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In a note in the Proceedings of the American Mathematical Society, John P. 
Vintil has established the following theorem : 

THEOREM. If x, y, z are real variables and P. denotes the Legendre polynomial 
of order n, then 
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where 
g -=- g (x, y, = 1 — x 2  y2  — z2  2xyz 	 (2) 

The object of the present note is to prove a similar relation involving the 
Gegenbauer (ultraspherical) polynomials. 

Let x, y, z be real variables and L' the Gegenbauer polynomial of order n. 
We prove 
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As in En, if we denote by T+  and T. the regions as bounded above, i.e., 	I< x, 

y, z< 	1), wherein g> 0 and g< 0 respectively, the left-hand side of (3) 
converges uniformly with respect to x or y or z alone in any closed interval 
(parallel to the x or y or z axis) interior to T+  or 
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*After completing the work of this paper, I have learnt that Dr. Brafman (Wayne University 
Detroit, U.S.A.) has communicated a paper on the topic. 
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Ihtroduce the function 
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From the expansion 

f (x, y, z) =--- cioi A,, f,, (y, z) C„' (x) 	 (5) fil=0 

we have after a formal calculation 
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As shown intn, g> 0 if and only if 

xi=yz_ V(I_yZ)(I_zZ)cxcx2= yz +V(1_yZ)(1_za), 

so that the integral on the left-hand side of (6) can be written as 
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By the substitution 
x yz -I- V(1 	y9 1 	2: 2) cos 0, 

the above reduces to 
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Using the addition formula for Gegenbauer polynomials, (2)  

seen to be 
n! 7r 

(ITIY-rien Iv Car (y)  CA P  (z).  
From (6) we have then 

the expression is 

A,j (y,z) 
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Comparing (5) and (7), we have 

f (x, y, z) 	Z 	-
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It remains to examine the validity of the expansion (5). As f (x, y, z) is 

piecewise continuous in — 1 c x, y, ztt--, I, we observes]  that if the integrals 
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exist, the series expansion (5) is valid in the interior of (— 1, 4- 1) and the con- 
vergence is uniform in every closed interval interior to (— 1, 	1). *Also the 
expansion (5) is valid at the end points x = ± 1 if v< 0. 

Now we show that both I t  and 12  exist if v> 0. For 

44 1-21177 
I t  = 	 {( 1 — y 2) (1 — z2)}-('-f) 

.f f --1 dx, 
(kr 	 is  

and with the substitution 

x = yz 	A/(1 	j/2) (1--- . Z2) COS Ch 

41-2'nlr 
=-- (1-17)4 	(sin 0) 2P-1  thk. 

The last integral exists if ; > 0. 
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exists if x1 2, x22  0 I. If x1 2  or x2 2  = I )  we have y = 	z or y = z and in both 
these cases we can write 

41,27,  (270 	1 a 3P-2 r(2 
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(Iv) 	(1 — y 2)2P-1. 	(cos 0y --  

where 
0< a2  = 2 (1 — y2)C. 2. 

As 
(2 a2  cos 2  0)-" 2 < (2 sin 2  0)-n 2  for v> 0, 
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which certainly exists for v > 0. If y 2  = z2  = 1, 12  reduces to 0. 

At the end points x = ± 1, the expansion (5) is not valid as that requires 
v< 0. For the same reason we conclude that (8) is not valid at the points 
y=± 1 and z =-- ± 1. 

My best thanks are due to Professor N. S. Govinda Rao for kind 
encouragement. 
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