mathrm{B}^{\prime}}=\frac{\mathrm{Y}^{\prime}{ }^{\prime}\left(k_{1} r_{1}\right)}{\mathrm{J}^{\prime} \frac{2}{m}\left(k_{1} r_{1}\right)},
$$

substituting A^{\prime} from (13c) and using the relation ($16 c$), the following equation is obtained from (15) and (15a):

$$
\begin{align*}
& \frac{\mathrm{J}_{m}\left(k_{1} r_{2}\right) \mathrm{Y}_{m}^{\prime}\left(k_{1} r_{1}\right)-\mathrm{J}_{m}^{\prime}\left(k_{1} r_{1}\right) \mathrm{Y}_{m}\left(k_{1} r_{2}\right)}{\mathrm{J}_{m}^{\prime}\left(k_{1} r_{2}\right) \mathrm{Y}_{m}^{\prime}\left(k_{1} r_{1}\right)-\mathrm{J}_{m}^{\prime}\left(k_{1} r_{1}\right)} \frac{\mathrm{Y}_{m}^{\prime}{ }_{m}^{\prime}\left(k_{1} r_{2}\right)}{\text { and }} \\
& =\frac{\beta^{\prime}}{\mu^{\prime} k^{\prime}} \frac{k_{2}{ }^{2}-\frac{2 m^{2}}{r_{2}{ }^{2}}}{k_{1}{ }^{2}-\frac{2 m^{2}}{r_{2}{ }^{2}}} \mathrm{~J}_{m}\left(k_{2} r_{2}\right) \bar{J}_{m}^{\prime}\left(k_{2} r_{2}\right) \quad e^{j \beta^{2}} \tag{17}
\end{align*}
$$

For large arguments J's and Y's can be written as follows (Dwight, loc. cit.)

$$
\begin{align*}
& \mathrm{J}_{m}(x)=\binom{2}{\pi x}^{\frac{1}{2}} \cos \left(x-\frac{m \pi}{2}-\frac{\pi}{4}\right) \\
& \mathrm{J}_{m}^{\prime}(x)=-\left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \sin \left(x-\frac{m \pi}{2}-\frac{\pi}{4}\right) \tag{17a}\\
& \mathrm{Y}_{m}(x)=\left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \sin \left(x-\frac{m \pi}{2}-\frac{\pi}{4}\right) \\
& \mathrm{Y}_{m}^{\prime}(x)=\left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \cos \left(x-\frac{m \pi}{2}-\frac{\pi}{4}\right)
\end{align*}
$$

Applying the relations ($17 a$) in (17), the following relation between k_{1} and k_{2} is obtained.

$$
\begin{array}{r}
\frac{1}{k_{1}}\left[k_{1}{ }^{2}-\frac{2 m^{2}}{r_{2}^{2}}\right] \cot k_{1}\left(r_{1}-r_{2}\right)=-\frac{\beta^{\prime}}{\mu^{\prime}} \frac{1}{k_{2}}\left[k_{2} z^{2}-\frac{2 m^{2}}{r_{2}}{ }^{2}\right] \cot \left(k_{2} r_{2}-\right. \\
\left.\underset{2}{2 \pi}-\frac{\pi}{4}\right) e^{j_{\beta} z} \tag{17b}
\end{array}
$$

Separating the real and imaginary parts the following relations are obtained:

$$
\begin{gather*}
\frac{1}{k_{1}}\left[k_{1}^{2}-\frac{2 m^{2}}{r_{2}^{2}}\right] \cot k_{1}\left(r_{1}-r_{2}\right)=-\frac{\beta^{\prime}}{\mu^{\prime}} \frac{1}{k_{2}}\left[k_{2}^{2}-\frac{2 m^{2}}{r_{2}{ }^{2}}\right] \cot \left(k_{2} r_{2}-\right. \\
\left.\underset{2}{m \pi}-\frac{\pi}{4}\right) \cos \beta z \tag{17c}\\
\frac{\beta^{\prime}}{\mu^{\prime}} \frac{1}{k_{2}}\left[k_{2}{ }^{2}-\frac{2 m^{2}}{r_{2}^{2}}\right] \cot \left(k_{2} r_{2}-\frac{m \pi}{2}-\frac{\pi}{4}\right) \sin \beta z=0 \tag{17d}
\end{gather*}
$$

From ($17 d$) it is evident that either $\sin \beta z=0$ or $\cot \left(k_{2} r_{2}-{ }_{2}^{m \pi}-\frac{\pi}{4}\right)$ vanishes. Considering the second relation the value of k_{2} is given by

$$
\begin{equation*}
k_{2}=\frac{1}{r_{2}}\left[(m+2 n){ }_{2}^{\pi}-\frac{\pi}{4}\right] \tag{18}
\end{equation*}
$$

As $k_{2}=\left[\omega^{2} \mu_{2} \epsilon_{2}+\gamma_{2}^{2}\right]^{4}$, so the value of γ_{2} is given by the following expression

$$
\begin{equation*}
\gamma_{2}=\left[\frac{1}{r_{2}{ }^{2}}\left\{(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right\}^{2}-\omega^{2} \mu_{2} \epsilon_{2}\right]^{\frac{1}{2}} \tag{18a}
\end{equation*}
$$

