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Abstract

In this article first we shall prove the classical theorem of Burnside which asserts that the canonical Burnside
mark homomorphism of the Burnside algebra B(G) of a finite group G into the product Z-algebra of rank #CG is
injective, where CG denote the set of conjugacy classes of the subgroups of G. We further prove that for any finite
group G the canonical Z-algebra homomorphism Z

CZG →ZCG maps the Burnside algebra B(ZCG
G ) of a finite cyclic

group ZG of order #G into the Burnside algebra B(G). We deduce quite a few elementary, but important results
in finite group theory by using this canonical algebra homomorphism. Finally we describe the prime spectrum
SpecB(G) and maximal spectrum SpmB(G) of B(G).

Introduction

It is well known that the concept of group action plays fundamental role in almost all
parts of mathematics and has many applications in physical sciences. In this (expository)
article, we discuss basic properties of the Burnside ring B(G) of a finite group G. It is
an algebraic construction that encodes the different ways G can act on finite sets and is
an axiomatic generalisation of Burnside’s ideas from nineteenth century and techniques
in [1], but the ring structure is a more recent development and appears in an article of
Solomon [10]

The Burnside ring B(G) of the finite group G is the fundamental representation ring of G,
namely the ring of permutation representations. It is the universal object in the category
of finite G-sets and is an analogue of the ring Z of integers in this category. The Burnside
ring is the natural framework to study the invariants attached to structured G-sets and it
can be studied from different points of view.

In Section 1 we collect some preliminaries on group actions. In Section 2 we give con-
struction of the Burnside ring of a finite group and prove the classical result of Burnside
which asserts that the Burnside mark homomorphism is injective. In Section 3 we shall
prove that the canonical Z-algebra homomorphism ZCZG → ZCG maps the Burnside al-
gebra B(ZG) of a finite cyclic group ZG of order #G into the Burnside algebra B(G) of
G.

Important results in group theory can be proved by comparing group theoretic invariants
of a finite group G with the same invariants of the cyclic group ZG of the same order as
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that of G. This precise conceptual interpretation is based on the various ideas and tricks
introduced by Frobenious and Wielandt. Using the canonical homomorphism we deduce
quite a few elementary, but important results in finite group theory. Finally, in Section 4
we describe the prime spectrum SpecB(G) and maximal spectrum SpmB(G) of B(G).

§ 1 Preliminaries – Group Actions

In this section let us recall the basic concepts which use group actions and set up some
notation which will be used throughout this article. For concept of a group action and
basic results concerning them, we refer the reader to see the article by Patil and Storch
[8].

1.1 Group Actions Let us recall the important concept of operation of an (arbitrary)
group on an (arbitrary) set. Let G be a (multiplicatively written) group with the identity
element 1 := 1G. An (l e f t) o p e r a t i o n or an a c t i o n o f G ( a s a g r o u p ) o n
a s e t X is a map G×X → X ,(g,x) �→ gx , with the following properties:

(i) (gh)x = g(hx) for all g,h ∈ G and all x ∈ X .
(ii) 1x = x for all x ∈ X ,

or, equivalently, the map ϑ : G →S(X),ϑ(g) :=ϑg : x �→ gx, is a group homomorphism.
Conversely, if ϑ : G → S(X) is a group homomorphism, then the map G × X → X
defined by (g,x) �→ gx := ϑ(g)(x) is an operation of G on X .

A set X with an operation of a group G (from the left) is called a G-s e t or a G-s p a c e
and the group homomorphism ϑ : G →S(X) belonging to it is called the a c t i o n h o -
m o m o r p h i s m of the G-set X .

The kernel of ϑ , i. e. the set of g ∈ G with ϑg = idX or with gx = x for all x ∈ X , is
called the k e r n e l o f t h e o p e r a t i o n. If this kernel is trivial, then the action is
called f a i t h f u l or e f f e c t i v e. If this kernel is the whole group G, i. e. if gx = x for
all g ∈ G and all x ∈ X , then the action is the so called t r i v i a l a c t i o n.

The operation of G on X defines in a natural way an equivalence relation ∼G on X .
Elements x,y ∈ X are related if y is obtained from x by the operation ϑg of a suitable
element g ∈ G, i. e.

x ∼G y ⇐⇒ there exists g ∈ G with y = gx .
The equivalence class Gx := {gx | g ∈ G} of an element x ∈ X is called the (G-)o r b i t
o f x. The o r b i t s p a c e of X , i. e. the set of all orbits Gx, x ∈ X , is denoted by X\G.
The i s o t r o p y g r o u p or the s t a b i l i z e r of x ∈ X is the subgroup Gx := {g ∈ G |
gx = x} of G. The point x ∈X is a f i x e d p o i n t of the operation if and only if Gx =G.
The set of all fixed points is denoted by FixGX (or XG) . Therefore we have:

O r b i t - S t a b i l i z e r T h e o r e m: Let X be a G-set. The cardinality #Gx of the orbit
Gx of x is the index [G : Gx] := #(G/Gx) of the stabilizer Gx of x in G, i. e. #Gx = [G : Gx] .
In particular, if G is finite, then the cardinality #Gx of Gx divides the order #G of G.
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Furthermore, the stabilizers of the elements in the same orbit are conjugate subgroups,
more precisely, Ggx = gGx g−1 , g ∈ G , x ∈ X .

If X is finite and if we count the elements of X with the help of orbits of a G-operation
on X , then we get the c l a s s e q u a t i o n: Let G be a finite group and let X be a finite
G-set. Then

#X = ∑
Gx∈X\G

#Gx = ∑
Gx∈X\G

[G : Gx] = #FixGX + ∑
Gx∈X\G,
Gx �={x}

[G : Gx] .

In particular, if X is a finite set and if G is a finite p-group (p a prime number), then

#X ≡ FixG X (mod p) .

A group operation G×X → X is called t r a n s i t i v e if it has exactly one orbit, i. e.
if X �= /0 and if Gx = X for one (and hence for all) x ∈ X , or equivalently, G operates
transitively on X if X �= /0 and if for arbitrary x,y ∈ X there exists g ∈ G with y = gx.
A G-space with transitive operation of the group G is also called a h o m o g e n e o u s
G-s p a c e. The last assertion in the Orbit-Stabilizer Theorem implies that the stabilizers
Gx of the elements x ∈ X with respect to a transitive operation of G on X form a full
conjugacy class of subgroups of G.

A group operation G×X → X is called s i m p l y t r a n s i t i v e if it is transitive and
if one and hence all stabilizers Gx, x ∈ X , are trivial. Equivalently, G operates simply
transitively on X if X �= /0 and if for arbitrary x,y ∈ X there exists exactly one g ∈ G with
y = gx. If all isotropy groups are trivial, i. e. if G operates simply transitively on each
orbit of the operation, then the operation is called f r e e.

More generally, for a subgroup H ∈ Sub(G) and a G-set X , let

FixH X := {x ∈ X | hx = x for all h ∈ H}

be the H-f i x e d p o i n t s e t o f X . If H � = gHg−1 for some g ∈G, then the left trans-
lation Lg : X → X induces a bijection FixH X −−−−−−−∼−−−−−−−−� FixH � X , in particular, # FixH X =
# FixH � X .

