ON A SERIES OF PRODUCTS OF THREE GEGENBAUER POLYNOMIALS*

By S. K. Lakshmana Rao
(Department of Power Engineering, Civil and Hydraulic Section, Indian Institute of Science, Bangalore-3)

Received August 5, 1955
In a note in the Proceedings of the American Mathematical Society, John P. Vinti ${ }^{1}$ has established the following theorem:

Theorem.-lf $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are real variables and P_{n} denotes the Legendre polynomial of order n , then

$$
\begin{align*}
\sum_{n=0}^{\infty}\left(\mathrm{n}+\frac{1}{2}\right) P_{\mathrm{n}}(\mathrm{x}) P_{\mathrm{n}}(\mathrm{y}) P_{n}(\mathrm{z})= & \left\{\begin{array}{cc}
\pi^{-1} \mathrm{~g}^{-\frac{1}{2}} & (g>0) \\
0 & (g<0)
\end{array}\right. \tag{1}\\
& -1<\mathrm{x}, \mathrm{y}, \mathrm{z}<+1
\end{align*}
$$

where

$$
\begin{equation*}
g \equiv g(x, y, z)=1-x^{2}-y^{2}-z^{2}+2 x y z \tag{2}
\end{equation*}
$$

The object of the present note is to prove a similar relation involving the Gegenbauer (ultraspherical) polynomials.

Let x, y, z be real variables and $C_{n}{ }^{\nu}$ the Gegenbauer polynomial of order n. We prove

$$
\begin{align*}
& \sum_{n=0}^{\infty}\left(\frac{n!\cdot}{\mid n+2 \nu}\right)^{2}(n+\imath) C_{n}^{\nu}(x) \mathrm{C}_{n}^{\nu}(y) \mathrm{C}_{n}^{\nu}(z) \\
&=\left\{\begin{array}{cc}
\frac{4^{1-2 \nu} \pi}{(\mid \bar{\nu})^{4}} \frac{g^{\nu-1}}{\left\{\left(1-x^{2}\right)\left(1-y^{2}\right)\left(1-z^{2}\right)\right\}^{\nu-z}} & (g>0) \\
0 & (g<0)
\end{array}\right. \tag{3}\\
&-1<x, y, z<+1 ; \nu>0
\end{align*}
$$

As in ${ }^{[1]}$, if we denote by T_{+}and T_{-}the regions as bounded above, i.e., $(-1<x$, $y, z<+1$), wherein $g>0$ and $g<0$ respectively, the left-hand side of (3) converges uniformly with respect to x or y or z alone in any closed interval (parallel to the x or y or z axis) interior to T_{+}or T_{-}.

[^0]Introduce the function

$$
f(x, y, z)= \begin{cases}\frac{4^{1-2 \nu} \pi}{(\mid \bar{\nu})^{4}} \frac{g^{\nu-1}}{\left\{\left(1-x^{2}\right)\left(1-y^{2}\right)\left(1-z^{2}\right)\right\}^{\nu-\frac{1}{2}}} & (g>0) \tag{4}\\ 0 & (g \leqslant 0)\end{cases}
$$

From the expansion

$$
-1 \leqslant x, y, z \leqslant+1 ; \nu>0
$$

$$
\begin{equation*}
f(x, y, z)=\sum_{n=0}^{\infty} \mathrm{A}_{n} f_{n}(y, z) \mathrm{C}_{n}^{\nu}(x) \tag{5}
\end{equation*}
$$

we have after a formal calculation

$$
\begin{equation*}
\int_{-1}^{+1} f(x, y, z)\left(1-x^{2}\right)^{y-\frac{1}{2}} \mathrm{C}_{n}^{\nu}(x) d x=\mathrm{A}_{n} f_{n}(y, z) \frac{2^{1-2 \nu} \pi \mid n+2 \nu}{n!(n+\nu)\left(\left.\right|_{\nu} ^{\nu}\right)^{2}} \tag{6}
\end{equation*}
$$

As shown in ${ }^{[1]}, g>0$ if and only if

$$
x_{1}=y z-\sqrt{ }\left(1-y^{2}\right)\left(1-z^{2}\right)<x<x_{2}=y z+\sqrt{ }\left(1-y^{2}\right)\left(1-z^{2}\right),
$$

so that the integral on the left-hand side of (6) can be written as

$$
\frac{4^{1-2 \nu} \pi}{\left(\mid \overline{)^{4}}\right.} \int_{\varepsilon_{1}}^{n} \frac{g^{\nu-1}}{\left\{\left(1-y^{2}\right)\left(1-z^{2}\right)\right\}^{b^{-1}}} \quad \mathrm{C}_{n}^{\nu}(x) d x .
$$

By the substitution

$$
x=y z+\sqrt{ }\left(1-y^{2}\right)\left(1-z^{2}\right) \cos \phi,
$$

the above reduces to

$$
\frac{4^{1-2 y}}{(\mid \bar{\nu})^{4}} \int_{0}^{\pi} \mathrm{C}_{n}^{\nu}\left\{y z+\sqrt{ }\left(1-y^{2}\right)\left(1-z^{2}\right) \cos \phi\right\}(\sin \phi)^{2 v-1} d \phi .
$$

Using the addition formula for Gegenbauer polynomials, ${ }^{[2]}$ the expression is seen to be

$$
\frac{2^{1-e^{2 v} n!\pi}}{\left([\bar{\nu})^{2}\lceil n+2 v\right.} \mathrm{C}_{n}^{\nu}(y) \mathrm{C}_{n}^{\nu}(z) .
$$