In order that propagation may take place through the second medium γ_{2} must be imaginary (i.e.)

$$
\begin{equation*}
\omega^{2} \mu_{2} \epsilon_{2}>\frac{1}{r_{2}{ }^{2}}\left[(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right]^{2} \tag{18b}
\end{equation*}
$$

The equation (18 a) can be written as

$$
\gamma_{2}=a_{2}+j \beta_{2}=j\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}}
$$

So, the attenuation constant $\alpha_{2}=0$ and the phase constant β_{2} in the second medium is given by

$$
\begin{equation*}
\beta_{2}=\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right\}^{2}\right] \tag{18c}
\end{equation*}
$$

For propagation to take place β_{2} must be real and the condition (18 b) must be fulfilled. The equations $(18 b)$ and $(18 c)$ indicate that there must be a cut-off frequency f_{c} given as follows below which there will be no propagation through the second medium

$$
\begin{equation*}
\left.f_{c 2}=\frac{c_{2}}{2 \pi r_{2}}(m+2 n)_{2}^{\pi}-\frac{\pi}{4}\right] \tag{18d}
\end{equation*}
$$ where $c_{2}=1 / \sqrt{\mu_{2} \epsilon_{2}}$ is the free wave velocity in the second medium having constants μ_{2} and ϵ_{2}. The cut-off wavelength $\lambda_{c 2}$ corresponding to $f_{c 2}$ is

$$
\begin{equation*}
\lambda_{c 2}=\frac{2 \pi r_{2}}{\left[(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right]} \tag{18e}
\end{equation*}
$$

The phase velocity $c_{p 2}$ of the wave in the second medium is

$$
\begin{equation*}
c_{p 2}=\stackrel{\omega}{\beta_{2}}=\frac{\omega}{\left[\omega^{2} \mu_{2} \epsilon_{2}-\underset{r_{2}^{2}}{1}\left\{(m+2 n)_{2}^{\pi}-\frac{\pi}{4}\right\}^{2}\right]^{i}} \tag{18f}
\end{equation*}
$$

The group velocity $c_{g 2}$ in the second medium is

$$
\begin{equation*}
c_{g 2} \doteqdot 1 / \frac{\partial \beta_{2}}{\partial \omega}=\frac{\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right\}^{2}\right]^{2}}{\omega \mu_{2} \epsilon_{2}} \tag{18g}
\end{equation*}
$$

The guide wavelength $\lambda_{g 2}$ in the second medium is

$$
\begin{equation*}
\lambda_{g 2}=\frac{2 \pi}{\beta_{2}}=\frac{2 \pi}{\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}{ }^{2}}\left\{(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}}} \tag{18h}
\end{equation*}
$$

The value of k_{1} can be found from (17c) and (18) as follows:

$$
\begin{align*}
\frac{2 m^{2}}{r_{2}^{2}} \cot \frac{k_{1}}{k_{1}}\left(r_{1}-r_{2}\right)-k_{1} \cot k_{1}\left(r_{1}-r_{2}\right)= & \frac{\beta^{\prime}}{\mu^{\prime}} \frac{b}{a r_{2}} \cos \beta z \\
& \cot (2 n-1) \frac{\pi}{2} \tag{19}
\end{align*}
$$

where

$$
\begin{align*}
& (m+2 n) \frac{\pi}{2}-\frac{\pi}{4}=a \\
& {\left[(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right]^{2}-2 m^{2}=b} \tag{19a}
\end{align*}
$$

and

$$
n=0,1,2,3,4 \ldots \ldots
$$

As $\cot (2 n-1) \frac{\pi}{2}=0, k_{1}$ is obtained from (19) as

$$
\begin{equation*}
k_{7}= \pm \sqrt{2} \frac{m}{r_{4}} \tag{19b}
\end{equation*}
$$

As $k_{1}{ }^{2}=\omega^{3} \mu_{1} \epsilon_{1}+\gamma_{1}{ }^{2}$, the value of the propagation constant γ_{1} in the first medium is

$$
\begin{equation*}
\gamma_{1}=\left[\frac{2 m^{2}}{r_{2}^{2}}-\omega^{2} \mu_{1} \epsilon_{1}\right]^{\frac{1}{2}} \tag{19c}
\end{equation*}
$$

In order that propagation may take place through the first medium γ_{1} must be imaginary and

$$
\begin{equation*}
\omega^{2} \mu_{1} \epsilon_{1} \text { must be }>\frac{2 m^{2}}{r_{2}^{2}} \tag{19d}
\end{equation*}
$$