1.2 Examples Let G be a group. The set of all subgroups of G is denoted by Sub(G).

(1) (T r a n s i t i v e G - s e t s) For a subgroup H ∈ Sub(G), the set G/H of left cosets of H in G
is a G-set with the induced action of from the (left) regular action1 of G on itself. Moreover,
this G-set is transitive, the stabiliser of H = eGH is the subgroup H itself and hence the
stabilizer of gH ∈ G/H is the conjugate subgroup gHg−1, g ∈ G. This special homogeneous
G-space is denoted by XH . The conjugacy class {gHg−1 | g ∈ G} of H (in G) is called the
i s o t r o p y c l a s s o f XH .

(2) (C o n j u g a c y C l a s s e s o f S u b g r o u p s) On the set Sub(G) G-operates by conjuga-
tion: G×Sub(G)→ Sub(G), (g,H) �→ gHg−1. The orbit of H ∈ Sub(G) of this operation
is denoted by h; it is precisely the conjugacy class {gHg−1 | g ∈ G} and has the cardinality
# h = [G : NG(H)], where NG(H) := {g ∈ G | gHg−1 = H} is normaliser of H in G. The
corresponding quotient group WG(H) := NG(H)/H is called the Weyl group of H . The orbit

1 The multipication G×G → G in the group G is the most natural simply transitive operation of G onto itself. The corresponding
action homomorphism ϑ : G →S(G) maps g to the left multiplication Lg : G → G, x �→ gx. This operation is called the ( l e f t )
r e g u l a r o p e r a t i o n or the C a y l e y o p e r a t i o n of G onto itself.
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space Sub(G)/G is denoted by CG; its elements the conjugacy classes of subgroups in G
and are denoted by small gothic letters h. Therefore, if H and H � are subgroups of G, then
h= h� if and only if H is conjugate to H in G, i. e. H � = gHG−1 for some g ∈ G.

(a) If G = Zn is the cyclic group of order n, then for every divisor d of n there is a
unique subgroup (also cyclic) Zd) of order d. Further, since G is abelian the conju-
gacy class, the normaliser and the Weyl group of Zd (in G) are precisely zd = {Zd},
Nzn(Zd) = Zn and WZn(Zd) = Zn/Zd = Zn/d , respectively. The map Div(n) := {d ∈

N+ | d divides n} → CZn , d �→ Zd is bijective. In particular, #CZn = # Div(n).
(b) If G = S3 is the permutation group on {1,2,3}, then CS3 has precisely 4 elements,

namely, the conjugacy classes of the subgroups {1},Z2,Z3 and S3.
(c) If G = A4 is the alternating group on {1,2,3,4}, then CA4 has precisely 5 elements,

namely, the conjugacy classes of the subgroups {1},Z2,Z3,D2 and A4. Moreover,
their normalisers are

H {1} Z2 Z3 D2 A4

NG(H) A4 D2 Z3 A4 A4

(d) If G = A5 is the alternating group on {1,2,3,4,5}, then CA5 has precisely 9 elements,
namely, the conjugacy classes of the subgroups {1},Z2,Z3,Z5,D2,D3,D5,A4 and A5.
Moreover, their normalisers are

H {1} Z2 Z3 Z5 D2 D3 D5 A4 A5

NG(H) A5 D2 D3 D5 A4 D3 D5 A4 A5

1.3 The Category of G-sets Let G be a group. Let X and Y be G-sets with the oper-
ations G×X → X and G×Y → Y . Then a G-h o m o m o r p h i s m or just a G-m o r -
p h i s m from X to Y is a map f : X → Y with f (gx) = g f (x) for all x ∈ X and g ∈ G,
i. e. the diagram

G×X −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−� X

id× f
�

f
�

G×Y −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−� Y

is commutative. Such a G-morphism induces the map f : X/G →Y/G, f (Gx) = G f (x),
x ∈ X , of the corresponding orbit spaces. The set of G-homomorphisms from the G-
set X to the G-set Y is denoted by HomG(X ,Y). The identity map of a G-set and the
composite of any twoG-homomorphisms is again a G-homomorphism. (Left) G-sets and
G-homomorphisms form the category of G-sets denoted by G-SET. Isomorphisms in the
category G-SET are called G - i s o m o r p h i s m s. A G-homomorphism f : X → Y is
an G-isomorphism if and only if it is bijective. Two G-sets X and Y are called G - i s o -
m o r p h i c if there exists a G-isomorphism f : X → Y . The set of all G-isomorphisms
of a G-set X is denoted by AutG X . It is clearly a group (under composition), in fact a
subgroup of the permutation group S(X) and hence operates canonically on X .

Isomorphism is an equivalence relation on G-SET; its equivalences classes are denoted
by small gothic letters. For example, the isomorphism class of a G-set X is denoted by x.
Therefore for G-sets X and Y , we have x= y if and only if there exists a G-isomorphism
X →Y .
With these notation and terminology we note the following observations (for their proof
see [8, Example 1.10 and Theorem 1.11]) which will be used frequently in sequel:
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1.4 Proposition Let X ,Y be two finite G-sets and let x ∈ X, y ∈ Y .

(1) If f : X → Y is a G-homomorphism, then Gx ⊆ G f (x) and f (FixH X) ⊆ FixH Y for
every H ∈ Sub(G). In particular, if f is an G-isomorphism, then f induces a bijec-
tion FixH X −−−−−−−∼−−−−−−−−� FixH Y , in particular, # FixH X = # FixH Y . Moreover, # FixH(X)
depends only on the isomorphism class x of X and only on the conjugacy class h of
H (in G) and hence it is denoted by # Fixh x.

(2) If X is transitive and if Gx ⊆ Gy, then there exists a unique G-homomorphism
f : X → Y such that y = f (x). Moreover, if Y is also homogeneous, then the
G-homomorphism f is surjective. In particular, the map HomG(X ,Y) → FixGx Y ,
f �→ f (x) is a bijective.

(3) If X is transitive, then the map XGx =G/Gx →X, hGx �→ gx is well-defined and is an
G-isomorphism. Further, AutG X ∼= WG(H), where H = Gx0 with arbitrary x0 ∈ X.

(4) If X is transitive, then the canonical operation of the automorphism group AutG X
of X on X is free2 on X. Moreover, if H is a subgroup of G, then FixH X is invariant
under the operation of AutG X. In particular, FixH X is a union of AutG X-orbits and
# FixH X = # AutG X ·#{H̃ ∈ Sub(G) | H ⊆ H̃ = Gx for some x ∈ X}. Furthermore,
# FixH XH = # AutG X = [NG(H) : H].

(5) X is G-isomorphic to the disjoint sum of its orbit.