From (6) we have then

$$
\begin{equation*}
\mathrm{A}_{n} f_{n}(y, z) \quad\binom{n!}{\mid n+2 \nu}^{2}(n+\nu) \mathrm{C}_{n}^{\prime}(y) \mathrm{C}_{n}^{\nu}(z) \tag{7}
\end{equation*}
$$

Comparing (5) and (7), we have

$$
\begin{equation*}
\left.f(x, y, z)=\sum_{n=0}^{\infty}\binom{n!}{n+2 v}^{2}(n+\nu) \mathrm{C}_{n}^{\prime}(x) \mathrm{C}_{n}^{\prime} \right\rvert\,(y) \mathrm{C}_{n}^{\prime \prime}(z) . \tag{8}
\end{equation*}
$$

It remains to examine the validity of the expansion (5). As $f(x, y, z)$ is piecewise continuous in $-1 \leqslant x, y, z \leqslant 1$, we observe ${ }^{(3)}$ that if the integrals

$$
\mathrm{I}_{1}=\int_{-1}^{+1}\left(1-x^{2}\right)^{v-1}|f(x, y, z)| d x, \mathrm{I}_{2}=\int_{-1}^{+1}\left(1-x^{2}\right)^{\text {p/2-1/2 }}|f(x, y, z)| d x
$$

exist, the series expansion (5) is valid in the interior of $(-1,+1)$ and the convergence is uniform in every closed interval interior to $(-1,+1)$. Also the expansion (5) is valid at the end points $x= \pm 1$ if $\nu<0$.

Now we show that both I_{1} and I_{2} exist if $\nu>0$. For

$$
\mathrm{I}_{1}=\frac{4^{1-2 \nu} \pi}{(\mid \bar{\nu})^{4}}\left\{\left(1-y^{2}\right)\left(1-z^{2}\right)\right\}^{-\left(\nu-\frac{1}{2}\right)} \int_{x_{1}}^{\alpha_{2}} g^{\nu-1} d x
$$

and with the substitution

$$
\begin{aligned}
& x=y z+\sqrt{ }\left(1-y^{2}\right)\left(1-z^{2}\right) \cos \phi \\
& \mathrm{I}_{1}=\frac{4^{1-2 y} \pi}{(\mid \bar{\nu})^{4}} \int_{0}^{\pi}(\sin \phi)^{2 \nu-1} d \phi .
\end{aligned}
$$

The last integral exists if $\dot{\nu}>0$.

$$
\mathrm{I}_{2}=\frac{4^{1-2^{\nu}} \pi}{(\mid \bar{\nu})^{4}}\left\{\left(1-y^{2}\right)\left(1-z^{2}\right)\right\}^{-\left(\nu-\frac{1}{2}\right)} \int_{z_{1}}^{\infty}\left(1-x^{2}\right)^{-\nu / 2} g^{\nu-1} d x
$$

exists if $x_{1}{ }^{2}, x_{2}{ }^{2} \neq 1$. If $x_{1}{ }^{2}$ or $x_{2}{ }^{2}=1$, we have $y=-z$ or $y=z$ and in both these cases we can write

$$
\mathrm{I}_{2}=\frac{4^{1-2 \nu}(2 \pi)}{(\mid \bar{\nu})^{4}} \cdot \frac{|a|^{3 \nu-2}}{\left(1-y^{2}\right)^{2^{\nu-1}}} \int_{0}^{\pi / 2}(\cos \theta)^{\nu-1}(\sin \theta)^{2^{\nu-1}}\left(2-a^{2} \cos ^{2} \theta\right)^{-\nu / 2} d \theta
$$

where

$$
0<a^{2}=2\left(1-y^{2}\right) \leqslant 2 .
$$

As

$$
\begin{aligned}
& \left(2-a^{2} \cos ^{2} \theta\right)^{-\nu / 2} \leqslant\left(2 \sin ^{2} \theta\right)^{-\nu / 2} \text { for } \nu>0, \\
& \mathrm{I}_{2} \leqslant \frac{4^{1-2 \nu} \pi}{(\mid \bar{\nu})^{4}} \cdot \frac{a^{3 \nu-2}}{\left(1-y^{2}\right)^{2^{\nu-1}}} \cdot 2^{-\nu / 2} \mathrm{~B}\left(\frac{\nu}{2}, \frac{\nu}{2}\right)
\end{aligned}
$$

which certainly exists for $\nu>0$. If $y^{2}=z^{2}=1, \mathrm{I}_{2}$ reduces to 0 .
At the end points $x= \pm 1$, the expansion (5) is not valid as that requires $\nu<0$. For the same reason we conclude that (8) is not valid at the points $y= \pm 1$ and $z= \pm 1$.

My best thanks are due to Professor N. S. Govinda Rao for kind encouragement.

References

1. Vinti, John P. .. "Note on a series of products of three Legendre polynomials," Proc. Amer. Math. Soc., 1951, 2, 19-23.
2. Erdelyi, A. .. Higher Transcendental Functions, Vol. I (McGraw Hill Book Co.), 1953.
3. Szego, G. .. Orthogonal Polynomials, 1939, p. 239.

[^0]: *After completing the work of this paper, I have learnt that Dr. Brafman (Wayne University Detroit, U.S.A.) has communicated a paper on the topic.