Using the same arguments as followed above in the case of the second medium, the following constants for the first medium are obtained:

$$
\begin{align*}
& \beta_{1}=\left[\omega^{2} \mu_{1} \epsilon_{1}-\frac{2 m^{2}}{r_{2}^{2}}\right]^{\frac{1}{2}} . \tag{19e}\\
& f_{c 1}= \pm \frac{c_{1} m}{\sqrt{ } 2 \pi r_{3}} \tag{19f}
\end{align*}
$$

where

$$
\begin{align*}
& c_{1}=1 / \sqrt{ } \mu_{1} \epsilon_{1} \\
& \lambda_{c 1}= \pm \frac{\sqrt{2} \pi r_{2}}{m} \tag{19~g}\\
& c_{p 1}=\omega /\left[\omega^{2} \mu_{1} \epsilon_{1}-\frac{2 m^{2}}{r_{2}^{2}}\right]^{\frac{1}{2}} \tag{19h}\\
& c_{g 1} \doteqdot\left[\omega^{2} \mu_{1} \epsilon_{1}-\frac{2 m^{2}}{r_{2}^{2}}\right]^{\frac{1}{2}} / \omega \mu_{1} \epsilon_{1} \tag{19i}\\
& \lambda_{g 1}=2 \pi /\left[\omega^{2} \mu_{1} \epsilon_{1}-\frac{2 m^{2}}{r_{2}^{2}}\right]^{\frac{1}{2}} \tag{19j}
\end{align*}
$$

Propagation Characteristics of the $\mathrm{TM}_{m n}$ Mode
In the case of the TM mode the propagation characteristics in the second medium have been given (Chatterjee, 1953) in terms of A_{4} which contains k_{i}. In the present paper k_{1} and k_{2} are separated and their values are given in a much simpler formi.

Applying the boundary condition $\mathrm{H}_{\theta 1}=\mathrm{H}_{\theta 2}$ at $r=r_{2}$, utilising the relation

$$
\begin{equation*}
-\frac{\mathrm{A}_{3}}{\mathrm{~A}_{4}}=\frac{\mathrm{Y}_{m}\left(k_{1} r_{1}\right)}{\mathrm{J}_{m}\left(k_{1} r_{1}\right)} \tag{20}
\end{equation*}
$$ and substituting

$$
\begin{equation*}
\left.\mathrm{A}_{4}=\frac{k^{\prime} \beta^{\prime}}{\epsilon} \mathrm{Y}_{m}^{\prime}\left(k_{1} r_{2}\right) \mathrm{J}_{m}^{\prime}\left(k_{1}^{\prime} k_{1}\right)-\mathrm{J}_{m}^{\prime} r_{2}\right) \mathrm{J}_{m}\left(k_{1} r_{1}\right) \mathrm{Y}_{m}\left(k_{1} r_{1}\right) \tag{20a}
\end{equation*}
$$

the following equation is obtained from (19) and (19a) (Chatterjee, loc. cit.,
Part II)

$$
\begin{equation*}
-\beta^{\prime} J_{m}^{\prime}\left(k_{2} r_{2}\right)=j^{m+1} \mathbf{1}_{m}^{\prime}\left(k_{2}^{\prime} r_{2}\right) \tag{20b}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\beta_{2}=\beta_{1} \tag{20c}
\end{equation*}
$$

Applying the boundary condition $\mathrm{E}_{z_{1}}=\mathrm{E}_{z 2}$ at $r=r_{2}$ and utilising the relation given in (20), we obtain the following relation from (19) and (19a), (Chatterjee, loc. cit., Part II).

$$
\begin{align*}
& \mathrm{A}_{4}\left[\frac{\mathrm{Y}_{m}\left(k_{1} r_{1}\right) \mathrm{J}_{m}\left(k_{1} r_{2}\right)-\mathrm{Y}_{m}\left(k_{1} r_{2}\right) \mathrm{J}_{m}\left(k_{1} r_{1}\right)}{\mathrm{J}_{m}\left(k_{1} r_{1}\right)}\right] \\
& =\left[k_{2}^{2} \mathrm{~J}^{\prime \prime}{ }_{m}\left(k_{2} r_{2}\right)+\frac{k_{2}}{r_{2}} \mathrm{~J}_{m}^{\prime}\left(k_{2} r_{2}\right)-\frac{m^{2}}{r_{2}{ }^{2}} \mathrm{~J}_{m}\left(k_{2} r_{2}\right)\right] e^{j_{\beta} z} \tag{20d}
\end{align*}
$$

Utilising the relations given in ($10 d$) and substituting A_{4} from (20a), the equation (20 d) reduces to

$$
\begin{array}{r}
\frac{\mathrm{J}_{m}^{\prime}\left(k_{2} r_{2}\right)}{\mathrm{J}_{m}\left(k_{2} r_{2}\right)}\left[\frac{\mathrm{Y}_{m}\left(k_{1} r_{1}\right) \mathrm{J}_{m}\left(k_{1} r_{2}\right)-\mathrm{Y}_{m}\left(k_{1} r_{2}\right) \mathrm{J}_{m}\left(k_{1} r_{1}\right)}{\mathrm{Y}_{m}^{\prime}\left(k_{1} r_{2}\right) \mathrm{J}_{m}\left(k_{1} r_{1}\right)-\mathrm{J}_{m}^{\prime}\left(k_{1} r_{2}\right) \mathrm{Y}_{m}\left(k_{1} r_{1}\right)}\right] \\
=-\frac{k_{2}^{2} \epsilon}{k^{\prime} \beta^{\prime}} e^{j \beta z} \tag{20e}
\end{array}
$$