From this Proposition we easily deduce:

1.5 Corollary Let H and H � be subgroups of G. Then

(1) HomG(XH ,XH �) �= /0 if and only if H is a subconjugate of H �, i. e. H is conjugate (in
G) to a subgroup of H �. Moreover, every G-homomorphism f : XH → XH � is induced
by a right translation Rg : G → G, g ∈ G with g−1Hg ⊆ H �. i. e. f (aH) = agH � for
all aH ∈ XH. Further, g and g� ∈ G induces the same G-homomorphism XH → XH �

if and only if g−1g� ∈ H �.
(2) The transitive G-sets XH and XH � if and only if H and K are conjugates in G. In par-

ticular, the isomorphism class of the G-set XH depends only on the conjugacy class
h of the subgroup H and hence it is denoted by xh.

1.6 Corollary Let X be a finite G-set. Then the isomorphism class x of X can be
expressed as a N-linear combination in the form: ∑h∈CG µh(x) · xh with uniquely deter-
mined natural numbers µh(x) ∈ N, h ∈ CG.

§ 2 Burnside Algebra of a Finite Group

Let G be a finite group. The two natural binary operations on the set B+(G) of isomor-
phism classes of finite G-sets, namely, addition and multiplication which are induced by
the disjoint union and cartesian product induced by the diagonal operation, respectively.
More precisely, for any two G-sets X and Y , consider the G-sets X �Y (disjoint union
of X and Y with the obvious G-operation defined by using the G-operations of X and Y )

2 A group G operates f r e e l y on the set X if isotropy subgroup Gx at every x ∈ X is trivial. In this case the cardinality of the
each orbit Gx of x is the order of G, since the map G → Gx, g �→ gx is injective.
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and X ×Y the cartesian product of X and Y with the diagonal action (g,(x,y)) �→ (gx,gy).
Then we define the addition and multiplication on B+(G) by:

x+y := [X �Y ] and x ·y := [X ×Y ] .
It is easy to check that both these binary operations are associative and have neutral el-
ements 0 := 0B+(G) = [ /0], where the /0 is the trivial G-set with the trivial G-operations
and 1 := 1B+(G) = [{x}], where {x} is any singleton set with the unique G-operation,
respectively for the addition + and the multiplication · on B+(G). The B u r n s i d e
r i n g B(G) of G is the universal ring3 or Grothendieck ring of (B+(G),+, ·) (or of the
category G-sets of G-sets); elements of B(G) are also called v i r t u a l G-s e t s. This
means that B(G) is the free Z-module with basis T(G) := {xh | h ∈ CG} (of isomorphism
classes of transitive G-sets which is indexed by the set CG of conjugacy classes of sub-
groups of G, see Corollary 1.5 (2).) and hence the ring B(G) is a commutative ring and
is a finite free Z-module of the rank RankZB(G) = #CG, in particular, it is a noethe-
rian ring. Further, every element x ∈ B(G) can be expressed as a Z-linear combination
in the form: ∑h∈CG µh(x) · xh with uniquely determined integer coefficients µh(x) ∈ Z,
h ∈ CG. The CG-tuple (µh(x))h∈CG is called the B u r n s i d e t y p e o f x and the func-
tion B(G)→ZCG defined by x �→ (µh(x))h∈CG is called the B u r n s i d e f u n c t i o n o f
G .

For each subgroup H ∈ Sub(G) of G and a G-set X , the fixed points FixH X of X under
H defines a canonical ring homomorphism. More precisely, the number # FixH(X) of
invariant elements of X under the subgroup H is called the B u r n s i d e n u m b e r o f
t h e G - s e t X w i t h r e s p e c t t o t h e s u b g r o u p H. This number depends
only on the isomorphism class x of X and only on the conjugacy class h of H (in G),
see 1.4 (1) and hence the assignment ϕG

h : B+(G)→Z given by x �→ # Fixh x := # FixH X ,
where X ∈ x and H ∈ h, is well-defined. Further, it extends to a unique Z-algebra ho-
momorphism ϕG

h : B(G)→ Z and is called the B u r n s i d e H-m a r k o f G. Note that
Burnside mark of the trivial subgroup {1} of G is the map ϕG

1 (x) = # x = #X for every
X ∈ G-sets, X ∈ x.

The unique Z-algebra homomorphism ϕG : B(G) → ZCG defined by x �→ (ϕG
h (x))h∈CG

called the B u r n s i d e c h a r a c t e r or m a r k h o m o m o r p h i s m o f G. The clas-
sical theorem of Burnside asserts that the ring homomorphism ϕG is injective. We shall
prove this in Theorem 2.8 below. Let us make the following convenient definiton:

2.1 Definition-Lemma The relation “H is a subconjugate to K”, i. e. H is conjugate
(in G) to a subgroup of K on the set Sub(G) induces an order � on the set CG and
hence on the subset T(G) := {xh | h ∈ CG} of B(G) consisting of isomorphism classes
of finite transitive G-sets. Therefore, for every h,k ∈ CG we have xh � xk ⇐⇒ h � k,
i. e. for each H ∈ h and K ∈ h� we have H ⊆ gKg−1 for some g ∈ G. More precisely, we
note (use 1.4 and 1.5) that: xh � xk ⇐⇒ H ⊆ gKg−1 for some g ∈ G ⇐⇒ ϕG

h (xk) =

# FixH XK �= 0. Moreover, in this case ϕG
h (xk) = [NG(K) : K] ·#{K� ∈ Sub(G) | H ⊆K� =

gKg−1 for some g ∈ G}.

3 The Burnside ring is a commutative ring together with a homomorphism ι : B+(G)→ B(G) such that for every homomorphism
ψ : B+ → B of monoids (both additive and multiplicative) into a commutative ring B, there exists a unique ring homomorphism
Ψ : B(G)→ B such that Ψ◦ ι = ϕ . It is in general algebraic fact that such a universal ring exists.
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Proof: For a proof of the last equivalence apply Proposition 1.4 (2) to transitive G-sets
XH and XK with elements x = H and y = gK to conclude that FixH Y �= /0. Therefore
ϕG
h (xk) = # FixH(Y) �= 0. The last assertion follows easily from Proposition 1.4 (4).

2.2 Notation In order to make our exposition understandable we use the following
notation in sequel without giving the exact cross-reference: Let G be a finite group.

• Sub(G) = the set of all subgroups of G; its elements are denoted by capital letters
H,H �,K,K� · · · .

• CG the conjugacy classes of subgroups of G; its elements are denoted by small
gothic letters h,h�,k,k� · · · .

• For h ∈ CG and H ∈ h, we put |h | := #H, and [g : h] := [G : H]. Note that these
equalities depends only on h and not on H ∈ h.

• For h∈CG and H ∈ h, we have # h= [G : NG(H)] and hence #Wg(h) := #WG(H) :=
NG(H)/H depends only on h and not on H ∈ h.

• G-SET = the category of finite G-sets with G-morphisms; its elements are denoted
by capital letters X ,X �,Y,Y � · · · . For a G-set X , let AutG X denote the set of G-
automorphisms of X .

• For a G-set X and a subgroup H ∈ Sub(G), FixH X denote the H-fixed points of X .
The cardinality # FixH X depends only on the conjugacy class h of H and not on
H.

• B+(G) = the isomorphism classes of G-sets; its elements are denoted by small
gothic letters x,x�,y,y� · · · . For x ∈ B+(G), X ∈ x and h ∈ CG, H ∈ h, we put
# Fixh x := # FixH X and # Autg x := # AutG X which depends only on x and on h.

