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ABSTRACT 

Simple statistical considerations show that the recrystallized grain 
size of a deformed single crystal of a metal can be expressed as a function 
of the potential energy stored within the metal as a result of the defor- 
mation. A parabolic relation between the stored energy and the 
magnitude of the deformation is suggested and a formula relating 
recrystallized grain size with deformation is derived which agrees with the 
empirical rule formulated by Walker. 

1. INTRODUCTION 

In a recent publication Leighly, Walker, and Marx' have attempted to derive 
an explanation for the observed relation between the recrystallized grain size of 
a metal and the amount of deformation which the metal had been subjected to 
before the recrystallizing anneal. The postulation by these authors on the 
mechanism for nucleation is that the total energy stored in a unit volume of metal, 
by cold working, is distributed statistically over the whole volume of the speci- 
men and that a fraction of the higher energy points functions as nuclei for recrystal- 
lization. 

but with a 
In the 

b 	
present paper we have attempted to solve the problem on similar lines 
more detailed consideration of the basic ideas involved. It is known 
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that the evaluation of the partition function for energy distribution in a cryst a l 
lattice deformed in any manner is extremely complicated because of the alteration 
of the vibrational frequencies of the atomic oscillators from their normal values 
due to the deformation process. The best that can be done is to consider a 
deformed static lattice and to superpose the normal thermal vibrations of the oscil- 
lators upon it. The partition function can then be approximately evaluated.' 
To this approximation the energy in any state of the crystal can always be expressed 
as the sum of a static potential energy (energy when the atoms are at rest at their 
lattice positions) and the total vibrational energy of the various oscillators. The 
static potential energy then includes the internal energy produced by external 
forces acting on the crystal and is thus essentially independent of temperature .  

On this basis we can then regard the total energy W (per unit volume) of a 
deformed metal crystal to be made up of two parts: (1) the thermal energy w r,  
which depends only on temperature and thus on the frequency of the atomic oscil- 
lations; and (2) a temperature-independent stored energy Ws, which is a function 
of the total plastic deformation in the metal.t If we divide a unit volume of the 
solid into N submicroscopic cells of equal size and assign to all these cells the same 
a priori probability of reaching an energy level EN, then the distribution of energy 
corresponding to a state of maximum thermodynamic probability at a given 
temperature T may be expressed by the standard equation of statistical mechanics: 

AN 1 
N 

- e- er•oir 

where ANIN is the fraction of cells with an energy EN and f is the partition function 
of the distribution given by the general equation 

= WiN kT2  st, (In .i) 	 (2)  

k is Boltzmann's constant, and T the absolute temperature. 

• Then, 

In f = 	 • dT 	 (3) 
NkT2  

Substituting W = We+ Ws, and integrating with respect to T we get 

Ws 
//nf=0(WT)-- nC 	 (4) 

NkT 

where In C is an integration constant and # (Wir) =NkT2 dT is related to 

the partition function f (T) of a continuous solid at a temperature T as obtained 

from Debye's theory. Substituting for f in equation (I) we get 

t The static energy is considered to be the zero of our energy scale. 
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AN 

 	exp - (EN — Ws/N)//a} 	 (5) N 	C exP {46(WT)} 

We now make the assumption that the nuclei for new strain-free grains are 
formed in those cells where the energy EN reaches a value q. We may divide q 

	

into temperature-dependent and temperature-independent parts: q 	(it 	qs, 
where qT is the vibrational internal energy of the Nth cell and qs is the maximum 
mechanical energy that can be stored within the cell. Then, 

AN 

	

= exp { [glen + sit (WT)]} exp {— (qs— Ws/N)/kT} 	(6) 

Since qi will always be close to the average internal energy per cell of the 
whole volume at a constant temperature T, we can treat the temperature-dependent 
part of equation (6) as a virtual constant for our purpose. Then, 

AN = NK exp f— (qF — Ws /N)/kT} 	 (7) 
where, 

K z--: C' exp {— [qT/kT 	(I) (WT)J} 	 (8) 

Equation (7) is the fundamental equation for any process of nucleation in 
which the stored energy of deformation is the driving agency in forming unstrained 
nuclei. The condition for the same a priori probability makes the equation valid 
for single crystals only. For the polycrystalline condition, we may adapt the 
equation with additional approximation as has been done by Leighly, et at 

2. RELATION BETWEEN RECRYSTALLIZED GRAIN SIZE AND PRIOR DEFORMATION 

The number of nuclei that actually form from AN potential nuclei will depend 
on the rate of formation of the nuclei and the rate of growth of those nuclei that 
have previously formed. Following Leighly, et at, we may assume that the number 

of recrystallization nuclei N, per unit volume is proportional to AN; i.e., N,=--a. 

the constant of proportionality a being essentially independent of temperature. 
If we consider the recrystallized grains which fill up unit volume of the material 
to be cubical in shape, we shall have N, cubes after recrystallization. This 
means that the recrystallized grain size G, is G, 	Nri. Since N, 

the relation between the logarithm of the grain size and the stored energy from 
equation (7) becomes 

G, 	— 1 (aNK) (Nqs W5)j3NkT 	 (9) 

In order that equation (9) may be put into a form suitable for comparison 
with experimental data, it is required that the stored energy be related to the prior 
deformation It is known that the energy stored per unit volume of metal, by 
Plastic deformation, cannot be calculated as a definite fraction of thetotal i 
mechanical work expended in producing the plastic deformation. If W, s the 