Using the values of J_{m} 's and Y_{m} 's for large arguments as given in (17a), the equation ($20 e$) can be reduced to the following:

$$
\begin{equation*}
\frac{1}{k_{1}} \tan k_{1}\left(r_{1}-r_{2}\right)=\stackrel{\epsilon}{\beta^{\prime}} k_{2} \cot \left(k_{2} r_{2}-\frac{m \pi}{2}-\frac{\pi}{4}\right) e^{j_{\beta} z} \tag{20f}
\end{equation*}
$$

Separating the real and imaginary parts, the following relations are obtained from (20f):

$$
\begin{align*}
& \frac{1}{k_{1}} \tan k_{1}\left(r_{1}-r_{2}\right)=\stackrel{\epsilon}{\beta^{\prime}} k_{2} \cot \left(k_{2} r_{2}-\frac{m \pi}{2}-\frac{\pi}{4}\right) \cos \beta z \tag{20~g}\\
& \frac{\epsilon}{\beta^{\prime}} k_{2} \cot \left(k_{2} r_{2}-\frac{m \pi}{2}-\frac{\pi}{4}\right) \sin \beta z=0 \tag{20h}
\end{align*}
$$

From ($20 h$) it is evident that either

$$
\begin{equation*}
\sin \beta z=0 \text { or } \cot \left(k_{2} r_{2}-\frac{m \pi}{2}-\frac{\pi}{4}\right)=0 \tag{20i}
\end{equation*}
$$

Considering the latter relation, the following value of k_{2} is obtained:

$$
\begin{equation*}
k_{2}=\frac{1}{r_{2}}\left[\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right] \tag{21}
\end{equation*}
$$

Following the same arguments as in the case of the TE mode, the following constants for the second medium are obtained:

$$
\begin{align*}
& \gamma_{2}=\left[\frac{1}{r_{2}^{2}}\left\{\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right\}^{2}-\omega^{2} \mu_{2} \epsilon_{2}\right]^{\frac{1}{2}} \tag{21a}\\
& \beta_{2}=\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}} \tag{21b}\\
& f_{c 2}=\frac{c_{2}}{2 \pi r_{2}}\left[\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right] \tag{21c}\\
& \lambda_{c 2}=\left[\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right] \tag{21d}\\
& c_{p 2}=\omega /\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{\frac{m \pi}{2}+(2 n+1)_{2}^{\pi}+\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}} \tag{21e}\\
& c_{g 2} \div\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}} / \omega \mu_{2} \epsilon_{2} \tag{21f}\\
& \lambda_{g 2}=2 \pi /\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{\frac{m \pi}{2}+(2 n+1)_{2}^{\pi}+\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}} \tag{21g}
\end{align*}
$$

In order to find the constants in the first medium we proceed as follows: From (20 g) and (21) the following equation is obtained:

$$
\begin{align*}
\frac{1}{k_{1}} \tan k_{1}\left(r_{1}-r_{2}\right)=\underset{\beta^{\prime} r_{2}}{\epsilon}\left[\begin{array}{c}
n \pi \\
2
\end{array}\right. & +(2 n+1) \frac{\pi}{2} \\
& \left.+\frac{\pi}{4}\right] \cot \left[(2 n+1) \frac{\pi}{2}\right] \cos \beta z \tag{22}
\end{align*}
$$

For

$$
\begin{equation*}
n=0,1,2 \ldots \ldots, \frac{1}{k_{1}} \tan k_{1}\left(r_{1}-r_{2}\right)=0 \tag{22a}
\end{equation*}
$$ which gives

$$
\begin{equation*}
k_{1}=\frac{n \pi}{r_{1}-r_{2}} \tag{22b}
\end{equation*}
$$

The other constants of the first medium are

$$
\begin{align*}
& \gamma_{1}=\left[\left(\frac{n \pi}{r_{1}-r_{2}}\right)^{2}-\omega^{2} \mu_{1} \epsilon_{1}\right]^{\frac{1}{2}} \tag{22c}\\
& \beta_{1}=\left[\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{n \pi}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}} \tag{22d}\\
& f_{c 1}=c_{1} r_{1} \frac{n}{-r_{2}} \tag{22e}\\
& \lambda_{c 1}=\frac{2\left(r_{1}-r_{2}\right)}{n} \tag{22f}\\
& \lambda_{g 1}=2 \pi /\left[\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{\pi n}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}} \tag{22g}\\
& c_{p_{1}}=\omega /\left[\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{n \pi}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}} \tag{22h}\\
& c_{g 1} \doteqdot \frac{\left[\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{n \pi}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}}}{\omega \mu_{1} \epsilon_{1}} \tag{22i}
\end{align*}
$$

For microwave propagation generally the lower modes $\mathrm{TM}_{01}(m=0, n=1)$, $\mathrm{TE}_{01}(m=0, n=1)$ and $\mathrm{TM}_{11}(m=1, n=1)$ are used. The propagation characteristics for the $\mathrm{TE}_{m n}$ and the $\mathrm{TM}_{m n}$ modes are collected together in Table 1 for convenience of reference. The propagation characteristics for the TE_{01} and the TM_{11} modes have been deduced from Table I by using proper values for the mode subscripts and are given in Table II. The following conclusions can be drawn from the tables.