• For H ∈ Sub(G), let XH := the G-set of left cosets G/H of H in G. Every transitive
G-set X is G-isomorphic to some XH , H ∈ Sub(G). Moreover, the conjugacy class
h of H is uniquely determined by X .

• For h ∈ CG and H ∈ h, xh := the image of XH in B+(G) which depends only on h
and not on H ∈ h. Therefore xh = xk ⇐⇒ h= k ⇐⇒ H and K are conjugates in
G for every H ∈ h and K ∈ k. We put T(G) := {xh | h ∈ CG}.

• For H ∈ h, we put # xh := [G : H] and #Autg xh = #WG(H) = #Wg(h).

2.3 Corollary In the product of xh and xk ∈ T(G) in the Z-algebra B(G) only xl with
l� h and l� k can occur with non-zero coefficients, In particular, xh ·xk = ∑l�h ,kνl xl .

Proof: Let H ∈ h and K ∈ k. Suppose that xl ∈ T(G), l ∈ CG occurs in xh ·xk with
non-zero coefficient νl. Then for L ∈ l, XL is a orbit in the product G-set XH ×XK and
the projection maps XH ×XK → XH , XH ×XK → XK are G-homomorphisms and hence
induce G-homomorphisms XL → XH and XL → XK . Therefore l � h and l � k by 1.5
and 2.1

2.4 Corollary Let H(∈ h) be a subgroup of a finite groupG and let x=∑h∈CG µh(x)xh ∈
B(G). Then H(∈ h) is a maximal subgroup with µh(x) �= 0 if and only if it is a maximal
subgroup with ϕG

h (x) �= 0. Moreover, in this case we have

ϕG
h (x) = µh(x) ·ϕG

h (xh) = µh(x) ·#Wg(h) .

Proof: Suppose that H ∈ h is a maximal subgroup with µh(x) �= 0. Then x=∑k�h µk(x)xk.
Applying ϕh and using 2.1 we get ϕh(x) = µh(x)ϕh(xh) �= 0. The converse can be proved
similarly. The last assertion follows immediately from the last part of 2.1.
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2.5 Corollary Let p is a prime number, G be a finite p-group and let x=∑h∈CG µh(x)xh ∈
B(G). Then

ϕG
1 (x) = ∑

h∈CG

µh(x) ·# xh ≡ µG(x) = ϕG
g (x) (mod p) .

Proof: Since ϕ1(xh) = # xh ≡ 0 ( mod p for every h �= g by class equation, applying the
Corollary 2.4 (to h= {1}) the assertion is immediate.

2.6 Corollary Let G be a finite and let p be a prime divisor of #G. Let H(∈ h) be a
p-subgroup and H �(∈ h�) be a subgroup of G with [G : H �] coprime to p. Then

ϕG
h (xh�)≡ ϕG

1 (xh�) = [G : H �] �≡ 0 (mod p) .

In particular, H is a conjugate (in G) to a subgroup of H �.

2.7 Corollary ( S y l ow ) Let G be a finite and let p be a prime divisor of #G. If Gp is
a Sylow p-subgroup of G and if H ⊆ G be a subgroup G which is a p-group, then H is
conjugate to a subgroup of Gp. In particular, all Sylow p-subgroups if G are conjugates
in G.

Now we shall prove the following classical theorem of Burnside:

2.8 Theorem ( B u r n s i d e ) For a finite group G, the Burnside mark-homomorphism

ϕG : B(G)→ ZCG, x �→ (ϕG
h (x))h∈CG

is injective.

Proof: First note that the order � on the finite set CG (defined in 2.1) can be refined to a
total order which we again denote by the same symbol�. The matrix of ϕG with respect
to bases {xh | h ∈ CG} of B(G) with order � and the standard basis {eh | h ∈ CG} of ZCG

is upper triangular, since the (h,h�)-th is entry ϕG
h (xh�) = 0 for all h� � h and h� �= h by

2.1. Further, the diagonal entries ϕG
h (xh) �= 0 again by 2.1 and hence the determinant of

ϕG is non-zero. Therefore ϕG is injective by [9, Teil 1].
2.9 Example The B u r n s i d e ’ s t a b l e o f m a r k s is the table formed by putting all
possible marks together as follows: As in the proof of Theorem 2.8 we refine the order � on the
finite set CG (defined in 2.1) refine to a total order which we again denote by the same symbol
�. Now, form the CG ×CG-table whose (k,h)-th entry is # Fixh xk. The ring structure of the
Burnside algebra B(G) can be deduced from the Burnside’s table of marks. The generators of
the Z-module B(G) are the rows of the table and the product (componentwise multiplication of
row vectors) of marks which can then be decomposed as a Z-linear combination of all the rows.
For example, for the Burnside’s table of marks for the symmetric group G =S3 is:

{1} Z2 Z3 S3

S3/{1} 6 0 0 0
S3/Z2 3 1 0 0
S3/Z3 2 0 2 0
S3/S3 1 1 1 1

The product of the isomorphism classes xh and xk of the G-sets XH = S3/H and XK = S3/K
coresponding to subgroups H = Z2 and K = Z3 is then xh ·xk = x1, since (3,1,0,0) · (2,0,2,0) =
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(6,0,0,0), where x1 denote the isomorphism class of the S3-set S3/{1} corresponding to the
trivial subgroup {1}.

One can easily verify that the following table is indeed the Burnside’s table of marks for the
alternating group G = A5:

{1} Z2 Z3 D2 Z5 D3 D5 A4 A5

A5/{1} 60 0 0 0 0 0 0 0 0
A5/Z2 30 2 0 0 0 0 0 0 0
A5/Z3 20 · 2 0 0 0 0 0 0
A5/D2 15 3 · 3 0 0 0 0 0
A5/Z5 12 · · · 2 0 0 0 0
A5/D3 10 2 1 · · 1 0 0 0
A5/D5 6 2 · · 1 · 1 0 0
A5/A4 5 1 2 1 · · · 1 0
A5/A5 1 1 1 1 1 1 1 1 1

2.10 Example One can also make the multiplication table for the generating set consisting of
isomorphism classes of transitive G-sets T(G) = {xh | h ∈ CG} in the Burnside algebra B(G).
For example, for the alternating group G =A4 one can easily verify the following multiplication
table:

A4/A4 A4/Z2 A4/Z3 A4/D2 A4/{1}

A4/A4 A4/A4 A4/D2 A4/Z3 A4/Z2 A4/{1}
A4/D2 3 ·A4/A4 3 ·A4/Z2 A4/A4 3 ·A4/D2 0
A4/Z3 4 ·A4/A4 2 ·A4/A4 A4/A4 +A4/Z3 0 0
A4/Z2 6 ·A4/A4 2 ·A4/A4 +2 ·A4/Z2 0 0 0
A4/A4 12 ·A4/A4 0 0 0 0

2.11 Example Let G and H be a finite groups. If X is a G-set and Y is a H-set, then X ×Y
is a G×H-set cannonically and hence the assignment (X ,Y ) �→ X ×Y induces a canonical ring
isomorphism B(G)⊗Z B(H)−−−−−−−−∼−−−−−−−−−� B(G×Y).