°la' work expended in deforming a unit volume of metal, say under simple one- 
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dimensional compression, then the energy stored in the metal during cold working 
can be written in the form: 

ws = wd 	+ wa) 	 (10) 

where Q is the heat evolved in the process and W ei  is the elastic energy recovered 
when the load is removed. A relation between Ws and the strain v cannot be 
obtained from theoretical considerations at present, but we can conceive of a way 
in which stored energy varies as the deformation is gradually increased, and can 
arrive at a relation which may be justified from indirect experimental observations. 
We do know that the energy stored in metals increases rapidly with deformation, 
when the deformation is small, but the rate of increase of stored energy with 
deformation decreases when the deformation is large. Further, the stored energy 
tends toward a saturation value at very large deformations. Since a greater 
quantity of work is stored at large deformations, the simplest way to reconcile 
these facts is to assume that the rate of increase of stored energy with increase 
of deformation at any moment is inversely proportional to the amount of stored 
energy existing at that particular moment. Thus, 

dW s k 
dv 	Ws 	 (11) 

where k is a constant of proportionality depending on the nature of the deformed 
metal, and v is the strain; for simple compression it is the fractional reduction 
in height. Integration of equation (11) gives 

W s 2  = kv + 8 	 (12) 

where 8 is an integration constant. To evaluate the constants k and 8 we assume, 
in accordance with experimental observations, that the metal starts storing energy 
only after a critical deformation v e  and that Ws tends to a maximum value W o  
as v approaches unity. Then, 8 = — k it, and k = 	021(1 — vc). Hence, 

ws wo  v 
k — voi 

(13) 

We are now in a position to substitute Ws obtained from equation (13) directly 
into equation .(9). Some fraction of Ws will be recovered preceding nucleation, 
but this is extremely small and does not materially affect our equation. The term 
Nqs in equation (9) represents the energy of deformation that will be stored if all 
the cells in the volume element had received the same energy qs. Since qs is the energy 

level required for nuclei to form, we can therefore consider Nqs fkd Wo  and then, 

W n  . 	vo\i 
In G,= — [In ((aNK)/ ea°13 T)] — 	

(v —  

3NkT  
. 	. 	. (14) 

= n( v1  : vni  
C l 
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where 

----= (aNK)i e--wonNkT 

and 
n = - W 0/3 NkT 

The quantities in and it can be considered as constants for a given metal for a given 
temperature and time of anneal. 

Equation (14) predicts a variation in recrystallized grain size with prior de- 
formation. That such a relation does exist was first pointed out by Walker. 3  He 
found that the recrystallized grain size in cold rolled cartridge brass can be expressed 
by the relation 

log G, = — a (100v)i b 	 (15) 

where v is the fractional cold deformation prior to recrystallization, and the con- 
stant b is a function of the annealed grain size prior to final cold deformation. 
This equation refers to polycrystalline metal. Equation (14) agrees with the 
experimental observations of Walker and this agreement indicates that the basic 
assumptions made in deriving the equation are valid. 

reWe. if ix ..ca. 	r: eats nructale where every re11 has an eaual chance 

ERRATA 

(Vol. 37, No. 3, July 1955, Section B) 

Equation 13 on page 182 should read as:— 

Vo  Ws = vv 0 (1 - Pr  

energy (Fig. 1). Thus stored energy is found to be proportional to the square-root 

of the deformation, and equation (12) which has been derived from physical argu- 

ments is seen to be verified experimentally. 

Equation (14) differs from the equation derived by LeighlY ci at The equa- 

tion derived by these authors can be written in the form 

In G, =--- Ma -4 - h/Ws 	
(16) 
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FIG. 1. Variation of stored energy % with square-root of the shear strain (expressed in terms 

of the dimensionless twict Nd/1, N being the number of turns, d the diameter of the specimen and 
1 the length) for electrolytic copper. (Data obtained from Clarebrough, et at, Referenc.e 5). 

where Ws  is the total stored energy in unit volume of the metal prior to recrystal- 
lization, where G, is the recrystallized grain size, and where a and b are experi- 

mentally determined constants. For a polycrystalline metal, a is a function Of 

initial grain size existing in the metal prior to cold deformation. By assuming 
that the stored energy is a definite fraction of the total mechanical work done in 
deforming the metal, the final equation obtained is: 
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Gr  =-- B P 	-v) 
(17) 

where v is the strain. 

Equation (17) is not correct because it predicts a linear relationship between 
the logarithm of the recrystallized grain size and the reciprocal of the deformation, 
which is not found experimentally. Leighly, et at, tried to overcome this difficulty 
by considering B and p as fitting parameters instead of constants, but such a pro- 
cedure lacks theoretical significance. 

The error in the treatment of these authors lies in two basic assumptions made. 
First, they have assumed the modulus of energy distribution 13 in the fundamental 
equation of statistical mechanics as equal to 11E, where E is the average energy 
per cell. No valid argument for this assumption has been given. As is known, 
the average energy per cell is given by the equation 

W 	EENe-P€141 
E (I8) N 	e-PEN  

This is a transcendental equation in fi,  and the solution is not if? = 1/E. From 
other arguments the value of fl, for any statistical system, is always found equal 
to the thermal modulus 1/kT, and this cannot be replaced arbitrarily by any other 
function. Second, they have assumed the stored energy to be a definite fraction of 
the work expended in deformation, which is also an incorrect assumption. 
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