1. Phase Velocity.-In the case of both the TE and the TM wave the phase velocities can be adjusted by adjusting the values of ϵ_{1} and ϵ_{2}. For example, by increasing ϵ_{2} compared to ϵ_{1}, the velocity of the wave in the second medium may be considerably lowered. This methad of slowing down the wave may find application in the electronic devices, such as travel-ling-wave tube, linear accelerator, etc., where it is necessary to slow down
the wave along the axis in order that efficient interaction may occur between the wave and the electrons.

In the case of the $\mathrm{TE}_{0:}$ wave the ratio of the phase velocities $c_{p 1} / c_{p_{2}}$ in the two media is given from Table II as

$$
\begin{align*}
& \left.\binom{c_{p_{1}}}{c_{p 2}}_{T E_{01}}=\sqrt{\mu_{\mu_{2} \epsilon_{2}}^{\mu_{1} \epsilon_{1}}\left[1-16 r_{2}{ }^{2} \pi^{2} \omega^{2} \mu_{2} \epsilon_{2}\right.}\right]^{\frac{1}{2}} \\
& \doteqdot \sqrt{\epsilon_{2}} \epsilon_{1}\left[1-32 \omega^{2} \frac{9 \pi^{2}}{r_{2}^{2}} \epsilon_{2} \mu_{2}\right] \tag{23}
\end{align*}
$$

Table I
Propagation Characteristics of $T E_{m n}$ and $T M_{m n}$ Modes

$\mathrm{TE}_{m n}$		
	First Medium	Second Medium
k	$\sqrt{2} \frac{m}{r_{2}}$	$\frac{1}{r_{2}}\left[(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right]$
γ	$\left[\frac{2 m^{2}}{r_{2}^{2}}-\omega^{2} \mu_{1} \epsilon_{1}\right]^{\frac{1}{2}}$	$\left[\frac{1}{r_{2}{ }^{2}}\left\{(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right\}^{2}-\omega^{2} \mu_{2} \epsilon_{2}\right]^{\frac{1}{2}}$
β	$\left[\omega^{2} \mu_{1} \epsilon_{1}-\frac{2 m^{2}}{r_{2}^{2}}\right]^{\frac{1}{2}}$	$\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}}$
f_{0}	$\frac{c_{1} m}{\sqrt{ } 2 \pi r_{2}}$	$\frac{c_{2}}{2 \pi r_{2}}\left[(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right]$
λ_{c}	$\begin{gathered} \sqrt{ } 2 \pi r_{2} \\ m \end{gathered}$	$\frac{2 \pi r_{2}}{\left[(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right]}$
c_{p} c_{g}	$\begin{aligned} & {\left[\omega^{2} \mu_{1} \epsilon_{1}-\frac{2 m^{2}}{r_{2}^{2}}\right]^{\frac{1}{2}}} \\ & \underbrace{\left[\omega^{2} \mu_{1} \epsilon_{1}-\frac{2 m^{2}}{r^{2}}\right]^{\frac{1}{2}}}_{\omega \mu_{1} \epsilon_{1}} \end{aligned}$	$\begin{aligned} & {\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}{ }^{2}}\left\{(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right\}^{2}\right]^{2}} \\ & \frac{\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}{ }^{2}}\left\{(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}}}{\omega \mu_{2} \epsilon_{9}} \end{aligned}$
λ_{0}	$\frac{2 \pi}{\left[\omega^{2} \mu_{1} \epsilon_{1}-\frac{2 m^{2}}{r_{2}^{2}}\right]^{\frac{1}{2}}}$	$\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{(m+2 n) \frac{\pi}{2}-\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}}$

Table I (Contd.)

$\mathrm{TM}_{m n}$		
	First Medium	Second Medium
k	$\frac{n \pi}{r_{1}-r_{2}}$	$\frac{1}{r_{2}}\left[\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right]$
γ	$\left[\left(\frac{n \pi}{r_{1}-r_{2}}\right)^{2}-\omega^{2} \mu_{1} \epsilon_{1}\right]^{\frac{1}{2}}$	$\left[\frac{1}{r_{2}{ }^{2}}\left\{\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right\}^{2}-\omega^{2} \mu_{2} \epsilon_{2}\right]^{\frac{1}{2}}$
β	$\left[\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{n \pi}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}}$	$\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}}$
f_{c}	$2\left(r_{1}-r_{2}\right)$	$\frac{c_{2}}{2 \pi r_{2}}\left[\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right]$
λ_{c}	$\frac{2\left(r_{1}-r_{2}\right)}{n}$	$\frac{2 \pi r_{2}}{\left[\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right]}$
c_{p}	$\overbrace{\left.\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{n \pi}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}}}^{\omega}$	$\overline{\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{\frac{m \pi}{2}+(2 n+1)_{2}^{\pi}+\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}}}$
c_{0}	$\frac{\left[\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{n \pi}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}}}{\omega \mu_{1} \epsilon_{1}}$	$\frac{\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{\frac{m \pi}{2}+(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}}}{\omega \mu_{2} \epsilon_{2}}$
λ_{s}	$\frac{2 \pi}{\left[\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{n \pi}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}}}$	$\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{1}{r_{2}^{2}}\left\{\frac{m \pi}{2}+(2 n+1)^{\pi}+\frac{\pi}{4}\right\}^{2}\right]^{\frac{1}{2}}$