2.12 Corollary Let G be a finite group. The cokernel of the Burnside mark homomor-
phism ϕG : B(G)→ ZCG is isomorphic to the product Z-algebra ∏

h∈CG

(Z/#Wg(h)Z).

In the sequel we shall identify the Burnside algebra B(G) with its image ϕG(B(G)) in
the product algebra ZCG .

2.13 Corollary Let G be a finite group. Then the product Z-algebra ZCG is integral
over the Burnside algebra B(G) of G. Moreover, if x =

�

xh
�

h∈cG
∈ B(G) and y =

�

yh
�

h∈cG
∈ ZCG with xh ≡ yh (mod #G) for all h ∈ CG, then y ∈ B(G). In particular,
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#G ∈ AnnB(G)

�

ZCG/B(G)
�

. i. e. #G belong to the conductor4 of the integral extension5

B(G)⊆ ZCG.
2.14 Remark Let G be a finite group. Then the total quotient ring of the Burside algebra B(G)
is isomorphic to the ring B(G)⊗Z Q. The integral closure of B(G) in its total quotient ring is
the product Z-algebra ZCG . Therefore the inclusion ϕ : B(G)→ ZCG is determined by the ring-
theortic properties of B(G) alone. Moreover, by Corollary 2.13 we have canonical isomorohisms
B(G)[ 1

#G ]−−−−−−−−
∼−−−−−−−−−� ZCG[ 1

#G ] and B(G)⊗ZQ−−−−−−−−∼−−−−−−−−−� ZCG ⊗ZQ .

2.15 Example ( B u r n s i d e n um b e r s o f t h e e x t e r i o r p ow e r s o f G - s e t s ) Let
X be a finite G-set and let q ∈ N. Then on the set Pq(X) := {Y ∈P(X) | #Y = q} of all subsets
of X of cardinality q, G induce the canonical action (from X ) as: G×Pq(X) → Pq(X), Y �→
gY := {gy | y ∈ Y}. This G-set Pq(X) is called the q-e x t e r i o r p ow e r of the G-set X .

The set P0(X) is G-isomorphic to G/G and P1(X) is G-isomorphic to X . Moreover, the canoni-
cal map Pm(X �Y)→ ∏i+ j=mPi(X)×P j(Y ), Z �→ (Z ∩X ,Z∩Y) is a G-isomorphism.

Let X = G be the (left) regular G-set, i. e. with the G-operation: G×G → G, (g,x) �→ gx. Then
for every subgroup H of G, the number ϕh(Pq(G)) = # FixH(Pq(G)) of H-invariant subsets of
cardinality q in G is called the B u r n s i d e n u m b e r o f H i n G. This number depends
only on q, #G and #H . More precisely, we prove:

2.16 Lemma For every finite group G, every subgroup H of G and every natural number q ∈N,
we have:

# FixH(Pq(G)) =



















0, if #H does not divide q ,

�

[G : H]
q

#H

�

, if #H divide q .

In particular, if #H = q, then ϕh(Pq(G)) = [G : H] and µh(Pq(G)) = [G : NG(H)].

Proof: Let Y ∈ Pq(G). then Y is H-invariant if and only if Y is a union of (some) right
cosets of H in G. In particular, #H divides #Y = q and the fixed set FixH(Pq(G)) of H-
invariant subsets Y ∈Pq(G) corresponds to the set Pq/#H(G/H) of cardinality q/#H . Therefore

# FixH(Pq(G)) = #Pq/#H (G/H) =

�

[G : H]
q

#H

�

.

2.17 Example Let n ∈ N+ and let Dn := {d ∈ N | d divides n} be the set of divisors of n
(in N ). Then the family Pd(Zn) , d ∈ Dn, of Zn-sets forms a Z-basis for the Burnside algebra
B(Zn)) of the cyclic group Zn of order n. In particular, RankZ B(Zn) = #Dn.

Proof: For d,d� ∈Dn, we have µd,d� := µZd� (Pd(Zn))∈Z and the isomorphism class [Pd(Zn)]∈
B(Zn) is

Pd(Zn) = ∑
d�∈Dn

µd,d� · zd� in B(Zn) ,

where z�d denote the isomorphism class of the Zn-set Zn/Zd� . Therefore it is enough to prove
that the matrix M :=

�

µd,d�

�

d,d�∈Dn
∈ M#Dn(Z) is invertible, i. e. to show that the determinant

4 Let A ⊆ B be a ring extension. The ideal CB|A := AnnA B/A := {a ∈ A | a ·B ⊆ A} is called the c o n d u c t o r ( i d e a l ) of B
over A. It is the largest ideal in A which is also an ideal in B. For a reduced ring A, the conductor ideal CA = CA/A of A over A is
called the c o n d u c t o r of A, where A denote the integral closure of A in its total quotient ring.

5 A ring extension A⊆ B is said to be i n t e g r a l if every element b ∈ B satisfies a monic polynomial over A, i. e. if bn +a1bn−1 +
· · ·+ an−1b+ an = 0 for some n ∈ N+ and a1, . . . ,an ∈ A. For example, if B is a finite module over A, then A ⊆ B is an integral
extension.
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DetM ∈ Z× = {±}. It follows by Lemma 2.16 that the matrix M is upper triangular (with
the order � on Dn defined by: d � d� if d ≤ d�). Moreover, we have µd,d = µZd (Pd(Zn)) =
[Zn : NZn(Zd)] = 1 and hence all the diagonal entries of the matrix M are 1. This proves that
DetM= 1.

2.18 Remark Let G be a finite group. On G-sets there are many constructions which provide
the Burnside ring B(G) additional structures. For example, exterior powers (see Example 2.15
and also [13]) and symmetric powers6 (see also [12]) of G-sets. The exterior powers and sym-
metric powers of G-sets will yield the (different) structure of a λ -ring7 on B(G). This structure
on B(G) is then used to derive classical results of elementary group theory.

§ 3 The Canonical Homomorphism

Important results in group theory can be proved by comparing group theoretic invariants
of a finite group G with the same invariants of the cyclic group ZG of the same order as
that of G. In this section we prove the following theorem which was proved by Dress in
[3]:

3.1 Theorem ( D r e s s ) Let G be a finite group and let ZG be the cyclic group of same
order n = #G. Further, let ϕG : B(G)→ZCG and ϕZG : B(ZG)→ZCZG be the Burnside
mark homomorphisms of G and ZG, respectively. Let α∗ : ZCZG → ZCG, ν �→ ν ◦α be
the canonical ring homomorphism induced by the map α : CG → CZG, h �→ [ZH ](=

the conjugacy class of ZH in ZG). Then the image of ϕZG (B(ZG)) is contained in
ϕG (B(G)), i. e. α∗ induce an algebra homomorphism α∗

G : B(ZbG)→ B(G) such that
the diagram

B(ZG) −−−−−−−−−−−−−−−−
α∗

G
−−−−−−−−−−−−−−−−−� B(G)

ϕZG

�
ϕG

�

ZCZG −−−−−−−−−−−−−−−−
α∗

−−−−−−−−−−−−−−−−−� ZCG

is commutative. In particular, α∗
G : B(ZG) → B(G) is a ring homomorphism with the

following property: for every subgroup H of G the diagram of rings and rings homo-
morphisms

B(ZG) −−−−−−−−−−−−−−−−
α∗

G
−−−−−−−−−−−−−−−−−� B(G)

ϕZG
zh

�
�
��

ϕG
h

��
�
�

Z

6 Let X be a finite G-set. Then the symmetric group Sn acts on the n-fold cartesian product Xn by permutation of components,
moreover, this operation commutes with the G-action and hence it induces G-action on the orbit space Sn(X) := Xn/Sn. This G-set
is called the n-th symmetric power of X . For two G-sets X and Y , there exists a canonical isomorphism of G-sets
Sn(X �Y )−−−−−−−−−−−∼−−−−−−−−−−−−� �i+ j=n Si(X)×S j(Y ).