At microwave frequencies

$$
\begin{equation*}
c_{p_{1}} / c_{p_{2}} \doteqdot \sqrt{\epsilon_{2} / \epsilon_{1}} \tag{23a}
\end{equation*}
$$

In the case of the TM_{11} wave the ratio of the phase velocities in the two media is given from Table II as

$$
\begin{equation*}
\binom{c_{p_{1}}}{c_{p_{2}}}_{\mathrm{TM}_{11}} \doteqdot \sqrt{\left.\frac{\epsilon_{2}}{\epsilon_{1}} \frac{\left[1-32 \omega^{2} r_{2}^{2} \mu_{2} \epsilon_{2}\right.}{} \frac{\pi^{2}}{2 \omega^{2} \mu_{1} \epsilon_{1}\left(r_{1}-r_{2}\right)^{2}}\right]} \tag{24}
\end{equation*}
$$

At microwave frequencies this reduces to the same relation as (23a).

Table 11
Propagation Characteristics of $T E_{01}$ and $T M_{11}$ Modes

TE_{01}			TM ${ }_{11}$	
	First Medium	Second Medium	First Medium	Second Medium
k	0 $j \omega \sqrt{\mu_{1} \epsilon_{1}}$	$\begin{aligned} & 3 \pi / 4 r_{2} \\ & {\left[\frac{1}{r_{2}^{2}} \frac{9 \pi^{2}}{16}-u^{2} \cdot l_{2} \epsilon_{2}\right]^{\frac{1}{2}}} \end{aligned}$	$\begin{aligned} & \pi /\left(r_{2}-r_{2}\right) \\ & {\left[\left(\frac{\pi}{r_{1}-r_{2}}\right)^{2}-\omega^{2} \mu_{1} \epsilon_{1}\right]^{1}} \end{aligned}$	$\left[\begin{array}{l} 9 \pi / 4 r_{2} \\ {\left[\frac{81 \pi^{2}}{16 r_{2}{ }^{2}}-\omega^{2} \mu_{2} \epsilon_{2}\right]^{\frac{1}{2}}} \end{array}\right.$
γ				
β	$\omega 1^{\prime} \mu_{1} \epsilon_{1}$	$\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{9 \pi^{2}}{16 r_{2}{ }^{2}}\right]^{\frac{1}{2}}$	$\left[\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{\pi}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}}$	$\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{81 \pi^{2}}{16 r_{2}^{2}}\right]^{\frac{1}{2}}$
f.	0	$3 c_{2} / 8 r_{2}$	$\begin{aligned} & c_{1} / 2\left(r_{1}-r_{2}\right) \\ & 2\left(r_{1}-r_{2}\right) \end{aligned}$	$9 c_{2} / 8 r_{2}$
λ_{0}	∞	$8 r_{2} / 3 \quad \omega$		$8 r_{2} / 9$
c_{p}	c_{1}	$\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{9 \pi^{2}}{16 r_{2}^{2}}\right]^{\frac{1}{2}}$	$\left[\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{\omega}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}}$	$\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{81 \pi^{2}}{16 r_{2}{ }^{2}}\right]^{\frac{1}{2}}$
		$\left[\omega^{2} \mu_{2} \epsilon_{2}--\frac{9 \pi^{2}}{16 r_{2}^{2}}\right]^{1}$	$\left[\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{\pi}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}}$	
c_{0}	c_{1}	$\omega \mu_{2} \epsilon_{2}$ 2π	$\cdots \omega \mu_{1} \epsilon_{1}$	$\omega \mu_{2} \epsilon_{2}$
	$\frac{2 \pi c_{1}}{\omega}$		2π	
λ_{0}		$\left[\omega^{2} \mu_{2} \epsilon_{2}-\frac{9 \pi^{2}}{16 r_{2}{ }^{2}}\right]^{\frac{1}{2}}$	$\left[\omega^{2} \mu_{1} \epsilon_{1}-\left(\frac{\pi}{r_{1}-r_{2}}\right)^{2}\right]^{\frac{1}{2}}$	$\left[\omega^{2} \mu_{2} \epsilon_{2} \cdots \frac{81 \pi^{2}}{16 r_{2}{ }^{2}}\right]^{\frac{1}{2}}$

In the case of TE_{01} wave $c_{p 1} / c_{p 2}$ is independent of the radius of the outer dielectric and depends only on the radius of the inner dielectric. But in the case of the TM_{11} wave the ratio $c_{p 1} / c_{p 2}$ depends on r_{2} as well as r_{1}. Let us consider the following example. Suppose a TE_{01} wave is to be set up at $\omega=3 \cdot 10^{10}$ per second travelling at one-tenth the velocity of light in vacuum so that $c_{p 2}=3 \cdot 10^{\circ}$ metres per second. The value of r_{2} is obtained as $r_{2}=2 \mathrm{~mm}$., if the following values for the constants of the ${ }^{\bullet}$ two media are used

$$
\begin{aligned}
& \epsilon_{1}=10^{-9} / 36 \pi \text { Farad/meter } \\
& \epsilon_{2}=10^{-7} / 18 \pi \text { Farad } / \text { meter (Relative dielectric constant }=200 \text {) } \\
& \mu_{1}=\mu_{2}=4 \pi \cdot 10^{-7} \text { Henry } / \text { meter. }
\end{aligned}
$$

This shows that a dielectric rod of diameter 14 mm . and having a relative dielectric constant 200 placed at the centre of a cylindrical guide filled with air will slow down a TE_{01} wave to one-tenth the speed of light in vacuum. It is to be noticed that the wave will be slowed down to one-tenth of its free space value irrespective of the diameter of the external dielectric. In the TM wave, it is found from the equation (24) that a radius of the outer dielectric necessary to reduce the speed of the TM wave to one-tenth of its free space value is 49 mm .
2. Phase Constant.-The phase constant β_{2} in the second medium can be equal to the phase constant β_{1} in the first medium (equation $20 c$) in the case of the $\mathrm{TM}_{m n}$ mode only when the following relation between ϵ_{1} and ϵ_{2} is fulfilited.

$$
\epsilon_{1}-\epsilon_{2}-=\frac{1}{\mu \omega^{2}}\left[\left(\frac{n \pi}{r_{1}-\overline{r_{2}}}\right)^{2}-\frac{1}{r_{2}^{2}}\left\{\frac{m \pi}{2}+(2 n+1)_{2}^{\pi}+\frac{\pi}{4}\right\}^{2}\right]
$$

For TM_{11} mode the abdve condition reduces to

$$
\begin{equation*}
\epsilon_{1}-\epsilon_{2}=\frac{\pi^{2}}{\mu \omega^{2}}\left[\frac{1}{\left(r_{1}-r_{2}\right)^{2}}-\frac{81}{16 r_{2}^{2}}\right] \tag{25}
\end{equation*}
$$

When $\omega=3 \cdot 10^{10}$ per second, $r_{1}=0.049$ meter, $r_{2}=0.007$ meter, $\mu=4 \pi \cdot 10^{-2}$ Henry per meter, the dielectric constants for the two media are related by the following relation

$$
\epsilon_{2}=\epsilon_{1}+14 \cdot 618 \times 10^{-9}
$$

This shows that ϵ_{2} has to be always greater than ϵ_{1} in order that the wave may be slowed down in the second medium.

Power Flow in the Two Media

The peak power flowing through the two media is given by the following expression

$$
\begin{aligned}
& \hat{\mathrm{P}}=\hat{\mathrm{P}}_{1}+\hat{\mathrm{P}}_{2}=\int_{r=r_{2}}^{r} \int_{\theta=0}^{2 \pi}\left(\mathrm{E}_{r 1} \mathrm{H}^{*}{ }_{\theta 1}-\mathrm{E}_{\theta 1} \mathrm{H}^{*} r_{1}\right) r d \theta d r+\int_{r=0}^{\beta} \int_{\theta=0}^{\hat{j}^{\pi}} \\
&\left(\mathrm{E}_{r 2} \mathrm{H}_{\theta \mathbf{2}}^{*}-\mathrm{E}_{\theta 2} \mathrm{H}^{*}{ }_{r 3}\right) r d \theta d r(25 a)
\end{aligned}
$$

The field components for the TE_{01} mode are given from (15) and (15a) as follows

$$
\begin{align*}
& \mathrm{E}_{z 1}=\mathrm{E}_{r 1}=\mathrm{H}_{\theta 1}=0 \\
& \mathrm{E}_{\theta 1}=\mu_{1} \omega\left(\mathrm{P}^{\prime}\right)^{\ddagger} k_{1}\left[\mathrm{~A}^{\prime} \mathrm{J}_{0}^{\prime}\left(k_{1} r\right)+\mathrm{B}^{\prime} \mathrm{Y}_{0}^{\prime}\left(k_{1} r\right)\right] \sin \beta_{1} z \\
& \mathrm{H}_{r 1}=-\beta_{1} k_{1}\left(\mathrm{P}^{\prime}\right)^{\ddagger}\left[\mathrm{A}^{\prime} \mathrm{J}_{0}^{\prime}\left(k_{1} r\right)+\mathrm{B}^{\prime} \mathrm{Y}_{0}^{\prime}\left(k_{1} r\right)\right] \sin \beta_{1} z \\
& \mathrm{H}_{z 1}=k_{1}^{2}\left(\mathrm{P}^{\prime}\right)^{!}\left[\mathrm{A}^{\prime} \mathrm{J}_{0}\left(k_{1} r\right)+\mathrm{B}^{\prime} \mathrm{Y}_{0}\left(k_{1} r\right)\right] \cos \beta_{1} z \tag{26}\\
& \mathrm{E}_{\theta 2}=\mu_{2} \omega k_{2}\left(\mathrm{P}^{\prime}\right)^{!} \mathrm{J}_{0}^{\prime}\left(k_{2} r\right) \sin \beta_{2} z \\
& \mathrm{H}_{r 2}=-\beta_{2} k_{2}\left(\mathrm{P}^{\prime}\right)^{!} \mathrm{J}_{0}^{\prime}\left(k_{2} r\right) \sin \beta_{2} z \\
& \mathrm{H}_{z 2}=k_{2}^{2}\left(\mathrm{P}^{\prime}\right)^{\ddagger} \mathrm{J}_{0}\left(k_{2} r\right) \cos \beta_{2} z
\end{align*}
$$