7 Let R be a commutative ring. The structure of a λ -ring on R consists of a sequences λ n : R → R, n ∈ N with the properties: (i)
λ 0(a) = 1 for all a ∈ R. (ii) λ 1 = idR. (iii) For every n ∈ N, we have λ n(a+b) = ∑i+ j=n λ i(a)λ j(b) for all a,b ∈ R.
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is commutative, i. e. ϕG
h (α

∗
G(x

�)) = # FixH(α∗
G(X �)) = # FixZH (X �) = ϕZG

zh
(x�) for every

ZG-set X � and for every subgroup H of G, where h , zh and x� are images of H , ZH
and X � in CG , CZG and B+(ZG), respectively.

Proof: We shall identify (using 2.8) B(ZG) with its image ϕZG(B(ZG)) ⊆ ZCZG and
B(G) with its image ϕG(B(G))⊆ ZCG . Then α∗

G maps the ZG-set Pq(ZG) ∈ B(ZG)⊆

Z
CZG
G onto the G-set Pq(G) ∈ B(G) ⊆ ZCG . Now, the assertion is immediate from Ex-

ample 2.17.

3.2 Remark It is clear that the map α∗
G is injective if and only if for every divisor m of #G,

there exists a subgroup H of order m in G. Further, the image Imα∗
G is contained in the subgroup

{x ∈ B(G) | ϕh(x) = ϕk(x) for all h,k ∈ CG with |h |= |k |} .

In particular, the map α∗
G : B(G)→ Imα∗

G is an isomorphism if and only if G is nilpotent.8

Nowwe use the above Theorem 3.1 to deduce many classical results of Sylow and Frobe-
nius in elementary group theory. First we note the following:

3.3 Corollary Let G be a finite group and let d be a divisor of the order n := #G of G.
Let XZn/d be the transitive ZG-set corresponding to the (unique) cyclic subgroup Zn/d of
ZG of order n/d and let zn/d be its image in the Burnside algebra B(ZG). Further, let
xd := α∗

G(zn/d). Then:

(1) ϕG
h (xd) =

�

d, if d divides # xh,

0, otherwise.
In particular, µh(xd) = 0 if d does not divide # xh and µh(xd) = # h if d = # xh .

(2) If there exists a subgroup H in G of index d, then H is a maximal subgroup with
µh(xd) �= 0 and µh(xd) ·#Wg(h) = ϕh(xd) = d = # xh.

Proof: (1) By the commutativity of the diagram in Theorem 3.1 we have

ϕG
h (xd) = ϕZn

zh
(zn/d) = [Zn : Zn/d ] = d if ZH ⊆ Zn//d ,

i. e. if the index d of Zn/d in Zn divides the index [Zn : ZH ] = [G : H] = # xh and
ϕG
h (xd) = 0 otherwise. Finally, if # xh = [G : H] = d, then H is a maximal subgroup of

G with µh(xd) �= 0 and hence

µh(xd) =
ϕG
h (xd)

[NG(H) : H]
=

d
[NG(H) : H]

=
[G : H]

[NG(H) : H]
= [G : NG(H)] = # h

(2) Immediate from the part (1) and Corollary 2.4

3.4 Corollary ( S y l ow ) Let G be a finite group and let d be a divisor of n := #G.
Then d is the greatest common divisor of those indices [G : H] which are multiples of d,
i. e.

d = GCD{[G : H] | H ∈ Sub(G) and d divides [G : H]} .

8 A (finite) group G is called n i l p o t e n t if There exists m ∈ N such that Zm(G) = {1}, where Zi(G) are defined inductively:
Z0(G) := G and Zi+1(G) := [Zi(G),G] = the commutator of Zi(G) and G which is the subgroup generated by the commutators
xyx−1y−1, x ∈ Zi(G) y ∈ G. A finite group G is nilpotent if and only if every Sylow p-subgroup of G is normal in G, or equivalently,
G is a product of pi-groups, i = 1, . . . ,r, where #G = pα1

1 · · · pαr
r is the prime decomposition of #G.
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Proof: Let xd ∈ B(G) be as in Corollary 3.3. Applying the homomorphism ϕ1 : B(G)→
Z to the equation

xd = ∑
h∈CG

µh(xd)xh =3.2 (2) ∑
h,

d | [G:H ]

µh(xd)xh

we get:

(3.4.1) d = ϕ1(xd) = ∑
h,d |# xh

µh(xd)ϕ1(xh) = ∑
h,d |# xh

µh(xd) · # xh ∈ ∑
h,d |# xh

Z · [G : H] .

Further, if #G/d is a power of a prime number p, then we can even deduce the classical
(first) theorem of Sylow on the existence of p-Sylow subgroups:

3.5 Corollary ( S y l ow-F r o b e n i u s ) Let G be a finite group of order #G = d · pr,
where p is a prime number. Then there exists a subgroup H ⊆ G of order #H = pr.
In particular, there exists a Sylow p-group Gp. i. e. a subgroup Gp of p-power order
such that its index [G : Gp] is coprime to p.

3.6 Corollary Let G be a finite and let pr be a prime-power divisor of #G. Then the
number of subgroups H of G of order pr is congruent modulo p.

Proof: Let d := #G/pr. Dividing the equation (3.4.1) in Corollary 3.4 we get:

1 = ∑
h d |# xh

µh(xd)
�

# xh /d
�

= ∑
h,# |h | | pr

µh(xh)(pr/|h |)

≡ ∑
h,# |h |=pr

µh(xd)

= ∑
h, |h |=pr

# h= #{H ∈ Sub(G) | #H = pr} (mod p) .

We further prove the following result of Frobenius on the number of solutions of the pure
equation xn = 1 in a finite group

3.7 Theorem ( F r o b e n i u s ) Let G be a finite group and let m be a divisor of its order
#G. Let Sm := {g ∈ G | gm = 1} be the set of those elements of G whose order divides m.
Then

#Sm ≡ 0 mod m .

Proof: Let #G = d ·m. Then by Corollary 3.3 we have

∑
g∈G

ϕhg(xd) =3.3 ∑
g∈G

d divides [G:H(g)]

d = ∑
g∈G,

ordg divides m

d = d ·#Sm .

Now the assertion follows from the following counting Lemma of Burnside 3.8.

3.8 Lemma ( B u r n s i d e ) Let G be a finite group and let X be a finite G-set. Then:

#G ·#X/G = ∑
g∈G

Fixg X , where Fixg X = {x ∈ X | gx = x} .



Journal of the Indian Institute of Science  |  VOL 91-1 Jan-March 2011 journal.library.iisc.ernet.in1 1 6

In particular, for every x ∈ B(G), we have the congruence relation:

∑
g∈G

ϕhg(x) ≡ 0 (mod #G) ,

where hg denote the conjugacy class of the subgroup H(g) (of G) generated by g.

Proof: Consider Y := {(g,x)∈G×X | gx= x} and compute the cardinality of Y by using
the fibres of the projection maps Y → G, (g,x) �→ g and Y → X/G, (g,x) �→ Gx.

3.9 Corollary Let G be a finite group and let H be its subgroup. Then for every G-set
X, we have

∑
gH∈WG(H)

ϕ�g,h�(x) ≡ 0 (mod #WG(H)) ,

where �g,h� denote the conjugacy class of the subgroup generated by g and H (of G).

Proof: Let gH ∈ WG(H) and denote �g,H� the subgroup generated by g and H. Then
FixgH(FixH X) = Fix�g,H� X and hence apply 3.8 to the WG(H)-set FixH X to obtain the
required congruence.

§ 4 The Spectrum of B(G)

In this section we shall describe the prime spectrum of the Burnside algebra B(G) of a
finite group G, especially, its closed points, irreducible and connected components and
their relation to group theory.

We use the notations of Section 1 and Section 2, moreover, we put ϕh := ϕG
h for h ∈ CG

and ϕ = ϕG. With this first we prove the following:

4.1 Lemma Let X be a G-set and H ∈ Sub(G) be a subgroup. Then in the product
x ·xh in the Z-algebra B(G) only xl with l� h can occur with non-zero coefficients, i. e.
x ·xk = ∑l�h νl xl . Moreover, νh = # Fixh x.

Proof: The first assertion is immediate from Corollary 2.3. To compute the integers νh,
apply the ring homomorphism ϕh and use FixH XL = for every L ∈ l with l� h.

4.2 Lemma Let ϕ : B(G) → Z be a Z-algebra homomorphism. Then there exists a
unique h ∈ CG such that ϕ = ϕh. In particular, # HomZ-alg(B(G),Z) = #CG.

Proof: Clearly, ϕ is surjective. Put p :=Kerϕ . First note that the subset CG\(CG∩p)=
{h∈ CG | xh �∈P} of the ordered set (CG,�) (see 2.1) has a unique minimal element. For,
if h and k are two minimal elements in CG \ (CG∩p), then

(4.2.1) ∑
l�h , l�k

νl xl = xh ·xk �∈ p , where νl ∈ Z .

Therefore at least one xl �∈ p (with νl �= 0) and so l = h = k. Furthermore, if h :=
min(CG \ (CG ∩p)), then for every G-set X ∈ x ∈ B+(G) we have

(4.2.2) x ·xh = νh xh+ ∑
k�h ,k �=h

νk xk , where νk ∈ Z .
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Applying ϕ to the equation (4.2.2) we get (since xk ∈ p for every k� h, k �= h)

(4.2.2) ϕ(x)ϕ(xh) = ϕ(x ·xh) = νhϕ(xh) .
and hence by Lemma 4.1 ϕ(x) = νh = # Fixh x for every x ∈ B+(G). This proves that
ϕ = ϕh.

For each subgroup H ∈ Sub(G) of G and a prime number p, the contraction (ϕH)
−1(Zp)⊆

B(G) of the prime ideal Zp in Z is a prime ideal in B(G). It is clear that it depends only
on the conjugacy class h of H. This prime ideal in B(G) is denoted by p(h, p).

4.3 Corollary Let q be a prime ideal in B(G). Then the subset T(q) := {h∈CG | xh �∈ q}
of CG contains exactly one minimal element xh with respect to the order � defined in 2.1.
Moreover, q= p(h, p), where p is the characteristic of the integral domain B(G)/q .

Proof: Immediate from Lemma 4.2 and Lemma 4.1.
4.4 Remark Different subgroups may define the same prime ideal, for example: Let H, H � be
subgroups in G such that H is normal in H � and the quotient group H �/H is a p-group for some
p ∈ P. Then p(h, p) = p(h�, p). Proof: For a G-set X , the set FixH \FixH� X is a H �/H-set and
its orbits have cardinalities pr, r ≥ 1. Moreover, one can describe the defining set D(p, p) :=
{h ∈ CG | p= p(h, p)} by using group theory, see 4.8. It is the set of conjugacy classes which lie
in between (with respect to the order defined on CG ) the conjugacy classes hp and h, where hp

is the conjugacy class of the subgroup H p

For every prime ideal q ∈ SpecB(G), the quotient ring B(G)/q is isomorphic to Z or
Z/Zp for some prime number p ∈P (we use P to denote the set of all prime numbers).
Therefore Spec B(G) = Spec0 B(G)

�

�

�

p∈P Specp B(G)
�

, where

Spec0 B(G) := {q ∈ SpecB(G) | B(G)/q∼= Z} ∼= Hom rings(B(G),Z) and

Specp B(G) := {q ∈ SpecB(G) | B(G)/q∼= Z/Zp} ∼= Hom rings(B(G),Z/Zp) .
Moreover, Spec0 B(G) is precisely the set of minimal prime ideals in B(G) and hence
(since B(G) is noetherian) is a finite set and is the set Ass B(G) of associated prime
ideals in B(G). Further, the union

�

p∈PSpecp B(G) is the maximal spectrum Spm B(G)
of B(G).

4.5 Remark Since the map ϕ : B(G)→ ZCG is injective and integral (see Corollary 2.13), the
canonical map Specϕ : SpecZCG → SpecB(G) is surjective, see [7, Lemma 3.B.9 (3)]. One can
also use this and the following explicit description of the prime spectrum of the product Z-algebra
ZCG to prove the above results on the spectrum SpecB(G) of the Burnside algebra of G.

SpecZCG = Spec0Z
CG ∪SpmZCG ,

where Spec0Z
CG = {π−1

h (0) | h ∈ CG}, SpecpZ
CG = {π−1

h (p) | h ∈ CG} , p ∈ P, πh : ZCG → Z,
is the h -th projection and SpmZCG =

�

p∈P SpecpZ
CG is the maximal spectrum of ZCG .

4.6 Corollary Let G be a finite group and let B(G) be the Burnside algebra of G. Then
the Krull dimension of B(G) is dimB(G) = 1. Moreover, the irreducible components
of the prime spectrum SpecB(G) are precisely {V(p(h,0)) | h ∈ CG}. In particular,
SpecB(G) is 1-pure dimensional.
4.7 Remark One can use [7, Remark 3.A.19] to describe connected components of the prime
spectrum SpecB(G) as follows: Define a graph ΓG by taking the set of vertices CG and con-
nect two vertices h and k by an edge if and only if the corresponding irreducible components
V(p(h,0)) and V(p(k,0)) intersects, i. e. if there exists a prime number p ∈ P such that
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p(h,0)⊆ p(h, p) and p(k,0)⊆ p(k, p). Then connected components of SpecB(G) are the unions
of the irreducible components corresponding to the vertices of the connected components of the
graph ΓG.