For the TE_{01} mode $k_{1}=0$, so there is no power flow through the first medium. This means that the power flow is concentrated only in the second medium. So the total peak power flow is given from (26) and (2.5) as

$$
\begin{equation*}
\hat{\mathrm{P}}=\hat{\mathrm{P}}_{2}=\mathrm{A} \sin ^{2} \beta_{2} z\left[{ }_{2}^{1} r^{2}\left\{\mathrm{~J}_{0}{ }^{2}\left(k_{2} r\right)+\mathrm{J}_{1}{ }^{2}\left(k_{2} r\right)-\frac{2 \mathrm{~J}_{0}\left(k_{2} r\right) \mathrm{J}_{2}\left(k_{2} r\right)}{k_{2} r}\right]_{0}^{\tau_{2}}\right. \tag{27}
\end{equation*}
$$

where $\mathrm{A}=-2 \pi \mu_{2} \omega \beta_{2} k_{2}{ }^{2} \mathrm{P}^{\prime}$ may be considered as the amplitude term. The factor inside the bracket in (27) when plotted vs. r from $r=0$ to $r=r_{2}$ gives the power distribution along the radial line in the second medium. It is evident that the power flow takes place throughout the volume of the second medium with a node along the axis and that the power flow is an increasing function with the radius of the dielectric. From equation (27) it is obvious that the power flow varies with z and the power flow can be considered as consisting of a term independent of the distance and a term varying consinusoidally with distance.

Field Pattern for the TE 01 Mode

The field pattern for the TE_{01} mode in the second medium can be found from (26) by introducing $\exp (j \omega t)$. This gives the following expression for $\mathrm{H}_{\boldsymbol{z}}$ and H_{r}

$$
\begin{aligned}
& \mathrm{H}_{z 2}=k_{2}^{2}\left(\mathrm{P}^{\prime}\right) \frac{\mathrm{J}}{0}\left(k_{2} r\right) \cos \beta_{2} z e^{j \omega t} \\
& \mathrm{H}_{r 2}=-\beta_{2} k_{2}\left(\mathrm{P}^{\prime}\right)^{\frac{1}{2}} \mathrm{~J}_{0}^{\prime}\left(k_{2} r\right) \sin \beta_{2} z e^{j \omega t}
\end{aligned}
$$

A plot of the magnetic field at any instant of time may be obtained by putting $t=$ constant $=0$ and forming the differential equation for the lines of force (Barrow, 1936).

$$
\frac{d(\beta z)}{d r}=\left|\begin{array}{l}
\mathrm{H}_{z} \tag{169}\\
\mathrm{H}_{r}
\end{array}\right|
$$

which gives the following differential equation for the second medium.

$$
\begin{equation*}
\frac{\left|\mathrm{H}_{k 2}\right|}{\left|\mathrm{H}_{r 8}\right|}=-\frac{k_{2} \mathrm{~J}_{0}\left(k_{2} r\right)}{\beta_{2} \mathrm{~J}_{0}^{\prime}-\left(k_{2} r\right)} \cot \beta_{2} z=\frac{k_{2} \mathrm{~J}_{0}\left(k_{2} r\right)}{\beta_{2} \mathrm{~J}_{1} \frac{\left(k_{2} r\right)}{\left(k_{2} r\right)} \cot \beta_{2} z} \tag{28}
\end{equation*}
$$

The above equation when solved graphically gives the field distribution at any instant of time. The wave propagation may be considered to be a movement of the field structure down the tube with the phase velocity given in Table II and without any alteration of shape or of magnitude. The field pattern for the TM_{11} mode can be found similarly.

References

Chatterjee, S. K. .. J. Ind. Inst. Sci., 1953, 35, No. 1, I; Ibid., No. 3.
Frankel, S.
.. Jour. Appl. Phys., 1947, 18, 650.
Bruck, C. G., Wicher, E. R. .. Ibid., 1947, 18, 766.
Bãnos, A., Saxon, D. S.,
Ibid., 1951, 22, 117.
Gruen, H .
Stratton, J. A.
.. Electromagnetic Theory, 1941. Published by the McGraw Hill Co.

Gray and Mathews
.. A Treatise on Bessel Functions and Their Applications to Physics, 1922, p. 18.

Dwight, H. B.
Barrow, W. L.
.. Tables of Integrals and Other Mathematical Data, 1949. Published by the MacMillan Co.
. Proc. I.R.E., 1926, 24, 1298.