For more precise description of the prime and maximal spectrum of B(G), we need some
definitions and results from group theory.

4.8 Some Results from Group Theory Let G be a finite group.

(1) For a prime number p ∈ P, let Gp be the smallest normal subgroup of H such
that the quotient group G/Gp is a p-group. It is clear that Gp is a characteristic
subgroup of G. Moreover, if H ⊆G is a normal subgroup of G such that the quotient
group G/H is a p-group, then H p = Gp. If WG(H) �≡ 0 mod p , then H/H p is a p-
Sylow subgroup of WG(H p). A finite group G is called p-p e r f e c t if Gp = G. For
example, finite simple groups of order �= p are p-perfect.

(2) For a prime number p ∈P, let Hp be the inverse image (in NG(H p)) of any p-Sylow
subgroup in WG(H p) under the canonical surjective map NG(H p) → WG(H p) =
NG(H p)/H p. Then H p = (Hp)

p is a characteristic subgroup of Hp and hence
NG(Hp)⊆ NG(H p) and p does not divide [NG(Hp) : Hp] = #WG(Hp).

(3) Let Gs denote the smallest normal subgroup of G such that the quotient group G/Gs

is solvable. It is easy to see that for a finite group G, (Gs)s = Gs and that G is
perfect9 if and only if G = Gs.

4.9 Proposition Let G be a finite group. Then

(1) The map CG → Spec0 B(G), h �→ p(h,0) is bijective. Moreover, (see Corollary 4.3)
MinT(p(h,0)) = xh. In particular,

# Spec0(B(G)) = #CG .

(2) For each p ∈ P, let CG,p := {h ∈ CG | #Autg xh �≡ 0 mod p}. Then the map
CG,p → Specp B(G) , h �→ p(h, p) .

is bijective with the inverse map q �→ Min(T(q),�) (see Corollary 4.3). In particu-
lar,

# Specp(B(G)) = #CG,p ≤ #CG and # Spm(B(G)) = ∑
p∈P

#CG,p .

(3) For a prime p ∈ P and h,k ∈ CG, the equality p(h, p) = p(k, p) holds if and only if
hp = k

p, where hp (respectively, kp) is the conjugacy class of the subgroup H p (resp-
ectively, K p ) . Moreover, in this case MinT(p(h, p)) = hp (see 4.3).

(4) The irreducible components V(p(h,0)) and V(p(k,0)) of SpecB(G) intersects if and
only if hp = l

p for some prime number p ∈ P.
(5) For h ∈ CG, the prime ideals p(h, p) and p(hs,0) belong to the same connected

component of SpecB(G).

Proof: (1) Note that p(h,0) = {x ∈ B(G) | ϕh(x) = 0} and ϕh induces an isomorphism
B(G)/p(h,0)−−−−−−−∼−−−−−−−−� Z. Therefore by Corollary 4.3 the map h �→ p(h,0) is surjective. If
p(h,0) = p(h�,0), then ϕh = ϕh� and so h= h�.

9 A group G is called p e r f e c t if G = [G,G](= the commutator subgroup of G).
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(2) Let p be the characteristic of B(G)/q. The minimal element h of T(q) satisfies
q= p(h, p) and xh �∈ p(h, p) and hence h ∈ CG,p. This proves that the map h �→ p(h, p) is
surjective. If p(h, p) = p(h�, p), then ϕh ≡ ϕh� mod p and hence h= h�, since ϕh�(xh) ≡

ϕh(xh) �≡ 0 mod p, i. e. h� h� and ϕh(xh�)≡ ϕh�(xh�) �≡ 0 mod p, i. e. h� � h.

(3) Suppose that p(h, p) = p(k, p) =: p and l := Min(T(p),�) (see 4.3). Note that
the isomorphism class xl ∈ T(G) is uniquely determined by the congruences ϕh(x) ≡
ϕl(x) mod p for all x ∈ B(G) and ϕh(xl)≡ ϕl(xl) = # Autg xl �≡ 0 mod p . But by 4.8 (2)
this is just the case for the conjugacy class of the subgroup Hp. On the other hand we
have ϕh(x) ≡ ϕhp(x) = ϕhp(x) mod p . This proves that MinT(p) = hp = kp, and hence
(hp)

p = hp = (kp)
p = k

p. Conversely, if hp = k
p, then p(h, p) = p(k, p) by the proof in

Remark 4.4.

(4) Immediate from (3).

(5) Two prime ideals p and q ∈ SpecB(G) belong to the same connected component
of SpecB(G) if and only if there exists a sequence p1, . . . ,pn of minimal prime ideals
in B(G) such that p ∈ V(p1), q ∈ V(pn) and V(pi)∩V(pi+1) �= /0 for every i = 1, . . . ,n.
For every H ∈ h, since the quotient group H/H s is solvable, by definition there exists a
chain of subgroups H s = Hn � Hn−1 � · · ·� H1 � H0 = H such that [Hi−1 : Hi] = pi is
prime for every i = 1, . . . ,n. Then clearly p(h, p) ∈ V(p(h0,0)), p(hs,0) ∈ V(p(hn,0))
and by 4.8 (1) and (3) above V(p(hi−1,0))∩V(p(hi,0)) �= /0 for every i = 1, . . . ,n. This
proves the assertion.

Finally, we end this section with the following interesting link between Group Theory
and Algebraic Geometry:

4.10 Theorem ( D r e s s ) Let G be a finite group and let B(G) be the Burnside algebra
of G. Then:

(1) Two prime ideals p, q in the prime spectrum SpecB(G) belong to the same con-
nected component of SpecB(G) if and only if hs = k

s , where

h := Min
�

{h ∈ CG | xh �∈ p},�
�

and k := Min({k ∈ CG | xk �∈ q},�)

(see Corollary 4.3).
(2) The map

{h ∈ CG | H = [H,H] for H ∈ h} −−−−−−−∼−−−−−−−−� π0(SpecB(G)) , h �→ V(p(h,0)) ,
is a bijection from the set of conjugacy classes of perfect (see Footnote 9) subgroups
H ∈ Sub(G) onto the set π0(SpecB(G)) of connected components of SpecB(G).

(3) The number of minimal primes in the connected component of p(h, p) is equal to
the number of conjugacy classes {k ∈ CG | H s and K s conjugates in GK ∈ k}.

Proof: Note that for every subgroup H ∈ Sub(G) and every prime number p ∈ P, we
have H s = (H p)s. With this the assertion (1) immediate from Proposition 4.9 (4), (5).
The assertions (2) and (3) are immediate from (1).

4.11 Corollary Let G be a finite group and let B(G) be the Burnside algebra of G.
Then the prime spectrum SpecB(G) is connected if and only if G is a solvable group.
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